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Abstract: Rapid industrialization and urbanization are rapidly deteriorating
ambient air quality, especially in the developing nations. Air pollutants impose
a high risk on human health and degrade the environment as well. Earlier
studies have used machine learning (ML) and statistical modeling to classify
and forecast air pollution. However, these methods suffer from the complex-
ity of air pollution dataset resulting in a lack of efficient classification and
forecasting of air pollution. ML-based models suffer from improper data pre-
processing, class imbalance issues, data splitting, and hyperparameter tuning.
There is a gap in the existing ML-based studies on air pollution due to
improper data handling and optimization. The present investigation aims to
bridge these gaps and aid in effective air pollution classification and fore-
casting. Five ML models were developed, including one novel model named
SMOTEDNN (Synthetic Minority Oversampling Technique with Deep Neu-
ral Network) to address air pollution classification. All five models utilized
efficient data pre-processing and rigorous hyperparameter optimization.Three
forecasting models were developed to forecast air pollution for one step-index
based on statistical autoregression. All developed models in present investi-
gation showed higher accuracy. Significantly, the novel model SMOTEDNN
achieved an accuracy of (99.90%) higher than the other models from the
current investigation and previous studies.
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1 Introduction

Globally, due to rapid industrialization and urbanization, air pollution is increasing. Air pollu-
tion poses severe risks for the environment, creating health-related hazards and worsening climate
change. Notably, smog from waste products such as carbon, nitric oxide (NO), carbon monoxide
(CO), hydrocarbons, and synthetic nectar from cellular sources affect the environment [1]. The
threat of air pollutants, especially particulate matter (PM), is serious enough to cause a higher
rate of mortality, as advised by the World Health Organization (WHO) [2,3]. Additionally, an
increasing number of vehicles are responsible for increasing pollutants such as NO2, CO, NH3,
PM2.5, and PM10, whereas pollutants such as and SO2, CO, O3, B (Benzene), T (Toluene), and
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X (Xylene) are coming from industrial sources. India stands at the second place in terms of
severity of pollution after Kuwait, based on higher Particulate Matter (PM) concentrations [4–6].

Previous studies have used statistical models, mathematical models, and Machine Learning
(ML) models to classify and forecast air pollution. Reference [7] used Recurrent Neural Networks
(RNN) for classification of ozone and achieved an accuracy of 81%. Reference [8] also used RNN
to analyze PM 2.5 and PM10 with 95% accuracy [9] used Support Vector Regression and ensemble
model to classify PM10 with an accuracy of 96%. Reference [10] used multiple ML models to
classify air pollution and found that logistic regression provides an accuracy of 93%. However,
parameter tuning was missed. Majority of studies used ANN [9–12] hybrid ANN [13–15] and
ML [9,10], [16–18] to forecast the air quality. However, due to the complexity of the dataset due to
trend and seasonality, most models lack efficient classification and forecasting of air pollution [19].
Given the learning ability and complex data handling capacity of ML, the use of ML models
has rapidly increased [20]. However, critical issues such as data pre-processing, class imbalance
issues, data splitting, and hyper-parameter tuning have been poorly addressed to optimize the
performance of the models. Specifically, most studies showed high accuracy for the class with more
observations and low accuracy for the class with less observation; clearly, illusory accuracy has
been achieved due to all these issues. ML models can provide output to almost any given input
based on training; however, proper data pre-processing and hyperparameter tuning can improve
the model in terms of accuracy, sensitivity, and stability. There is a gap in the collective findings of
the existing ML-based air pollution studies due to improper data handling and optimization [6,21].
The present investigation aims to bridge the gaps for more effective air pollution classification and
forecasting. Five ML models were developed, including one novel model named SMOTEDNN
to address air pollution classification. All five models utilized efficient data pre-processing and
rigorous hyperparameter optimization. Three forecasting models were developed to forecast air
pollution for one step-index based on statistical autoregression.

1.1 SMOTEDNN
Previous studies focused on getting higher accuracy values, with lesser attention on the illusory

accuracy due to class imbalance in the dataset. Classification on imbalanced dataset showed
less accuracy for minority class (fewer observations) and high accuracy for majority class (more
observations). SMOTE was integrated with DNN in the current investigation to overcome the
issue of class imbalance. It oversampled the values of the minority class based on duplicating
minority class values. These new values do not add new information to the algorithm; however,
new values were synthesized from existing values. SMOTE randomly selects a minor class and
creates a new value based on k nearest neighbors randomly. The SMOTE was combined with
DNN (SMOTEDNN) to classify air pollution.

