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Abstract: The operation complexity of the distribution system increases as
a large number of distributed generators (DG) and electric vehicles were
introduced, resulting in higher demands for fast online reactive power opti-
mization. In a power system, the characteristic selection criteria for power
quality disturbance classification are not universal. The classification effect
and efficiency needs to be improved, as does the generalization potential. In
order to categorize the quality in the power signal disturbance, this paper
proposes a multi-layer severe learning computer auto-encoder to optimize
the input weights and extract the characteristics of electric power quality
disturbances. Then, a multi-label classification algorithm based on rating is
proposed to understand the relationship between the labels and identify the
various power quality disturbances. The two algorithms are combined to
construct a multi-label classification model based on a multi-level extreme
learningmachine, and the optimal network structure of themulti-level extreme
learning machine as well as the optimal multi-label classification threshold
are developed. The proposed method can be used to classify the single and
compound power quality disturbances with improved classification effect, reli-
ability, robustness, and anti-noise performance, according to the experimental
results. The hamming loss obtained by the proposed algorithm is about 0.17
whereas ML-RBF, SVM and ML-KNN schemes have 0.28, 0.23 and 0.22
respectively at a noise intensity of 20 dB. The average precision obtained by the
proposed algorithm 0.85 whereas theML-RBF, SVM andML-KNN schemes
indicates 0.7, 0.77 and 0.78 respectively.

Keywords: Optimal power flow; optimization algorithm; deep learning;
power systems

1 Introduction

With the continuous development of the power system and the diversification of power
access forms, the power quality is getting worse and worse. At the same time, various electrical
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equipment has extremely high requirements for power quality standards. Therefore, identifying
and classifying the power quality disturbance signals accurately and quickly is a prerequisite for
ensuring stable, safe, and efficient operation of the power grid [1–5].

Machine learning has advanced rapidly in the academia and industry in recent years. Its abil-
ity to perform complex recognition tasks has been demonstrated by a large increase in recognition
rate on many typical recognition tasks. A significant number of academics have flocked to research
its hypotheses and applications. Deep learning is being used in a variety of fields to solve some
of the problems in this area. Machine learning research has started to appear in the area of
regulation [6–11].

Precise power consumption forecasting not only plays a decision-making role in the real-time
power dispatching, but also an effective way to ensure the grid stability, solve power deviations,
and save the energy. At present, the state is advancing to achieve the power deviation control from
demand as the entry point, and the focus of power sales companies is on power consumption
forecasting. The real-time and accuracy of the next-time user power consumption forecast is not
only one of the realization goals of demand-side management, but also has positive significance
for the safe and stable operation of the power system and the improvement of economic benefits.
Due to the characteristics of randomness and uncertainty in short-term power consumption of
users, the choice of forecasting method and its ability to overcome the randomness directly affect
the implementation quality of real-time and accurate power dispatch [12–18].

Because of the rapid growth of large-scale wind farms, wind energy is playing an increasingly
important role in domestic and international power markets as a sustainable and cost-effective
renewable energy source. Wind’s highly unpredictable capacity, on the other hand, can trigger
nonlinear characteristics in the wind power, which can have a number of negative consequences for
the wind power system’s reliability [19–25]. As a result, developing an accurate and efficient power
prediction model is needed to preserve the grid’s reliability while also improving the equal plan-
ning, dispatching, control, and risk assessment capabilities. Many domestic and foreign researchers
have performed relevant research and proposed a variety of new viewpoints and methods, which
can be broadly divided into two categories: physical statistics and time series methods. The wind
farm’s actual physical meteorological data, for example, is used in the physical statistics scheme,
which necessitates a large number of parameters, time-consuming calculations, and generally low
accuracy [26,27].

With the use of a large number of nonlinear and unbalanced loads in the power system, the
impact of power quality on the safe and stable operation of the power system has become more
obvious. The real-time and effective classification of power quality disturbances has become the
basis for further improvement of power quality. In recent years, the classification of power quality
disturbances has been well studied [28–32]: Support vector machine (SVM) method can be used
to detect the complex power quality problems. Using multi-label K-nearest neighbor method (ML-
KNN), it can clearly detect, locate and classify different power quality problems. The use of multi-
label radial basis function neural network (ML-RBF) can improve the classification efficiency and
accuracy of common power quality disturbances.

