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Abstract:Hyperuricemia is an alarming issue that contributes to cardiovascu-
lar disease. Uric acid (UA) level was proven to be related to pulse wave velocity,
a marker of arterial stiffness. A hyperuricemia prediction method utilizing
photoplethysmogram (PPG) and arteriograph by using machine learning
(ML) is proposed. From the literature search, there is no available papers
found that relates PPG with UA level even though PPG is highly associated
with vessel condition. The five phases in this research are data collection,
signal preprocessing including denoising and signal quality indexes, features
extraction for PPG and SDPPG waveform, statistical analysis for feature
selection and classification of UA levels usingML. Adding PPG to the current
arteriograph able to reduce cost and increase the prediction performance.
PPG and arteriograph data were measured from 113 subjects, and 226 sets of
data were collected from the left and right hands of the subjects. The perfor-
mance of four types of ML, namely, artificial neural network (ANN), linear
discriminant analysis (LDA), k-nearest neighbor (kNN), and support vector
machine (SVM) in predicting hyperuricemia was compared. From the total of
98 features extracted, 16 features of which showed statistical significance for
hyper and normouricemia. ANN gives the best performance compared to the
other three ML techniques with 91.67%, 95.45%, and 94.12% for sensitivity,
specificity, and accuracy, respectively. Features from PPG and arteriograph
able to be used to predict hyperuricemia accurately and noninvasively. This
study is the first to find the relationship of PPG with hyperuricemia. It shows
a significant relation between PPG signals and arteriograph data toward the
UA level. The proposed method of UA prediction shows its potential for
noninvasive preliminary assessment.
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1 Introduction

Cardiovascular disease (CVD) contributed approximately 18.6 million deaths globally in 2019;
it increases to approximately 53.7% from 1990 [1]. This finding may be attributed to the escalation
of obesity, diabetes, hypertension, dyslipidemia, and hyperuricemia [2]. According to a study by
Touserkani et al. [3] and Lee et al. [4], the risk of CVD mortality was associated significantly
with high uric acid (UA) level for males and females. Even though the elevation of UA level as
an independent risk factor of CVD risk still remains debatable, a study from Chang et al. [5]
showed that UA level is associated significantly with cardiovascular risk.

Hyperuricemia, a high UA level condition, is >420 µmol/L for males and >360 µmol/L for
females [6]. Purine-rich food, such as red meat, internal organs of animals, and few types of
seafood, may elevate UA level. Excessive UA leads to accumulation of monosodium urate crystals
around joint and kidney and causes kidney stones and gouty arthritis. Currently, the gold standard
in measuring UA level is through micro-invasive blood test, which causes discomfort and difficulty
in continuous monitoring.

The significant association between elevated UA level and escalated CVD risk may be medi-
ated by increased arterial stiffness [7]. Few studies on measuring arterial stiffness noninvasively
have been conducted. The gold standard measurement of arterial stiffness is through carotid–
femoral pulse wave velocity (cf-PWV). UA was found to be significantly correlated with cf-PWV
in hypertension patients [8]. A study on the correlation between UA and brachial-ankle pulse
wave velocity (ba-PWV) was controversial [9,10]. However, a cross-sectional study from Japan
population has shown a significant association between ba-PWV and UA with a p-value of less
than 0.05 [11,12]. In addition to ba-PWV, machine learning (ML) is a promising tool in prediction
and classification, especially in various applications in a clinical setup. ML approaches have been
used in predicting UA level with sociodemographic characteristics, clinical measurements, and
dietary information as the inputs [4,13,14]. Performance was measured in terms of area under
the curve (AUC), root mean square error (RMSE), sensitivity (Se), and specificity (Sp). Ichikawa
et al. [13] showed performance of 0.796, 0.752, and 0.819 for AUC, Se, and Sp, respectively, by
using gradient-boosting decision tree for Japan population. A study from Korea showed that when
using naïve Bayes, the highest Se (0.73) was obtained, and random forest classification produced
the highest balanced classification rate (0.68) [4]. The boosted decision tree also showed the least
RMSE of 0.03 for the Bangladesh population [14].