Neural Network (NN) belongs to the feedforward artificial neural network (ANN); consists of
three layers: an input, a hidden, and an output layer. The higher number of layers for ANN can
be defined as DNN. The node of DNN mainly uses a non-linear activation function, excluding the
input nodes. The primary benefit of automatic feature extraction in DL-based models makes it a
widespread choice for classification [7,8]. The main components of the DNN have been delineated
in the ensuing sub-sections.

1.1.1 Activation Layer
A neural network requires an activation function to make predictions. The rectifier activation

function (ReLU) is one of the default activation functions for DNN-based applications; it adds
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nonlinearity to the network. ReLU output 0 for negative value and output the same value for
non-negative values. Softmax is an output layer function used in the output layer for classification
in a neural network. Softmax predicts a multinomial probability distribution with more than two
classes.

1.1.2 Dense Layer
The dense layer in a neural network is deeply connected. Each neuron in the dense layer

receives input from all neurons of its preceding layer. It uses a linear operation function to map
every input with every output.

1.1.3 Training
Models such as neural networks use learning algorithms to minimize errors. For ANN, one

of the leading learning algorithms is backpropagation, which computes the gradient of a function
to fine-tune the network parameters for error minimization.

1.2 XGBoost
XGBoost (eXtensive Gradient Boosting) is a decision-tree-based ensemble ML model or opti-

mized gradient boosting algorithm based on gradient descent algorithm. It includes parallelization,
efficient handling of missing data, tree pruning, and regularization to prevent overfitting. XGBoost
is one of the best algorithms in processing time and performance when compared to other models.
XGBoost uses parallelized implementation approach to process the sequential trees. XGBoost and
Random Forest (RF) are both decision tree-based models, and the difference between them is that
XGBoost can minimize errors where RF cannot.

1.3 Random Forest
Random forest is a supervised classification algorithm. RF produces decision trees on data

samples and utilizes each tree for prediction based on an ensemble of voting or bagging. Bagging
allows producing various subsets of the data randomly from the training data used to train the
decision trees. RF is based on the classifiers c(a|�1),. . .., c(a|�k) related to classification tree with
parameters �k selected randomly from a model random vector �. The final classification f(a) uses
an ensemble of {ck (a)} where the best fit classification calculates based on voting from each tree
for input a. The dataset d = {(ai,bi)}ni=1is trained on the collection of classifiers {ck (a)}.

1.4 Support Vector Machine (SVM)
SVM is an ML algorithm that carries out classification using an optimal hyperplane. Gen-

erally, SVM classifiers are non-linear, aiming to find a higher margin to separate the classes in
feature space [22]. SVM can be defined as [22,23]: (i) Suppose a set of training vectors T, where

T = {(a1,b1), (a2,b2), (a3,b3), . . . , (an,bn)} (1)

Here, xi ∈R
n where i= 1, 2, 3,. . ., n. (ii) T can be defined as bi = {−1, 1} for two classes. (iii)

T is a linearly separable hyperplane using the function d(x) as:

d(x)=<w,a>+c=
n∑
i=1

(wiai)+b= 0 (2)

where a is an independent variable, w is weight calculated using the model, and c is a constant.
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SVM algorithm maximizes the margin of the hyperplane from the training vectors as

min
w,b

1
2
||w||2 (3)

SVM calculates the cost function as

©(w, c;α)= 1
2
||w2|| −

n∑
i=1

αi(bi[w.a1+ c]− 1) (4)

Here, the set α = (α1,α2, . . . ,αn)T ∈R
n+ is the Lagrangian multiplier.

To overcome the finding optimum hyperplane, the penalty parameter ‘C’ and slack variables
ξi were introduced [23,24]:

bi((w.ai)+ c)≥ 1− ξi (5)

The equation used to maximize the margin for the optimal hyperplane is given as:

min
1
2
||w||2 +C

n∑
i=1

ξi (6)

1.5 KNN
The KNN algorithm is a supervised ML algorithm, and it assumes that a value of a point

is similar to the values that exist in the neighbors. KNN is based on the principle of obtaining
the value of a point using neighbor points in the dataset based on distance. Thus, it works on
the principle of choosing the value of K(neighbors) near to the point of interest and voting for
the most frequent class. The high number of K reduces the noise, and local anomalies add more
error towards the decision boundaries.