In the field of quality disturbance classification, commonly used feature extraction algo-
rithms include Fourier transform [33], wavelet transform [34], S transform [35,36], Hilbert yellow
transform [37,38], etc. Commonly used classification and recognition algorithms include extreme
learning machine [8], support vector machine [39], BP neural network [40] and so on. Refer-
ence [41] uses the S transform to extract the characteristics of power quality disturbance signals,
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and recognizes them through GAP-RBF neural network. This method has a small number of
neurons and fast calculation speed, but the recognition rate needs to be improved. Reference [42]
uses Lagrangian delay to optimize the wavelet basis to extract the power quality disturbance signal
features, and uses the probabilistic neural network based on K-means clustering to achieve the
classification, but its algorithm needs to extract more features, which leads to feature redundancy.
Reference [43] uses a compressed sensing sparse vectors to extract the characteristics of power
quality disturbance signals, using neural network performs classification. This method reduces
the amount of data that needs to be processed, but the anti-noise performance is not strong.
The study found that the existing power quality disturbance classification method lacks a unified
classification standard and is prone to redundant features, which leads to a decline in classification
accuracy, poor generalization ability, and greater noise.

The above algorithms require feature selection of the signal, which is prone to feature redun-
dancy, and some other features will be lost, resulting in a decrease in recognition rate and reduced
anti-noise performance. In order to avoid the process of selecting power quality disturbance
features, literature [44,45] converts the power quality disturbance signal into a two-dimensional
gray image, and then uses a two-dimensional CNN for image recognition, but the conversion
process is complicated, and the grayscale is temporarily reduced and interrupted. The degree
of image features is not obvious, resulting in a decline in the recognition rate. For sequence
signals such as power quality disturbances, one-dimensional CNN can be used to speed up the
calculation. Reference [46] uses the segmented improvement of the S transform to process the time
domain resolution and the frequency domain resolution in segments. By analyzing the modulated
time-frequency matrix obtained by the improved S transform, the characteristic curve that can
reflect the different mutation parameters of the disturbance signal is drawn. The radial basis
function neural network of local approximation is used to classify the disturbance signal, but it
is difficult to extract the feature quantity under the compound disturbance, and the generality is
poor. Reference [47] uses a sparse autoencoder to perform unsupervised learning of the original
disturbance signal, which automatically extracts the sparse expression of the disturbance signal
data characteristics, and uses the classifier for training to obtain the classification accuracy of
various disturbance signals, which solves the shortcoming of the traditional neural network initial
randomness of the weight value, but the coding process is complicated.

Power quality disturbance classification in distribution networks is one of the important
aspect which is in the focus of both academia and industry. Various methods have been proposed
but their classification efficiency is lower. In order to improve the classification efficiency and
improve the power quality, this paper focuses on the improvement of classification accuracy
and efficiency as the research goal, and proposed a multi-layer extreme learning machine self-
encoding network structure, and ranking-based power quality disturbance classification model,
and compares it with other classification methods on power quality disturbance classification. The
comparison verifies the effectiveness of the proposed method.

The remaining of the paper is organized as follows. In Section 2, the system model is
described. In Section 3, the numerical results are provided in detail. Section 4 provides the
application scenario while Section 5 concludes the paper.

2 System Model

Multi-layer extreme learning machine based on self-encoding, which can effectively represent
the complex functions, has high prediction accuracy and generalization ability. The ranking-
based multi-label classification algorithm, taking into account the correlation between the labels,
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is suitable for the classification of various power quality disturbances, and has a strong anti-
noise ability. This paper combines the multi-layer extreme learning machine with the multi-label
classification algorithm, and proposes a multi-label classification model based on the multi-layer
extreme learning machine.

2.1 Self-Encoder Structure
The extreme learning machine autoencoder (ELM-AE) optimizes the input weight, improves

the classification accuracy and generalization ability, overcomes the problem of neuron invalidity
caused by the random weight and hidden layer threshold of the extreme learning machine, and
improves the classification efficiency [48–50].