Photoplethysmogram (PPG) has become a promising technique in physiological parameter
analysis because it responds to changes in blood volume. This technique may also provide ben-
eficial information on the cardiovascular system. PPG has been widely used in measuring heart
rate, blood pressure [15] and respiration rate [16]. However, the PPG signal morphology is easily
influenced by age, gender, and pathophysiological changes, such as blood oxygen saturation, heart
rate, blood pressure, cardiac output, and respiration [17,18]. A study on man with CVD risk found
significant relationship between PPG morphology and lipid profile with onset to systolic peak as
the significant feature [19]. In addition to raw PPG data, second derivative of PPG (SDPPG) was
brought along because it can easily be quantified depending on the delicate changes in the PPG
contour [20]. The idea of applying the first derivative to the PPG (FDPPG) waveform was started
by Ozawa in 1972. The SDPPG was applied to simplify the interpretation and understanding
of the original PPG waveform [21]. Fig. 1 shows the raw, first derivative, and second derivative
of PPG waveform recorded from the present study. Inoue et al. [22] proposed that SDPPG
waveform is an independent predictor of cardiovascular mortality. In addition, a study on relating
fiducial point from SDPPG waveform has also been conducted to detect myocardial infarction;
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the accuracy (Acc) of 95.40% [23] and 90.60% [24] are acceptable. The morphological features of
SDPPG are closely related to vessel conditions [25]; thus, the association of UA and PPG can
be investigated as UA affects vessel condition, such as arterial stiffness. UA has been long asso-
ciated with arterial stiffness [26]. Various types of equipment in analyzing pulse wave have been
introduced, such as complior, sphygmoCor, and arteriograph [27]. This noninvasive equipment has
been validated and compared with invasive technique [28–30]. Complior and sphygmoCor rely on
tonometric method, and arteriograph is based on oscillometric method. According to Horváth
et al. [30], arteriograph output were closely correlated with invasive measurement. In addition,
the position of the cuff for the arteriograph is much simpler than the complior and sphygmoCor
devices [27,31]. Recent studies using arteriograph showed that PWV produces a significant p-value
(<0.001) for healthy males and females [32]. In addition, studies from Jekell and Kahan used
arteriograph as a monitoring device for hypertensive patients. Arteriograph was compared with
sphygmoCor (which is the gold standard); they produce similar values of PWV [33]. A similar
study on hypertension and normotensive subjects found a significant p-value on PWV value [34].

Figure 1: Description of the (a) PPG, (b) FDPPG and (c) SDPPG waveform recorded in the
present study

A novel PPG-based method is proposed to establish the utility of the PPG signal morphology
and arteriograph output for UA classification, i.e., hyperuricemia and normouricemia with the
aid of ML techniques; artificial neural network (ANN), linear discriminant analysis (LDA), k-
nearest neighbor (kNN), and support vector machine (SVM). The use of PPG signal provides
simple yet reliable implementation on home monitoring applications to enable preliminary UA
level prediction at home non- invasively. To the best of our knowledge, this study on arteriograph
and PPG-based association regarding UA level is the first. In the proposed method, output and
features from arteriograph, PPG, and SDPPG signals are extracted to develop a UA prediction
model using the ML algorithm.

2 Methodology

The brief block diagram of the proposed UA prediction technique is shown in Fig. 2. The
proposed prediction model can be divided into five major sections, as follows: (I) PPG and
arteriograph data acquisition; (II) preprocessing and selection of the good quality signal; (III)
fiducial point detection from the PPG and SDPPG signal followed by feature extraction; (IV)
feature selection of the input to the ML process using the most significant p-value from statistical



290 CMC, 2022, vol.71, no.1

analysis; (V) classification of hyperuricemia and normouricemia using the best performance of
classifier in terms of Se, Sp, and Acc.

Figure 2: Block diagram of methodology consisting of 5 phase: I. data acquisition, II. preprocess-
ing, III. feature extraction, IV. feature ranking and V. ML for classifying normal and high UA
level

2.1 PPG and Arteriograph Data Acquisition
This study was approved by The Research and Ethics Committee of the Hospital Universiti

Kebangsaan Malaysia with a registration number of UKM.PPI.800-1/2/21. The study population
consisted of 113 nonsmoking subjects (60 men and 53 women) with age ranging from 19–80
years old (mean ± standard deviation, 37.1 ± 13.4 years); they participated in the data collection
process at the UKM Medical Center (UKMMC), UKMMC’s primary care clinic, and university
health centre, UKM. A total of 16.81% of the subjects had hypertension, 14.16% had hyperc-
holesterolemia, 6.19% had diabetes, and the remaining 62.84% does not have any CVD risk factors
based on the questionnaire provided for subjects.