The primary issue with KNN is that it become slows as the data grows. The Euclidean
distance (d) for two points (a1− a2) and (b1− b2) can be obtained using

d = ((a1− b1)
2+ (a2− b2)

2)
1
2 (7)

For n-dimensional space, d can be obtained as

de =
[

n∑
i=0

(ai− bi)
2

] 1
2

(8)

2 Dataset

The National Air Quality Monitoring Program (NAMP) is a nationwide program from the
Central Pollution Control Board (CPCB) of India. It aims to monitor the levels of air pollutants
from 793 active stations spreading over 344 cities from 29 states of India. The present study used
a dataset released under the NAMP program (http://www.cpcbenvis.nic.in/air_quality_data.html)
from Jan 01, 2015, to July 07, 2020. The air pollutants analyzed in the present investigation are
NOx, Nitrogen Oxide (NO), Nitrogen dioxide (NO2), Particulate Matter (PM2.5, and PM10), Sul-
phur Dioxide (SO2), Carbon monoxide (CO), Ammonia (NH3), Ozone (O3) Benzene (B), Toluene

http://www.cpcbenvis.nic.in/air_quality_data.html
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and Xylene(X) (Fig. 1). In addition, the dataset contains an air quality index (AQI) parameter,
which is an indication used by government authorities to categorize the pollution in terms of its
severity. The six AQI values and their ambient concentrations with health consequences are given
in Fig. 2. (Source: https://app.cpcbccr.com/AQI_India/).

Figure 1: Air pollution parameters from 793 stations across India from Jan 2015 to July 2020
daily

Figure 2: Six AQI values and their ambient concentrations with health consequences

https://app.cpcbccr.com/AQI_India/
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3 Methodology

3.1 Data Pre-Processing
To improve the understanding of the data, handling missing values, and making data ready for

modeling, the raw data underwent the data cleaning process. The primary step was to understand
the missing values in the dataset (Fig. 3). It was clear from Fig. 3 that B, X, T, O3, and NH3
are among the highest missing values. On the other hand, the less missing value pollutants were
CO, NO, NO2, SO2, O3, NOx, PM 2.5, and AQI values. The missing values were removed using
Pandas dropna function, where any NA values are present in any row/column. The fields city,
date, Year_Month, and AQI_Bucket were removed based on their substitute fields in the dataset
to avoid redundancy.

Figure 3: The missing values and % of pollutants from the dataset

3.2 Data Analysis
The data pertaining to various air pollutants were analyzed to understand city-wise con-

centrations of various pollutants (Fig. 4a). Delhi showed the highest levels for PM values. The
average levels of the pollutants from 25 cities are given in Fig. 5. Ahmedabad showed very high
concentrations for SO2 and NO3 values. Delhi showed high values for SO2 and NO values,
whereas Kochi showed the highest level of NO. The AQI and CO values for Ahmedabad were
the highest among all cities for the observation period, followed by Delhi, which showed AQI
and PM10 values on the higher side. The correlation between all air pollution parameters is given
in Fig. 4b. The correlation values between pollutants were statistically significant emphasizing
the high pollution levels and interrelationships between pollutants. It was essential to understand
the AQI interrelationships with each pollutant, to understand which ones were contributing most
significantly towards the index. Interestingly, this study found that AQI values were highly related
to PM 2.5, NO, and NO2, based on a correlation value of 0.8 (CI= 95%). SO2 and O3 followed
next, based on a correlation value of 0.7 (CI= 95%). Rest of the pollutants showed correlation
values between 0.2 to 0.5.
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Figure 4: (a) The city-wise proportion of pollution; (b) Correlation heatmap between all air
pollution parameters

Figure 5: (a) Average pollution from 25 major cities of India from Jan 2015 to July 2020 on daily
(b) Average levels of pollution in 26 cities
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3.3 SMOTEDNNModel Development for AQI Classification
The present investigation developed a novel model SMOTEDNN to classify air pollution. In

order to assess the model performance, it was compared with four state-of-the-art ML models-
XGBoost, Random Forest, SVM, and KNN to classify the AQI into six classes shown in Fig. 2.
The performance in terms of accuracy, stability, and time complexity of ML/DL models depend
on optimizing the hyperparameters. In the present investigation, hyperparameters for all the
developed models were optimized rigorously to avoid illusory accuracy.