The network structure of the extreme learning machine autoencoder is shown in Fig. 1. The
number of nodes in the input layer and output layer is n, and the number of nodes in the hidden
layer is l.
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Figure 1: ELM-AE architecture

Suppose there is an arbitrary sample space X with a number of N, that is, the set of input
and output data samples is X = [x1,x2, . . . ,xN ]T, where xi(1≤ i≤N) represents the i-th group of
sample vectors.

Introduce the orthogonal random weight matrix W between the input layer and the hidden
layer and the orthogonal random bias vector b of the hidden layer, namely{
WTW = I

bTb= 1
(1)

where X = [w1,w2, . . . ,wl] and wj = [w1j,w2j, . . . ,wnj]T(1≤ j ≤ l) represents the orthogonal random
weight vector between all input layer nodes and the j-th node in the hidden layer, wij represents
the weight value between the i-th node in the input layer and the j-th node in the hidden layer;
b= [b1,b2, . . . ,bl]T

H =

⎡
⎢⎣
f (w1x1+ b1) · · · f (w1xN + b1)
...

...
...

f (w1x1+ bl) · · · f (wlxN + bl)

⎤
⎥⎦ (2)
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where H represents the output matrix of the hidden layer, and hij = f (wjxi+ bj) represents the
output mapping of the i-th sample on the j-th node of the hidden layer; f (x) is the activation
function.

By reconstructing the matrix β, the hidden layer output matrix is reconstructed into a set of
input samples, that is, X =Hβ can be tained by Eq. (3) as follows

β =
(
I
C
+HTH

)−1

HTX (3)

where β = [β1,β2, . . . ,βn], and βk = [β1k,β2k, . . . ,βlk]T(1≤ k≤ n) represents the difference between
all hidden layer nodes and the k-th output node weight between βjk represents the weight between
the j-th node in the hidden layer and the k-th node in the output layer; I is the identity matrix
and C is the regular term coefficient.

The β-rank conversion matrix is used as the weight matrix of the input layer and hidden
layer of the original network structure to complete the single-layer ELM-AE training, as shown
in Fig. 2.
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Figure 2: ELM-AE reconfiguration

The multi-layer extreme learning machine autoencoder (ML-ELM-AE) performs stacking
operations on the basis of ELM-AE [38,51], and builds a network structure with multiple hidden
layers, as shown in Fig. 3, which can improve the average power accuracy and generalization
ability of the quality disturbance classification [39,52–57].
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Figure 3: ML-ELM-AE architecture

The first step is to use the set of input data samples to calculate the output matrix H(1) and
the reconstruction matrix β(1) of the first hidden layer according to Eqs. (1)–(3).
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In the second step, H(1) is used as the input of the hidden layer of the second layer to obtain
the output matrix H(2) and the reconstruction matrix β(2) of the second layer.

The third step, and so on, takes the output matrix H(p) of the p-th hidden layer as input, and
obtains the output matrix H (p+1) of the (p+1)-th hidden layer and the weight matrix [β(p+1)]T.

2.2 Multi-Label Classification Algorithm
In multi-label classification algorithm, a single data sample belongs to the multiple category

labels, and fully considering the correlation between the labels [40–42]. This paper uses the ranked
classification method to complete the multi-label classification problem.

Assuming that the sample space is S, each sample is a d-dimensional feature vector, namely
si = [si1, si2, . . . , sid ]T; Y is the category label set, which contains q kinds of tags, namely
{v1, v2, . . . , vq}. For sample si, its corresponding label set yi = y(si) ⊆ Y contains one element of
Y or multiple label elements. The goal of the multi-label classification algorithm is to learn a
classification function according to a given training sample (si,yi), and predict the class label set
yi of a test instance si through the learned classification function.

Based on the rank-based multi-label classification algorithm [43], a mapping g: S → Y from
the feature value to the degree value of the label is constructed according to the training sample
set.

For the sample si, g is arranged according to the ranking value of the label of the sample,
that is, y1,y2 ∈Y, y1 ∈Y i,y2 /∈Y i, g(si,y1) > g(si,y2). The ranking function rank g is obtained by
grank, where g(si,y1) > g(si,y2), grank(si,y1) < grank(si,y2).