Participants submitted their informed consent prior to the data collection process. Subjects
arrived for the data collection in the morning after fasting overnight for the blood test. A random
fasting blood test was required to gauge the individual’s UA level. A questionnaire, which con-
sisted of the health status of the subjects, was provided. The weight, height, arm circumference,
and distance between suprasternal notch (jugulum, jug) and pubic bone (symphysis, sy) were
measured prior to the arteriographs’ protocol assessment. Arm circumference was measured and
recorded for better selection of cuff size. The velocity of the PWV value is measured in m/s given
the jug-sy measurement.

Arteriograph (TensioMed Ltd., Hungary) is a cuff-based oscillometry device that requires a
cuff to be placed at the upper hand in measuring pulse wave. Every subject should be rested
in a supine position for 10 mins before the arteriograph measurement is recorded. The subjects
should avoid speaking and muscle movements, which may result in measurement failure. The
measurement process was repeated three times for each arm, and the mean of these output was
used for the next phase. Tab. 1 shows the explanation of hemodynamic output measured by
the arteriograph (P1: Amplitude of the early (forward) systolic wave, P2: Amplitudes of the late
(backward) systolic wave, R: Correlation coefficient). At the first cuff inflation, the systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were measured. The cuff was overinflated at
35–40 mmHg above the subject’s SBP for pulse wave configuration. The pulse wave produced was
a combination of early and late systolic peaks. During systole, the blood volume ejected into
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the aorta resulted in pulse wave (early systolic peak). Then, this pulse wave was reflected at the
bifurcation of the aorta when it propagates through periphery (late systolic peak). The early, late
systolic, and diastolic waves were decomposed using arteriograph software, and the onset and
peaks of the waves were determined [35].

Table 1: Arteriograph output

Abbreviation (unit) Output Description

SBP (mmHg) Brachial systolic pressure –
DBP (mmHg) Brachial diastolic pressure –
HR (beat/min) Heart rate –
MAP (mmHg) Mean arterial pressure DBP + (SBP – DBP)/3
PP (mmHg) Brachial pulse pressure SBP – DBP
bAix (%) Brachial augmentation index (P2 – P1)/PP × 100
cAix (%) Central augmentation index R = 0.94, p< 0.001 [24]
ED (ms) Ejection duration of the left

ventricle
Time-span between opening &
closing of aortic valves

RT (ms) Return time Time of the pulse wave travel from
aortic root to bifurcation & back

PWVao (m/s) Aortic pulse wave velocity (Jug – Sy)/(RT/2)
SBPao (mmHg) Central systolic blood pressure On the basis of SBP & PP
PPao (mmHg) Central pulse pressure SBPao – DBP

The pulse oximeter (CMS50D+, Contec, China) with sampling frequency of 100 Hz was
placed at the index finger of subjects for the PPG measurement from both hands for 10 mins
each. It was placed at the opposite arm from the arteriograph-cuffed arm during the recording.
Our preliminary result showed no PPG pulse from the pulse oximeter once the arteriograph is
inflated. This finding may be due to the flow condition that stopped due to the occlusion in the
brachial artery that prevented blood flow in the artery for better detection of late systolic wave
to determine Aix and SPBao [30].

2.2 Preprocessing and Signal Quality Indexing
PPG signal preprocessing algorithm consists of baseline and high-frequency removal and

signal quality indices (SQI). All PPG data were processed offline in MatLAB (The Mathworks
Inc., USA). In this step, a fast Fourier transform technique was used as a band-pass filter with a
cut-off frequency of 0.5–10.0 Hz. Based on the collected PPG signals, a frequency above 10 Hz
was considered high-frequency noise and that below 0.5 Hz was attributed to baseline wander.
Amplitude offset was found using the filtering process. To overcome this problem, auto-offsetting
was used to bring back any y-axis below zero value to a positive value. It was performed by
offsetting the signal by the difference between zero-amplitude and the largest negative value.