3.3.1 SMOTEDNN
SMOTE was integrated to overcome the issue of class imbalance; it oversampled the values

of the minority class based on duplicating the minority class values. These new values did not
add new information to the algorithm; however, new values were synthesized from the existing
values. SMOTE randomly selects a minor class and creates a new value based on k nearest
neighbors randomly. The counter object was used to summarize the number of points in each
class to confirm that the dataset was created correctly. SMOTE performed well to overcome class
imbalance issues and resultant pollution classes containing a balanced number of occurrences in
each class (i.e., 129277).

The novel SMOTEDNN model was developed with five layers each in the present study to
classify AQI based on the air pollution data. Python 3.8, Keras 2.3.0 API, Tensorflow 2.0 back-
end, NumPy, pandas, os, sklearn, matplotlib, and DateTime libraries were used in this research
(Fig. 6). Data pre-processing and SMOTE were applied to the raw dataset so that the output of
both steps could be utilized with the developed DNN models. We used five neural network layers
that operated on all the six classes of air quality. The rectifier activation function (ReLU) was
utilized for starting four neural network layers. The ReLU activation function can be defined as
Eq. (9). ReLU acts as a linear function for all positive values and provides zero for all negative
values.

y=max(0,x) (9)

The fifth layer used the kernel initializer followed by the dense layer with softmax function
for classification in the sixth layer. The softmax function can be given as Eq. (10).

σ(�z)i = eZi

Σn
j=1e

Zj (10)

where n=no of classes, and ezi, and ezj are input and output vector function, respectively.

Early stopping was used to reduce the learning rate through Keras callbacks function to
prevent overfitting. The number of epochs was automatically chosen using the early stopping of
Keras callback functions based on validation loss, minimum delta value, and patience. In DNN
model training, the number of parameters such as iterations, learning rate, batch size, and the
activation function was obtained using GridSearchCV. Deep learning models such as DNN might
be complex, and data splitting is also a significant issue while tuning the parameters. There was
a total 11,990 number of parameters, and all parameters were trainable using SMOTEDNN.



CMC, 2022, vol.71, no.1 1411

Figure 6: Developed SMOTEDNN model to classify the air quality for six classes

SMOTEDNN model was compiled after defining the model. The Adam optimizer was used
with a decay of 1e-3; the learning rate was selected automatically and dynamically, using a call-
back monitor. The present problem was multiclass classification; therefore, the loss was measured
based on categorical cross-entropy. It was used to compute the error rate between the actual and
the m values for classification, as in Eq. (11).

Loss=− 1
Os

Os∑
i=0

ai · log t̂i + (1− ai) · log(1− t̂i) (11)

where Os, ai and t̂i are the output size, target, and output values, respectively.

The optimization of hyperparameters for the developed SMOTEDNN model is given in
Tab. 1.

3.3.2 XGBoost
The XGBoost model was developed using XGBClassifier class within the ‘XGBoost’ module

in the sklearn (scikit-learn) package in Python. The XgBoost algorithm was applied to the pre-
processed data (in Section 3.1) to classify the AQI based on pollutants data. The hyperparameters
were tuned based on RandomizedSearchCV with the following parameters (Tab. 2).
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Table 1: Hyperparameters optimization for SMOTEDNN

Parameter Value Optimized parameter Remark

Activation
function

identity,
logistic, tanh,
relu

relu Activation function for the
hidden layer

Size of hidden
layers

Different
values

22, 28, 56, 112, 28 Neurons in the hidden layer

Optimizer lbfgs, sgd,
adam

adam Used for error optimization

Alpha 0.00001,
0.0001, 0.001,
0.01

0.001 It refers to the regularization
parameter

Learning rate 0.0001, 0.001,
0.01

0.001 Step-size controller to update
the weights

Table 2: Hyperparameters optimization for XGBoost

Parameter Value Optimized parameter Remarks

Learning rate 0.05, 0.10,
0.15, 0.20,
0.25, 0.30

0.20 Loss minimization for each
iteration

max_depth [3, 4, 5, 6, 8,
10, 12, 14, 16]

4 Maximum depth for a tree

min_child_-
weight

[1, 3, 5, 7, 9,
11]