It can be observed that the predicted label set of the sample si is h(si)= {yj|grank(si,yj) > t(si),
yj ∈Y}, where t(si) is the threshold function. The key to multi-label classification based on ranking
is to find the mapping function g and the threshold function t(si) [44].

Evaluation indicators to measure the effect of multi-label classification algorithms [45,46]
mainly include Hamming loss, first-class errors, ranking loss, coverage and average accuracy.

Hamming loss fHL considers the wrong labels and missing labels, and measures the degree to
which a single label has a wrong division.

fHL(h)= 1
n

n∑
i=1

1
L
|h(si)�zi| (4)

where n represents the number of samples; L represents the total number of labels; h(si) represents
the predicted label set; zi represents the actual label set and Δ represents the calculation of the
desymmetric difference.

A one type of error fOE measures the probability that the predicted label first ranking is not
the true label of the sample

fOE(f )= 1
n

n∑
i=1

{fargmax(si,y∈ yi)} (5)

where fargmax represents the label y of the label set yi that maximizes f (si,y).
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The ranking loss fRL measures the degree of difference between the predicted label ranking
and the actual ranking.

fRL(f )= 1
n

n∑
i=1

|Di|
|yi||ȳi| (6)

where Di represents the set of misjudgment labels and ȳi represents the complement of yi.

The coverage rate fC measures the average search depth required to traverse the true label set
in the sorted sequence of predicted labels

fC(f )= 1
n

n∑
i=1

max frank(xi,y)− 1 (7)

The average accuracy fAP measures the average accuracy of the predicted label which is
expressed as

fAP(f )=
1
n

n∑
i=1

1
|yi|

∑
y∈yi

|Li|
frank(xi,y)

(8)

where Li represents the set of label samples that are predicted to be correct.

2.3 Multi-Label Classification Model Based on ML-ELM
In this paper, the self-encoding structure of the multi-layer extreme learning machine and the

ranking-based multi-label classification algorithm are combined to construct the basic structure of
the classifier model as shown in Fig. 4 [47].
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Figure 4: Proposed classifier model

According to the model in Fig. 4, the input sample data is mapped to the label through the
ML-ELM-AE network, and then the classification result is obtained through the conversion of the
classification function [48]. Among them, X represents the input sample data set. ML-ELM-AE
contains p-layer hidden layer, which realizes the mapping from sample space to label, that is, the
mapping process of g; h(si) is the classification function; β(q) is the output weight of the p-th
hidden layer, which is obtained by Eq. (9) as follows

β =
(
I
C

+HTH
)−1

HTT (9)

where T represents the actual category label of the sample.
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In the process of classifying the power quality disturbances, the ML-ELMAE algorithm
determines the optimal network structure through experiments based on the set of input data
samples, and generates the output matrix and weight matrix of each hidden layer. The ranking-
based multi-label classification algorithm determines the optimal classification threshold through
experiments [49], and normalizes the classification threshold to (0,1). Combining the two algo-
rithms, a multi-label classification algorithm of multi-layer extreme learning machine is designed,
which is suitable for the classification of single disturbance of power quality and the classification
of compound disturbances. It has good anti-noise ability and high classification accuracy [50], and
overcomes the randomness of traditional ELM parameter assignment, and has high classification
efficiency, good robustness and generalization ability.

3 Experimental Results and Analysis

This paper uses the MATLAB simulator to compute the simulation experiment, using average
accuracy, hamming loss, first-class error, ranking loss, and coverage as the evaluation indicators of
the classification effect. In addition, the experiment also increases the training time and test time
of the classifier as a measure of classification efficiency evaluation index. In order to reduce the
error, each experimental data is the arithmetic mean of the algorithm program running 20 times
under the same experimental conditions.

3.1 Power Quality Disturbance Signal Model
The common single power quality disturbance signal model [51] is shown in Tab. 1, where the

fundamental frequency f0 is 50 Hz, T represents the power frequency period, and u(t) represents
the unit step function. There are 48 types of signals appearing in the experiment, including
standard signals, single disturbance signals and composite disturbance signals, of which 40 are
composite disturbance signals [52]. According to the existence form of compound disturbance, the
first type of compound disturbance is composed of two kinds of single disturbances, the second
type is composed of three kinds of single disturbances, and the third type is composed of four
kinds of single disturbances.