Then, the filtered PPG signal undergoes SQI in determining the reliable signals. This step
is crucial because only high-quality signal is processed for the next phase. This type of signals
is referred to as stable signal within a period of time, in which the three conditions proposed
by Orphanidou et al. [36] are fulfilled, as follows: (1) the extrapolated 10 s PPG signal must be
between 40 and 180 bpm, (2) the PPG pulse-peak gap must not exceed 3 s to avoid missing more
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than one beat, and (3) the ratio of maximum and minimum beat–beat interval within a sample
must be less than 2.2. Fig. 3 shows that the poor quality PPG signal was described in red color,
and the blue color indicates the good quality signal based on conditions previously described.

Figure 3: PPG signal with good and poor quality defined in blue and red color signal respectively

2.3 Features Extraction
The good quality of PPG signals undergoes first and second differentiations, resulting in

FDPPG and SDPPG, respectively. Fig. 4 shows the PPG signal and their derivative of first and
second derivations. The FDPPG and SDPPG represent the velocity and acceleration of blood,
respectively. Delineator [37] and bp_annotate [38] algorithms were applied to detect the fiducial
points in the PPG signals. These points are pulse onset, systolic peak, dicrotic notch, and diastolic
peak, as shown in Fig. 4a. Both algorithms were compared manually in detecting fiducial points
toward our PPG data. Delineator algorithm shows accurate detection of onset and systolic peak,
and bp_annotate provides better detection of notch and diastolic peak. The determination of
pulse onset related to zero-crossing point prior to maximum inflection and systolic peak was
defined as the zero-crossing point after inflection [37]. Maximum and minimum inflection points
are represented in blue dotted line in Fig. 4c respectively. The dicrotic notch is the minimum of
the subtraction of the signal and the straight line from systole to diastole [38]. For the diastolic
peak, the minimum of the second derivative of the time series following the dicrotic notch relative
to a window of radius systolic–systolic peak (median heartbeat interval calculated from the onset)
is divided by 5 s.

The SDPPG consists of five waves and divided into systole region (a, b, c, and d waves) and
diastole region (e wave). SDPPG waves were detected by adapting the algorithm proposed in [23]
with some modification to improve ‘a’ and ‘e’ wave detection. The first and second derivatives of
PPG signal are derived using the following equations: interval calculated from the onset divided
by 5 s around itself. The first and second derivative of PPG signal are derived using the following
Eqs. (1) and (2):

FDPPG= d
dt

(PPG)= d
dt

[y (t+ 1)− y (t)] (1)

SDPPG= d
dt

(FDPPG)= d
dt

[y (t+ 1)+ y (t− 1)− 2y (t)] (2)

where y(t), y(t – 1), and y(t + 1) are the present sample, previous, and next sample, respectively.
The maximum and minimum peaks from FDPPG were determined for references in detecting all
SDPPG waves, as shown in Fig. 4b. For maximum peak identification, all positive peaks and the
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first peak obtained prior to systolic peak and after onset. The minimum peak is defined from
all the negative peaks and peaks found after the maximum peak and before half of the current
cycle duration. After maximum and minimum peak determination, five waves, namely, wave ‘a’,
‘b’, ‘c’, ‘d’, and ‘e’ from the SDPPG waveform were then extracted, as shown in Fig. 4c. The first
positive peak prior to the maximum peak of FDPPG considered as the ‘a’ wave, which can be
easily located using the maximum peak location in SDPPG. This approach was different from [23]
that used threshold for the determination of the most significant peak. It can result in false peak
detection due to the low amplitude of the maximum peak. The ‘b’ wave was defined from all
negative peaks and the first negative peak that occurred after the zero-crossing of the ‘a’ wave.
The ‘c’ wave was determined at the first positive peak prior to ‘d’ wave, and ‘d’ wave is the first
negative peak prior to the ‘e’ wave; otherwise, ‘c’, ‘d’, and ‘e’ waves were merged into a single
wave. Finally, ‘e’ wave lies within the minimum peak and local extreme peak in FDPPG given
its maximum range, prior to the dicrotic notch detected in the PPG signal compared with [23].
Hence, finding the local extreme peak is a complicated process. Tab. 2 shows the features used in
the proposed method (O: Onset, S: Systolic, N: Dicrotic notch, D: Diastolic, R: Peak ratio, A:
Amplitude difference, T: Peak interval, J: Jerk, RCT: Relative crest time).