7 Minimum combined weights
of all observations for a
child node

gamma [0.0, 0.1, 0.2,
0.3, 0.4, 0.5]

0.0 Refers to the minimum loss
minimization need to do a
split.

colsample_-
bytree

[0.3, 0.4, 0.5 ,
0.6, 0.7]

0.5 Column fraction that samples
randomly for every tree

n_estimators 10, 20, 50,
100, 200

100 Number of trees

3.3.3 Random Forest
Random Forest Classifier from the sklearn.ensemble module of the sklearn package [25] was

used to develop the RF model. In addition, the Gini impurity function was used in the present
investigation as it requires less computation [26]. The optimized hyperparameters for RF are given
in Tab. 3.
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Table 3: Hyperparameters optimization for RF

Parameter Value Optimized parameter Remark

n_estimators 10, 20, 50,
100, 200

100 Number of trees

n_jobs 1, −1 −1 Number of processors −1
means no restrictions, and 1
means only one is allowed

random_state 10, 20, 30, 40,
50, 60, 100

50 For replication of same
results with same models

min_samples_-
leaf

10, 20, 30, 40,
50, 60, 100

60 End node of the decision tree

3.3.4 SVM
The SVM model was developed using the svm module of the sklearn package [25]. The

regularization parameters (C) control the SVM model performance with radial basis function
(RBF) kernel. The RBF kernel can be represented as:

K(xi,xj)= e(−γ ||xi−xj ||2) (12)

Here, γ is the kernel width. The optimized hyperparameters for the SVM model used in the
present investigation are given in Tab. 4.

Table 4: Hyperparameters optimization for SVM

Parameter Value Optimized parameter Remark

C 10, 20, 50, 100, 200 100 Regularization parameter
kernel poly, linear, rbf, sigmoid, rbf Kernel type used
degree 1, 2, 3, 4, 5 none Used only in polykernel
gamma scale, float, auto auto Kernel coefficient

3.3.5 KNN
KNN model was developed using KNeighborsClassifier class in sklearn package in Python.

One of the most critical parameters for the KNN is neighbors, which determines that the
unknown value can be obtained from how many neighbors have known values. The optimized
hyperparameters for the KNN model used in the present investigation are given in Tab. 5.

3.4 AQI Forecasting Using Linear Regression
For AQI time series forecasting, the New Delhi city was selected based on high pollutant lev-

els for the observation period. The primary step was to understand which particular pollutant
affected New Delhi AQI values the most. The correlation values with AQI for different pollutants
and the percentage of null values are given in Tab. 6. It was evident from Tab. 6 that particulate
matter (PM 2.5, PM 10), B, NO2, and NO showed a significantly high correlation with AQI. The
combined value of pollutants B_X_O3_NH3 showed a higher correlation but more null values due
to the non-availability of X pollutant data.
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Table 5: Hyperparameters optimization for KNN

Parameter Value Optimized parameter Remark

N_neighbors 2, 4, 6, 8, 10, 12,
14, 16, 18, 20

10 Number of neighbors

n_jobs 1, −1 −1 Number of processors −1 means
no restrictions, 1 means only 1 is
allowed

weights uniform, distance distance Weight function used in prediction
algorithm auto, ball_tree,

kd_tree, brute
Kd_tree The algorithm used to compute

the NN

Table 6: Correlation of pollutants with AQI and % of null values for New Delhi for observation
period

Pollutant/Variable Correlation value % of Null values

Particulate matters 0.92 3.50
PM10 0.88 3.50
PM2.5 0.88 0.10
Benzene 0.67 0.00
NO2 0.67 0.10
NO 0.64 0.10
B_X_O3_NH3 0.63 38.60
NOx 0.56 0.00
NH3 0.52 0.40
SO2 0.41 5.10
O3 0.33 3.80
CO 0.28 0.00
Toluene 0.28 0.00
Xylene 0.23 38.60
Month 0.06 0.00
Year −0.28 0.00