Table 1: Power quality disturbance signal model

Type Mathematical model Parameter

Standard signal v(t)= sin(ωt) ω = 2π f0
Voltage dip v(t)= {1+ k[u(t2)− u(t1)]} sin(ωt) 0.1≤ k≤ 0.9

0.5T ≤ t2 − t1 ≤ 30T
Voltage swell v(t)= {1− k[u(t2)− u(t1)]} sin(ωt) 0.9≤ k≤ 1

0.5T ≤ t2 − t1 ≤ 30T
Voltage interruption v(t)= {1− k[u(t2)− u(t1)]} sin(ωt) 0.1≤ k≤ 0.9

0.5T ≤ t2 − t1 ≤ 30T

Harmonic v(t)= sin(ωt)+
13∑
k=2

ak sin(ωt) 0.01≤ ak ≤ 0.2

Transient oscillation v(t)= sin(ωt)+ ae−λ(t−t1) sin(βωt)u(t− t1) 0.05< a< 1
15< λ < 130
14≤ β < 30

Transient pulse v(t)= sin(ωt)+ a[u(t1)− u(t2)] 1 ms < t2 − t1 < 3 ms
Voltage fluctuation v(t)= [1+ a sin(βωt)] sin(ωt) 0.05< a< 0.2

0.1< β < 0.5
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The signal in the experiment is sampled with 3200 Hz as the sampling frequency, 30 cycles
are sampled in total, and the total number of sampling points is 1921. All signals are randomly
generated 200 samples according to the mathematical model, 100 are used as training data, and
the other 100 are used as test data. The training data set and the test data set each contain 4800
samples.

3.2 Classifier Model Parameter Design
In this paper, the optimal network structure of ML-ELM-AE is evaluated through experi-

ments, and the multi-label mapping function g(si,yj) is obtained by using the ML-ELM-AE, and
the threshold function t(si) is determined through multiple test experiments [53].

3.2.1 Determination of ML-ELM-AE Network Structure
In this paper, the number of hidden layers of ML-ELM-AE is limited to 9 layers, the number

of nodes in each layer is set to 50∼2000, and the number of nodes is changed by 50. The
Hamming loss is used as the basis for the evaluation of the classification effect, and the training
time and the test time are referred to at the same time, and the network structure parameters
of the multi-layer extreme learning machine with good classification effect and high efficiency are
selected.

In order to obtain the optimal number of nodes in each layer when the total number of layers
is different, the following experimental steps are designed:

1) Set the number of hidden layers of ML-ELM-AE to 1.
2) Set the number of hidden layer nodes to change according to the law of 50 + L × 50

(L is an integer increasing from 0 to 39), get the Hamming loss corresponding to each
L value, training time and test time, and select the optimal L value, that is, the optimal
number of nodes in this layer is 50 + L × 50.

3) Set the number of layers of ML-ELM-AE to 2, where the number of nodes in the first
layer has been fixed by steps 1 and 2, repeat step 2, get the optimal L value of the second
layer, and get the optimal number of nodes in this layer.

4) Set the number of layers of ML-ELM-AE to 3∼9 in turn, and get the optimal number of
nodes for each layer.

Tab. 2 shows the number of nodes in each layer corresponding to the optimal value of
Hamming loss when the total number of layers in ML-ELM-AE is 1–9. It can be found that
starting from layer 4, the optimal number of nodes for the new hidden layer is 750.

Table 2: Comparison of the total number of nodes with different layers

No. of node k layer

k= 1 k= 2 k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9

1 350 – – – – – – – –
2 350 1150 – – – – – – –
3 350 1150 350 – – – – – –
4 350 1150 350 750 – – – – –
5 350 1150 350 750 750 – – – –
6 350 1150 350 750 750 750 – – –
7 350 1150 350 750 750 750 750 – –
8 350 1150 350 750 750 750 750 750 –
9 350 1150 350 750 750 750 750 750 750
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Fig. 5 shows the relationship between the number of hidden layers of ML-ELM-AE and the
Hamming loss. It can be found that, the Hamming loss shows a pattern of first decreasing and
then tending to be stable. When the number of hidden layers exceeds 4, the Hamming loss is
lower.