Figure 4: PPG signal and its derivatives (a) PPG, (b) FDPPG and (c) SDPPG
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Table 2: PPG and SDPPG features

Features Feature label

PPG

Onset O1O2, O1S1, O1N1, O1D1, O1–S1, O1–N1,
O1–D1

Systolic S1S2, S1O2, S1N1, S1D1, S1–N1
Notch N1N2, N1S2, N1O2, N1D1
Diastolic D1D2, D1O2, D1S2, D1N2

SDPPG

‘a’ wave A, Rab, Rac, Aab, Aae, Tab, Tae, Jab, Jae,
RCTab, RCTae

‘b’ wave B, Rbe, Abe, Tbe, Jbe
‘e’ wave e

Twenty features can be extracted from PPG pulse consisting of two domain time (16 features)
and amplitude (4 features) domain, as shown in Fig. 5a. The number ‘2’ indicates features from
the next PPG pulse. For SDPPG, 17 features can be extracted on the basis of five waves from
SDPPG after removing ‘c’ and ‘d’ waves because, for some signals, the ‘c’, ‘d’, and ‘e’ waves
were merged into one wave (‘e’ wave) due to the high heart rate [38] bring to previous. Hence,
features related to ‘c’ and ‘d’ waves were excluded because they result in non-accurate value of
both features. Jerk is the accelerated volume change per unit time. It can be measured from the
absolute height of two respective waves with the corresponding time interval, as summarized in
Eq. (3). The relative crest time (RCT) feature is the ratio of extracted interval compared with the
pulse width. Fig. 5b shows features that are available in the SDPPG pulse.

Jerk= |pulse height1 − pulse height2|
time interval1,2

(3)

2.4 Statistical Analysis
A total of 98 features were obtained from PPG, SDPPG, and arteriograph from the left

and right hands. These features were divided as follows: 40 from PPG, 34 from SDPPG, and 24
from arteriograph’s output. A descriptive statistics of the features (mean ± SD) in ranking the
features based on the p-value was applied using SPSS software. The normality of all features
was assessed using the Shapiro–Wilk test, Q–Q plot, and equality of variance using Levine’s test.
Shapiro–Wilk technique was preferable because of good power properties over a wide range of
asymmetric distribution compared with the Kolmogorov–Smirnov for normality test [39]. Non-
normally distributed features undergo Mann–Whitney U test to find the significant difference
between two groups, hyperuricemia and normouricemia. Independent t-test was performed for
normally distributed features. The features were then sorted by the least to the highest p-value with
confidence interval of 95%. This step enhances the accuracy rate of the classifiers [40]. Significant
features (p< 0.05) were used as the inputs for ML classification.
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Figure 5: Features available in PPG and SDPPG pulses (a) time and amplitude domain features
in PPG pulses and (b) features extracted in SDPPG pulses

2.5 Machine Learning
The final phase of the proposed method is to design an effective decision boundary for the

classification of two different groups of normouricemia (control) and hyperuricemia (case). The
respective features were divided randomly for training and test data with ratio of 70 and 30,
respectively. UA level greater than 360 µmol/L for women and 420 µmol/L for male was under the
case group, and UA level lower than those values was categorized as control group. ANN, LDA,
kNN, and SVM were used to investigate which ML techniques produced better performance in
classifying control and case group. The selection of these 4 types of ML is due to their wide
application in the study of CVD prediction [41–46].