The city, date, Year_Month, and AQI_Bucket columns were not required and were deleted.
The frequency distribution of AQI for New Delhi is not a normal distribution. Therefore, sea-
sonality involvement did exist. AD Fuller statistical test was performed to check the time series
behavior (i.e., stationary or non-stationary). A value of −3.351 was obtained based on the AD
Fuller test with a p-value of 0.01263; it was found based on the test that the dataset was non-
stationary. Since the data behavior of time series was non-stationary, the original data could not
forecast the value through an autoregressive model (Fig. 7a). However, one-step prediction based
on the previous step’s modeling was possible if there was autocorrelation in the dataset. Figs. 7b–
7d shows a significantly higher correlation for one-step forecasting based on the previous step
value. The first time series forecasting model used the previous step-index to generate the next
step-index (Fig. 8a).
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Figure 7: (a) AQI time series for New Delhi, (b) Autocorrelation for first previous index, (c)
Autocorrelation for second previous index, (d) Autocorrelation for third previous index, (e)
Autocorrelation for the time series

4 Results and Discussions

4.1 Accuracy Assessment
We evaluated the performance of all the developed models based on accuracy, error, sensitiv-

ity, specificity, false-positive rate, and false-negative rate. These metrics are defined as follows:
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Accuracy of a method on a test dataset is the percentage used to correctly identify the
test occurrences, and it was computed as Eq. (12). The error rate was obtained using Eq. (13).
The uncertainty of the ‘sensitivity’ and ‘specificity’ was used to obtain the model’s strength and
stability Eqs. (14)–(15). False-positive ratio (FPR) and false-negative ratio (FNR) were obtained
using Eqs. (16)–(17).

Accuracy= (TP+TN)/(TP+FP+TN+FN) (13)

Error= 1−Accuracy (14)

Sensivitiy= TP
TP+FN

× 100 (15)

Specificity= TN
TN+FP

× 100 (16)

FPR= FP
TP+FP

(17)

FNR= FN
TN+FN

× 100 (18)

TP, TN, FP, and FN represent true positive, true negative, false positive, and false negatives,
respectively.

4.2 Air Quality Classification Models
In this section, the results of air quality classification models are given. The performance of

the developed SMOTEDNN model was assessed, with the unforeseen data kept separately during
the training process for proper assessment and evaluation of the developed models. An attempt
was made to see if the SMOTEDNN model was overfitted. It was evident that the variance
between validation loss and training loss was almost negligible; therefore, overfitting did not exist.
As mentioned earlier, the hyperparameters of SMOTEDNN were tuned using GridsearchCV, and
callbacks were utilized to select the optimal number of epochs to prevent overfitting automatically.
The SMOTEDNN model-optimized results were obtained using 17 epochs, which consumed fewer
computing resources and lesser time (Fig. 8). The present investigation utilized Tensor Processing
Units (TPUs) v 2–8. These TPUs are Google’s application-specific circuits, which accelerate the
training workflows of AI models. There were eight cores and 64GiB memory in the TPU v2-8
used in the present investigation. SMOTEDNN took 34 s and 17 ms with 17 epochs on an average.
It was evident from Fig. 8 that the accuracy and loss were optimized for selecting the number of
epochs through callbacks.
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Figure 8: The performance of the SMOTEDNN model based on accuracy and loss

Based on the performance metrics given in Tab. 7, it was observed that SMOTEDNN out-
performed all the other models, though the other models did fairly well. The reason behind
better performance of Model 3 was the efficient data pre-processing and rigorous tuning of the
hyperparameters.

Table 7: Confusion matrix for all five developed Models to classify air quality index

SMOTEDNN Good Satisfactory Moderate Poor Very poor Severe

Good 3365 0 0 0 0 0
Satisfactory 0 16845 0 6 0 0
Moderate 0 0 4816 0 0 0
Poor 0 0 0 13408 0 0
Very poor 0 0 1 0 997 1
Severe 0 1 0 0 2 3220

XGBoost Good Satisfactory Moderate Poor Very poor Severe
Good 3360 0 5 0 0 0
Satisfactory 0 16845 0 6 0 0
Moderate 0 2 4814 0 0 0
Poor 0 0 0 13408 0 0
Very Poor 0 0 1 0 984 14
Severe 0 0 20 0 4 3199

RF Good Satisfactory Moderate Poor Very poor Severe
Good 3285 0 3 77 0 0
Satisfactory 0 16818 25 8 0 0
Moderate 0 26 4717 0 0 73
Poor 55 113 0 13240 0 0
Very poor 0 2 0 0 974 23
Severe 0 0 7 0 12 3204