Figure 5: Loss comparison with number of hidden layers

Figs. 6 and 7 respectively shows the relationship between the number of hidden layers of
ML-ELM-AE and the training time and test time. It can be found that with the increase of the
number of hidden layers, the overall training time and test time shows an increasing trend.

Figure 6: Comparison of training time of the proposed algorithm

Based on the above experimental results, we can observe that, there is not a single quantitative
relationship between the number of hidden layers and the number of nodes in ML-ELM-AE and
the classification results. There is an optimal number of hidden layers and nodes, which saves
training and testing time while ensuring the classification effect and improved efficiency. In this
paper, when the number of hidden layers of ML-ELM-AE is 4, the power quality disturbance
classification effect is the best and the efficiency is higher. Therefore, this paper sets the multi-layer
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extreme learning machine as “input layer-hidden layer (350-1150-350-75)” structure of the output
layer.

Figure 7: Comparison of testing time of the proposed algorithm

3.2.2 Determination of Classification Threshold
The experiment adopts the optimal 4-layer ML-ELM-AE network structure, and the classifi-

cation threshold of the multi-label classifier is set in the range of 0.05 to 0.95, with 0.05 as the
step interval. The Hamming loss, ranking loss, first-class error, coverage rate, and average accuracy
are used as the evaluation basis for the classification effect. Fig. 8 shows the relationship between
the classification threshold and the Hamming loss. It can be found that, with the increase of
the classification threshold, the Hamming loss quickly decreases and stabilizes, and then slightly
increases. When the classification threshold changes around 0.55, the Hamming loss value is
smaller.

Figure 8: Comparison of the classification threshold of the proposed algorithm

Figs. 9 and 10 respectively shows the relationship between the classification threshold and
the one-type of error and the ranking loss. It can be found that the change of the classification
threshold has little effect on these two evaluation indicators, and the first type of error in Fig. 9
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is floating around 0.086. The ranking loss in Fig. 10 fluctuates around 0.063, and the range of
change is small.

Figure 9: Comparison classification value against the one-type error

Figure 10: Comparison of classification threshold against ranking loss

Fig. 11 shows the relationship between the classification threshold and the coverage rate. It
can be found that, with the change of the classification threshold, the coverage rate fluctuates
between 2.006 and 2.017. When the classification threshold is around 0.6, the coverage rate is
smaller.

Fig. 12 shows the relationship between the classification threshold and the average accuracy. It
can be found that the average accuracy value varies from 0.9075 to 0.9085. When the classification
threshold changes around 0.65, the average accuracy value is higher.

Based on the above experimental results, it can be obtained that the classification threshold
has a more obvious impact on the Hamming loss, the coverage rate and average accuracy are
affected by the change of the classification threshold to a certain extent, and the first type of
errors and ranking errors are not significantly affected by the classification threshold. In this paper,
the classification threshold of the multi-label classifier is set to 0.6.
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Figure 11: Comparison of classification threshold and coverage

Figure 12: Comparison of classification threshold and average accuracy

3.3 Classification of Experiment Results and Comparison
3.3.1 Classification Process

The multi-label classification model of the multi-layer extreme learning machine is deployed
to predict the disturbance category contained in the power quality disturbance signal [54,55].

In the first step, the power quality disturbance signal is subjected to discrete wavelet transform
(DWT) to obtain the decomposition coefficients of each layer, and the decomposition coefficients
are divided into training data sets and test data sets.

The second step is to randomly generate the weights of each layer of the orthogonalized
ML-ELM-AE network.

The third step is to train the multi-layer extreme learning machine network with the training
data set as input, and adjust the weights of each layer of the network.

The fourth step is to obtain the classification function of the multi-label classification
algorithm according to the mapping relationship of ML-ELM-AE.

Finally, the test data set is used as input, and the multi-label classification model of the
trained multi-layer extreme learning machine is used to predict the disturbance category.
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3.3.2 Experimental Results and Comparison
The experimental research objects are a single disturbance signal and a composite disturbance

signal, and noise disturbances with a signal-to-noise ratio (SNR) of 50, 40, 30 and 20 dB are
superimposed on each power quality disturbance signal. The experimental data is the average of
the experimental results of various disturbance signals under the same noise intensity. In order to
further verify the performance of the power quality disturbance classification method proposed
in this paper, the SVM, ML-KNN and MLRBF schemes are used to complete the disturbance
signal classification, and the results are compared with the method proposed in this paper.