ANN is a very capable ML technique given that neural networks are data-driven self-adaptive
methods [47]. ANN is composed of an input, hidden, and output layers. The input layer consists
of neurons that represent different features. A three-layer feed-forward network was used with
Levernberg–Marquadt training algorithm and log-sigmoid transfer function at the first and second
hidden layers, respectively. The number of hidden neurons was set to 1–15 at each layer. The pure-
lin transfer function was used at the output layer, and the outputs of control and case group were
set to ‘0’ and ‘1’, respectively. The LDA technique allows transformation of features into a low-
dimensional space that maximizes the ratio between-class to the within-class variance [48]. Three
steps in transforming into a low-dimensional space are as follows: (1) calculate the separability
between different classes, (2) calculate the distance between the mean and the samples of each
class, and (3) construct the low-dimensional space that maximizes the calculation in step 1 and
minimizes that in step 2. kNN identifies the similarities between the training inputs (control and
case group). Each neighbor is set with a weight age to allow the nearer neighbors to contribute
more than the distant ones to the average [49]. Euclidean distance of five neighbors was applied
to determine the nearest neighbor of the test data corresponding to the control or case group.
The SVM technique uses the hyperplane decision boundary to maximize the distance from the
hyperplane to the nearest training data point [50]. The linear and nonlinear quadratic function
kernels were used to find the linear and nonlinear relations, respectively, of the selected input to
the corresponding groups.
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Performance evaluation of four different types of ML used Se, Sp, and Acc. The details of
performance evaluators in Eqs. (4)–(6) are as follows:

Sensitivity (Se)= TP
TP+FN

(4)

Specificity (Sp)= TN
TN+FP

(5)

Accuracy (Acc)= TP+TN
TP+FN +TN+FP

(6)

where TP = number of hyperuricemia accurately detected as case group, TN = number of
normouricemia accurately identified as control group, FN = number of hyperuricemia inaccurately
detected as control group, and FP = number of normouricemia inaccurately detected as case
group.

3 Result

This section evaluates the performance of the proposed UA level prediction based on the
features and output from PPG, SDPPG, and arteriograph through several types of ML techniques.

3.1 Data Acquisition
Patient’s demographics are described in Tab. 3 (L: Left hand, R: Right hand). A total of 113

subjects were divided into control and case groups, which consist of 72 and 41, respectively. A
total of 226 sets of PPG data were recorded with a duration of 10 min per data. Only PPG
and SDPPG signals undergo signal analysis given that arteriograph produces parametric form of
measurement, which is not signal-based. High-quality signals based on SQI process proceed to
the next phase, which is feature extraction. A total of 40 features were extracted from the left
and right hands of the PPG signal based on onset, systolic peak, dicrotic notch, and diastolic
peak. For the SDPPG feature, given that ‘c’, ‘d’, and ‘e’ waves merge, any features that contain
‘c’ and ‘d’ waves are discarded to obtain accurate feature values. The total features after reduction
of ‘c’ and ‘d’ waves is 17. The features are excluded for the next phase, which is feature ranking,
because of the limited sample size. Fig. 6 shows an example of merged ‘c’ and ‘d’ waves.

Table 3: Descriptive characteristics of the subjects (N = 113)

Characteristics Mean (SD)

Control (N = 72) Case (N = 41)

Age (years) 34.01 (±13.03) 41.85 (±12.70)
Height (cm) 160.74 (±8.22) 167.31 (±9.07)
Weight (kg) 67.09 (±16.49) 82.15 (±15.03)
BMI (kg/m2) 25.82 (±5.92) 29.24 (±4.65)
UA (µmol/L) 306.94 (±70.83) 496.00 (±70.17)
LRT (ms) 134.72 (±23.75) 127.27 (±21.22)
RRT (ms) 135.31 (±23.86) 126.27 (±22.19)
LPWVao (m/s) 8.12 (±1.75) 8.79 (±1.84)
RPWVao (m/s) 8.15 (±1.99) 8.85 (±1.85)
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Figure 6: Comparison from (a) merge ‘c’, ‘d’ and ‘e’ into ‘e’ wave (b) presence of ‘c’, ‘d’ and ‘e’
wave

3.2 Statistical Analysis
Statistical analyses were performed using t-test (independent samples t-test) and Mann–

Whitney U test for normal and non-normally distributed data. This type of t-test compared
the mean between two groups, and the Mann–Whitney U test or Wilcoxon rank sum test is an
alternative for nonparametric analysis, comparing median between two groups. Among the 98
features, 16 features with significant p-value < 0.05 are fed as the inputs for ML algorithm, as
shown in Tab. 4. Arteriograph produced three significant features, as follows: LPWVao (0.036),
RPWVao (0.025), and RRT (0.046). The four significant features from PPG include LO1_S1
(0.002), RO1_S1 (0.042), RO1_N1 (0.002), RO1_D1 (0.012). The highest number of significant
features is 9 from SDPPG, namely, Lbe (0.019), RRae (0.042), RRbe (0.011), Rbe (0.040), Ra_b
(0.011), Ra_e (0.003), Ra (0.037), RJae (0.030), and Rb_e (0.031).