SVM Good Satisfactory Moderate Poor Very poor Severe
Good 3288 0 0 77 0 0
Satisfactory 0 16818 25 8 0 0
Moderate 0 26 4717 0 0 73
Poor 55 113 0 13240 0 0
Very poor 0 0 0 0 976 23

(Continued)
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Table 7: Continued

SVM Good Satisfactory Moderate Poor Very poor Severe

Severe 0 0 7 0 12 3204

KNN Good Satisfactory Moderate Poor Very poor Severe
Good 3195 0 0 170 0 0
Satisfactory 1 16568 81 201 0 0
Moderate 0 211 4504 0 0 101
Poor 245 778 0 12385 0 0
Very poor 0 0 0 0 946 53
Severe 0 0 147 0 58 3018

Models SMOTEDNN XGBoost RF SVM KNN
Accuracy 99.9 99.2 99.1 99.01 95.2
Sensitivity 98.76 96.54 95.42 95.23 91.87
Specificity 99.13 97.65 96.74 96.58 93.46
Error rate 0.1 0.8 0.9 0.99 4.8
FDR 2.17 1.97 2.73 1.96 6.49
FOR 0.08 0.16 0.47 0.73 5.82

4.3 Air Quality Forecasting Models
Three air quality forecasting models were developed in the current investigation. The first

linear model used one previous step as input to forecast the output of the following step
(Fig. 9a). The second linear model used seven previous steps to forecast the following step’s output
(Fig. 9b). The third autoregressive model (Model 3) used tuning of the optimized number of steps
required to forecast the air quality for New Delhi (Fig. 9c).

Model 1 showed a correlation value of 0.9 when comparing the forecasted value with the
actual value with a root mean square error (RMSE) of 29.17 (Fig. 9a). Model 1 can be used
for forecasting based on the high correlation value (Tab. 8). Model 2 was developed to forecast a
one-step model based on n previous steps; initially, we chose a value of k was one week (Fig. 9b).
The RMSE value for Model 2 was 53.21, larger than Model 1 (Tab. 9). Model 3 was based
on autoregression. However, as already mentioned, the time series pattern was non-stationary
and unsuitable for autoregression. Therefore, the trend and seasonality from the time series were
removed based on the approach given by [27]. The AR package was used from the StatsModel
library using Python to develop Model 3. The tuning of n, trend parameter, and the seasonal
parameter was crucial to obtain the optimized forecasting model. The k values ranging from 1 to
365 days were given to model using a loop to obtain the optimized autoregression model. The
optimized value for k was 14 steps or previous days value (Fig. 9c). The trend parameter and
seasonal parameter were n and True, respectively. The RMSE for Model 3 was 15.48 with an
R-value of 0.93, which was significantly better than Models 1 and 2, it was also indicated through
Fig. 9c that the third developed model shown better fitting between actual and forecasted AQI
values.
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(a)

(b)

(c)

Figure 9: (a) AQI forecasting based on Model 1, (b) AQI forecasting based on Model 2, (c) AQI
forecasting based on Model 3
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Table 8: Forecasting performance of Model 1 with k= 1 step

CM actual pred r

actual 1 0.8981 0.9
pred 0.8989 1

Table 9: Forecasting performance of model 2 with k= 7 steps

CM actual pred r

1 384 372.427 0.4
2 340 353.787
3 372 346.997
4 425 343.519
5 455 338.261
6 506 332.855
7 417 328.223

4.4 Comparison with Other Studies
The present investigation developed five models to classify air pollution severity based on

different pollutants. The models developed in the present investigation were compared with other
studies to assess the performance of the developed models (see Tab. 10). Overall, compared to the
other models, the SMOTEDNN model produced the highest classification accuracy. Similarly, the
autoregression-based Model 3 for forecasting yielded higher accuracy compared to other studies
(Tab. 10).