Tab. 3 shows the Hamming loss of the classification results of various interference signals
under different noise levels. Fig. 13 shows the comparison results of the Hamming loss of different
classification algorithms. It can be found that the noise intensity is reduced from 50 to 20 dB.
Although the Hamming loss value shows an increasing trend, it is lower than the other existing
three algorithms.

Table 3: Comparison of the Hamming loss

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance 0.118 0.117 0.138 0.161
Compound disturbance of the first type 0.114 0.121 0.137 0.169
Compound disturbance of the second type 0.125 0.127 0.145 0.195
Compound disturbance of the third type 0.128 0.132 0.148 0.215
Average value 0.121 0.124 0.142 0.185

Figure 13: Hamming loss evaluation of the algorithms

Tab. 4 shows the first-class errors of the classification results of various interference signals
under different noise levels. Fig. 14 shows the comparison results of the one-type errors of
different classification methods. It can be found that the first-class error values of the proposed
method are the lowest, and the experimental results under different environments are not much
different.
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Table 4: Comparison of one-type error

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance 0.076 0.069 0.085 0.126
Compound disturbance of the first type 0.077 0.077 0.094 0.135
Compound disturbance of the second type 0.087 0.080 0.102 0.160
Compound disturbance of the third type 0.092 0.087 0.108 0.178
Average value 0.083 0.078 0.097 0.15

Figure 14: Comparison of one-type error of the algorithms

Tabs. 5 and 6 show the ranking loss and coverage rate of various interference signal classi-
fication results under different noise levels. Figs. 15 and 16 show the ranking loss and coverage
rate comparison results of different classification methods. It can be found that, the ranking loss
value and coverage rate of the proposed method are lower than the other three methods.

Table 5: Comparison of ranking loss

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance 0.058 0.062 0.070 0.120
Compound disturbance of the first type 0.059 0.063 0.069 0.104
Compound disturbance of the second type 0.062 0.066 0.074 0.134
Compound disturbance of the third type 0.064 0.069 0.075 0.150
Average value 0.061 0.065 0.072 0.127
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Table 6: Comparison of coverage rate against SNR

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance 1.899 1.823 1.851 2.278
Compound disturbance of the first type 1.946 1.852 2.059 2.390
Compound disturbance of the second type 2.045 2.100 2.150 2.762
Compound disturbance of the third type 2.113 2.201 2.326 3.039
Average value 2.001 1.994 2.097 2.617

Figure 15: Comparison of ranking loss of the algorithms

Figure 16: Comparison of coverage of the algorithms

Tab. 7 shows the average accuracy of the classification results of various interference signals
under different noise levels. Fig. 17 shows the comparison results of the average accuracy of
different classification methods. It can be found that as the interference intensity weakens, the
average accuracy of the proposed method shows a downward trend, but higher than the other
three methods.
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Table 7: Comparison of average precision

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance 0.959 0.963 0.933 0.925
Compound disturbance of the first type 0.936 0.932 0.915 0.882
Compound disturbance of the second type 0.858 0.887 0.863 0.778
Compound disturbance of the third type 0.884 0.886 0.868 0.766
Average value 0.909 0.912 0.895 0.838

Figure 17: Comparison of the average precision of the algorithms

Tabs. 8 and 9 shows the training time and test time of the classification results of various
interference signals under different noise levels. Figs. 18 and 19 shows the comparison results
of the training time and test time of different classification methods. It can be found that, the
proposed method can complete the training and testing within 10 s, and the classification efficiency
advantage is obvious. It shows that, after the multi-label classification model based on the multi-
layer extreme learning machine is trained, it can realize the rapid classification of power quality
disturbances, which is suitable for the classification of a large number of interference signals.