Table 4: Features ranking based on p-value

No. Feature p-value Extracted

1 RPWVao 0.025 Arteriograph
2 LPWVao 0.036
3 RRT 0.046
4 LO1_S1 0.002 PPG
5 RO1_N1 0.002
6 RO1_D1 0.012
7 RO1_S1 0.042
8 Ra_e 0.003 SDPPG
9 Ra_b 0.011
10 RRbe 0.011
11 Lbe 0.019
12 RJae 0.030
13 Rb_e 0.031
14 Ra 0.037
15 Rbe 0.040
16 RRae 0.042
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3.3 Machine Learning
The performance of the four classifiers was evaluated using RMSE, Se, Sp, and Acc. Different

numbers of features provide different performance results. Tab. 5 shows the performance summary
of the result using different types of ML techniques. The number of features from Tab. 4 is
sorted from greatest to least significant p prior to feeding into the ML algorithm. All MLs
use five-fold cross-validation and 16 features as the inputs. SVM compared four types of kernel
functions, namely, linear, radial basis function, and third- and fourth-order polynomial. Linear
kernel functions produced better performance than other kernel functions using six features. The
LDA ML uses two different types of discriminants, which are linear and quadratic. Quadratic
discriminants only require six features compared with linear type but obtain the same performance
result. For kNN ML, the maximum number of neighbor is set to 100, and the best number of
neighbor is 7–13 using six features that produce the same best performance for that neighbor. The
least amount of neighbor was selected for the final comparison with other ML techniques. The
ANN produced better performance than the three other ML techniques. Hidden layers one and
two were set to 30. Random data division was used as the target. It was divided into three groups
using random indexes (train, validation and test). Levenberg-Marquardt training function and the
performance were expressed in terms of mean square error. For the training computation mode,
MEX algorithm was used. The epoch number was set at 1000 and the algorithm has converged
at a performance of 0.00. The threshold gradient and MU value were set at (1e−7) and (1e10),
respectively. The maximum number of verification failures was set to 6 tests. The best performance
of ANN was obtained when using 12 features with hidden layers one and two at 12 and 11,
respectively. Although ANN used higher number of features than other ML techniques, the gap
performance proved that ANN algorithm can predict better for hyperuricemia and normouricemia.
Tab. 6 shows the confusion matrix of the classification result obtained by using ANN method.

Table 5: Performance of four ML techniques

ML No. of feature RMSE Se (%) Sp (%) Acc (%)

ANN 12 0.06 91.67 91.67 94.12
kNN 6 0.31 66.67 95.45 85.29
LDA 6 0.38 58.33 95.45 82.35
SVM 12 0.31 75.00 86.36 82.35

Table 6: Confusion matrix of ANN classifier

Predicted case Predicted control

Actual case TP (11) FN (1)
Actual control FP (1) TN (21)

4 Discussion

Data had been collected from normouricemia and those with hyperuricemia subjects. PPG
and arteriograph techniques were used to correlate UA level noninvasively. Significant association
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was obtained between the level of UA to the extracted features from PPG and arteriograph. A
total of 37.16% of the subjects have comorbidities, such as hypertension, hypercholesterolemia,
and diabetes. Out of 37.16%, 16.42% come from control group and the remaining, 20.74% come
from case group. This can be said that subjects with high uric acid level does not necessarily
have comorbidities and similarly with normal uric acid level. These subjects were also included
given that such comorbidities may be difficult to neglect because several studies proved the
significant association among hyperuricemia and hypertension [51], hypercholesterolemia [52], and
diabetes [53]. The PPG signals may represent many physiological processes within cardiovascular
system [54], and arteriograph was used in measuring oscillometric PWV parameter [30]. Tab. 4
shows that the left and right hands of the PWV parameter showed significant relation with high
and normal UA which similar as reported in [11,12]. The PPG features showed that the onset
to the systolic peak of left hand (LO1_S1) and onset to the dicrotic notch of the right hand
(RO1_N1) of PPG in time domain is the most significant compared the three other fiducial
points. Applying the SDPPG added more significant features than only using raw PPG signal and
arteriograph. However, the relationship between each significant PPG and SDPPG features may
be further studied in accordance with PWV parameter, which was related to UA level [55]. This
study is the first to use PPG, and it has shown significant differences between hyperuricemia and
normouricemia subjects.