Table 10: Comparison with other studies

AQI Classification models performance comparison

Author Method Accuracy % Remarks

[7] Recurrent neural
networks

81.00 Used for O3
pollutant

[8] Recurrent neural
networks

95.00 Only for PM2.5 and
PM10

[9] SVR+wavelet,
Ensemble

96.00 Only for PM10

[10] LR 93.00 Lack of
hyperparameters
tuning

[10] RF 86.00 Lack of
hyperparameters
tuning

(Continued)
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Table 10: Continued

AQI Classification models performance comparison

Author Method Accuracy % Remarks

[28] LR 68.74 Lack of
hyperparameters
tuning

[28] SGD 66.23 Lack of
hyperparameters
tuning

[28] RFR 72.22 Lack of
hyperparameters
tuning

[28] DTR 71.08 Lack of
hyperparameters
tuning

[28] MLP 70.43 Lack of
hyperparameters
tuning

[28] SVR 70.97 Lack of
hyperparameters
tuning

[28] GBR 74.91 Lack of
hyperparameters
tuning

[28] ABR 49.63 Lack of
hyperparameters
tuning

Current study SMOTEDNN 99.90 Novel model with
rigorous
hyperparameters
tuning

Current study XGBoost 99.20 Rigorous
hyperparameters
tuning

Current study RF 99.10 Rigorous
hyperparameters
tuning

Current study SVM 99.01 Rigorous
hyperparameters
tuning

Current study KNN 95.20 Hyperparameters
tuning

AQI Forecasting Models Performance Comparison

[9] ANN 0.91 Forecasting for
PM10, R-value, lack
of parameters tuning

(Continued)
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Table 10: Continued

AQI Classification models performance comparison

Author Method Accuracy % Remarks

[10] SARIMA 20.69 Forecasting of AQI for 2019,
RMSE

[10] SARIMA 43.95 Forecasting of AQI for 2020,
high RMSE

[10] Facebook-Prophet 22.81 Forecasting of AQI for 2019,
RMSE

[11] ANN 0.88 O3 peak forecasting, lack of
parameters tuning

[12] ANN 0.89 Air pollution forecasting, lack
of parameters tuning

[13] Hybrid ANN 0.70–0.83 Forecasting of PM10, CO, NO,
NO2, lack of parameters tuning

[14] PCA+ANN 0.27–0.75 Weak data splitting and lack of
parameters tuning

[15] MLP+ANN 0.78–0.82 Detailed investigation
[16,17] Decision tree and

Naive based
0.91 Time series forecasting

[18] SVR+RBF −0.67 Used one station data
[18] SVR+Linear −0.61 Used one station data
[18] SVR+Poly −0.79 Used one station data
[18] RNN+LSTM 0.48 Used one station data
[29] Urban Airshed

Model
0.69 Forecasting for O3, R-value

[30] RNN 0.35–0.36 Only forecast PM2.5
[31] StackedLSTM 10.65–21.44 RMSE for 12 h forecasting for

CO, O3, NO2, SO2, and PM,
used data only from 2 sensor
locations

[32] GRU+SGD 0.82 PM 2.5 forecasting with GRU,
SGD and RNN

[33] CNN+LSTM 0.43 Weak parameter tuning
[34] LSTM+PSO 18 MAPE
Current study Linear regression

model 1
0.90 Pre-processing and statistical

operations were performed with
one step-index forecasting

Current study Linear regression
model 2

0.40 Trial and error model for seven
step-index forecasts, low
accuracy

Current study Auto regression
model 3

0.93 Tuned number of k for
autoregression, higher accuracy
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5 Conclusions

The increasing rate of industrialization and urbanization is the main reason for worsening air
pollution status, especially for developing nations. Previous studies that used ML and statistical
modeling to classify and forecast the air pollution suffered heavily due to the dataset’s nature and
complexity, resulting in a lack of efficient classification and forecasting of air pollution. Especially,
ML-based models have shown improper data handling, class imbalance issues, data division for
training and testing, and, most importantly, inaccurate hyperparameter tuning. The current inves-
tigation contributed toward bridging the identified gaps for both aspects of air pollution analysis,
i.e., classification and forecasting. Five ML models were developed, including one novel model
named SMOTEDNN to address the air pollution classification. All five models utilize efficient
data pre-processing and rigorous hyperparameter optimization. All the developed models showed
excellent performance based on accuracy, precision, sensitivity, and specificity. Significantly, the
novel model SMOTEDNN showed higher accuracy (99.90%) than the other models from the
current investigation and previous studies. The primary reason for this exceptional performance
was rigorous data pre-processing and intense hyperparameter tuning. The performance of the two
forecasting models (Model 1 and Model 3) was good; however, Model 2 was not efficient enough.
The study indicated that air pollution in India, during Jan 2015 to Jul 2020, showed severity
of pollution trends with two weeks of index data as a baseline. The future scope of present
investigation to include more datasets through IoT based pollution dataset to real time air quality
assessment and forecasting.
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