Table 8: Comparison of training time

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance (s) 4.816 4.484 4.838 4.606
Compound disturbance of the first type (s) 4.673 4.594 4.694 4.720
Compound disturbance of the second type (s) 5.098 4.828 5.121 4.960
Compound disturbance of the third type (s) 5.226 4.989 5.250 5.125
Average value (s) 4.953 4.724 4.976 4.853
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Table 9: Comparison of testing time

Disturbance signal Interference noise (dB)

50 40 30 20

Single disturbance (s) 1.077 1.119 1.085 1.122
Compound disturbance of the first type (s) 1.104 1.086 1.112 1.089
Compound disturbance of the second type (s) 1.160 1.185 1.168 1.188
Compound disturbance of the third type (s) 1.199 1.214 1.207 1.218
Average value (s) 1.135 1.151 1.143 1.154

Figure 18: Comparison of training time of the algorithms

Figure 19: Comparison of testing time of the algorithms

Based on the above experimental results, the classifier model proposed in this paper has lower
coverage rate, higher average accuracy, and Hamming loss, first-class error, ranking loss, and
higher coverage than other classification methods. The proposed algorithm has a good classifica-
tion effect and the training time and test time for classification are relatively low, showing higher
classification efficiency.
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First, the proposed algorithm includes the multiple hidden layers with strong nonlinear map-
ping capabilities and generalization capabilities, which can effectively characterize the complex
interference signals and improve the average accuracy of classification.

Second, the proposed algorithm can extract a large amount of feature information, avoiding
the contingency of random assignment of the algorithm. Under the interference of different
intensities of noise, the variation of various performance indicators is small, and it has good
generalization ability and robustness.

Third, the ranking-based multi-label classification algorithm fully considers the correlation
between each label, and is suitable for the classification of single disturbance and compound
disturbance, and has good anti-noise ability and classification accuracy.

Fourth, the proposed algorithm does not require iteration, reducing training time and testing
time, and has obvious advantages when dealing with a large amount of power quality interference.

4 Applications

The power load of the grid in sTarbela is responsible for the power supply of 13 cities
and regions and part of the power exchange between the three provinces of Punjab, Sindh and
Balochistan. It has 11000 kV substation, 4500 kV substations, 28220 kV substations, and 110 kV
substation 103. There are 18235 kV substations with a power supply capacity of 5.5 million kW.
There are 621 35-220 kV lines with a line length of 8443.83 km.

This paper takes the electric energy disturbance as an example to study the application
effect of the classification algorithm in the actual grid. According to the classification model and
parameter range shown in the article, 100 training samples and 100 test samples are randomly
selected for each type of power quality disturbance signal.

Tab. 10 shows the classification results of power quality disturbances and Fig. 20 shows the
comparison of the classification results using different classification methods. Fig. 21 shows the
comparison of the test time of different classification methods. It can be found that, the classifica-
tion accuracy and testing of the proposed method in the actual power grid is basically the same as
the simulation prediction results, and the classification effect and efficiency are significantly better
than other methods.

Table 10: Power quality disturbance classification

Disturbance signal Classification result

Single
disturbance

Compound
disturbance of
the first type

Compound
disturbance of
the second type

Compound
disturbance of
the third type

Single disturbance 95 5 0 0
Compound disturbance
of the first type

5 92 2 1

Compound disturbance
of the second type

0 11 85 4

Compound disturbance
of the third type

0 6 9 85



250 CMC, 2022, vol.71, no.1

Figure 20: Power quality disturbance classification of the algorithms

Figure 21: Testing time comparison of the algorithms

5 Conclusions

In this paper, combining the multi-layer extreme learning machine based on self-encoding and
the multi-label classification algorithm based on ranking, a new power quality disturbance classifi-
cation method is proposed, and the structure model and classification process of the classifier are
explained. Experiments show that the proposed algorithm performs well in terms of Hamming
loss, average accuracy, and coverage of the classification results, and has good noise resistance
and robustness. It also significantly reduces the training time and test time, and the advantage is
obvious when there are more interference signals. The proposed results provide effective means to
determine the classification of disturbance in power signals quality. It can be generally deployed
in relevant distribution networks that has to be evaluated in the context of disturbance analysis.
Moreover, the proposed solution is optimal and has lower hamming loss, higher accuracy and
improved ability to classify the disturbance. It has good anti-noise ability and high classification
accuracy [50], and overcomes the randomness of traditional ELM parameter assignment, and has
high classification efficiency, good robustness and generalization ability.
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