Studies on UA only focused on PWV parameters with arterial stiffness [9–12]. Several studies
also predicted the UA level by using the ML method, but with only the sociodemographic,
clinical parameter, and dietary information as the input [4,13,14]. Tab. 7 shows the performance
comparison using different ML techniques by other researchers in relation with UA (NA: Not
available). Ichikawa et al. [13] proposed the ML approach from the medical records including body
mass index, blood pressure, and blood screening test to identify high risk hyperuricemia patients
for reducing medical costs; they showed a promising result. Lee et al. [4] compared conventional
logistic regression with several types of ML, such as discriminant analysis, kNN, naïve Bayes,
SVM, decision tree, and random forest classification as the hyperuricemia estimation method.
However, their study is limited to an expensive self-paid health check-up program, in which the
generalization of the results is limited to other population. Sampa et al. [14] introduced the ML
approach using medical records with addition of dietary information. However, they focused on
the RMSE values compared with other performance of ML. In addition, the population was from
a group of employees who work in a corporate setting [14].

Table 7: Comparison with related works

Author Method Performance

Ichikawa et al. [13] Gradient-boosting decision tree Se = 65.10%
Sp = 82.00%
Acc = NA
RMSE = NA

Lee et al. [4] Naïve Beyes Se = 73.00%
Sp = 63.00%
Acc = 63.00%
RMSE = NA

(Continued)
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Table 7: Continued

Author Method Performance

Sampa et al. [14] Boosted decision tree Se = NA
Sp = NA
Acc = NA
RMSE = 0.03

Proposed method ANN Se = 91.67%
Sp = 95.45%
Acc = 94.12%
RMSE = 0.06

We compared four types of ML algorithm, namely, ANN, LDA, kNN, and SVM to pre-
dict hyperuricemia using PPG and arteriograph data. We found that ANN produced better
performance than the other ML used in previous studies [4,12,13].

5 Conclusion and Limitations

A hyperuricemia prediction method was proposed using multiple PPG and SDPPG features,
which were extracted from a low-cost pulse oximeter, in addition to arteriograph output. The
analysis result showed that 16 out of 98 features and output were significantly correlated with
UA level with p-value less than 0.05. The result was discussed from the viewpoint of noninvasive
technique in assessing UA level. This work demonstrated the first study in relating UA with PPG
features, and ANN was applied for hyperuricemia prediction and produced 91.67%, 95.45%, and
94.12% for Se, Sp, and Acc.

The limitation of the study was the number of subjects, particularly hyperuricemia patients. In
addition, the complete five waves should be detected because SDPPG waveform contains abundant
information regarding vascular health. Some subjects merged ‘c’, ‘d’, and ‘e’ waves and caused
reduction in features because features that contained ‘c’ and ‘d’ waves should be eliminated for
better quality of features in the ML phase. Elgendi et al. developed an algorithm that can detect
‘c’, ‘d’, and ‘e’ waves simultaneously in SDPPG signals with promising results [56].

For future work, manual jug-sy measurement that was used in PWV calculation can be
replaced by automated measurement. Secondly, age and gender matching between case and control
groups can be done for better comparison as the morphology of PPG signal can be easily effected
by age, especially SDPPG [57]. Multiscale principal component analysis used in [58] can then be
applied to compare with the traditional denoising method with cascade forward neural network as
classifier. This method proved to achieve 100% classification accuracy with small training samples.
In addition, additional data must be collected with robust detection of SDPPG wave, especially
‘c’, ‘d’, and ‘e’ waves, in which the performance of the developed hyperuricemia prediction model
can be improved. Direct relationship between PPG parameter with PWV can be further explored
for hyperuricemia prediction using only PPG morphology for cost effectiveness.
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