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Abstract: The naïve Bayes classifier is one of the commonly used data mining
methods for classification. Despite its simplicity, naïve Bayes is effective
and computationally efficient. Although the strong attribute independence
assumption in the naïve Bayes classifier makes it a tractable method for
learning, this assumption may not hold in real-world applications. Many
enhancements to the basic algorithm have been proposed in order to alleviate
the violation of attribute independence assumption. While these methods
improve the classification performance, they do not necessarily retain the
mathematical structure of the naïve Bayes model and some at the expense of
computational time. One approach to reduce the naïveté of the classifier is
to incorporate attribute weights in the conditional probability. In this paper,
we proposed a method to incorporate attribute weights to naïve Bayes. To
evaluate the performance of our method, we used the public benchmark
datasets. We compared our method with the standard naïve Bayes and baseline
attribute weighting methods. Experimental results show that our method to
incorporate attribute weights improves the classification performance com-
pared to both standard naïve Bayes and baseline attribute weighting methods
in terms of classification accuracy and F1, especially when the independence
assumption is strongly violated, which was validated using the Chi-square test
of independence.
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1 Introduction

The naïve Bayes classifier is one of the widely used algorithms for data mining applications. The
naïveté in the classifier is that all the attributes are assumed to be independent given the class. Such
assumption simplifies the computation to infer the probability of a class given the data. Although
the attribute independence assumption in the naïve Bayes classifier makes it a tractable method for
learning, this assumption may not hold in real-world applications.

Various approaches have been proposed to relax the attribute independence assumption. One of
the approaches is to combine the naïve Bayes with a pre-processing step. In this approach, an attribute
selection is first performed to identify the set of informative attributes before training the naïve Bayes
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[1–3]. This approach usually relies on some heuristics to evaluate the characteristics of the attributes.
The naïve Bayes is only trained on the set of identified informative attributes.

Another approach to mitigate the independence assumption is the structure extension [4–7].
This approach extends the structure in naïve Bayes to represent attribute dependencies by creating
edges between the attributes. These edges allow the dependence relationships between attributes to be
captured.

Since some attributes have more influences in discriminating the classes, an alternative approach
is to apply an attribute weighting method. In this approach, different weights are assigned to different
attributes with a higher weight for attributes that have more influences. Although there are many
methods proposed to calculate the weights for naïve Bayes learning, these methods incorporate the
weights by raising the power of the conditional probabilities. However, incorporating weights in this
manner may cause the conditional probabilities to behave inversely. In this paper, we propose a method
to address this issue. The proposed method is evaluated on public benchmark datasets and compared
to other baseline attribute-weighting methods.

The remainder of this paper is structured as follows. Section 2 reviews the related work. Section
3 presents our proposed method. Section 4 describes the experimental setup. Section 5 discusses the
experimental results. Section 6 draws the conclusions of the research.

2 Related Work

Attribute weighting methods in naive Bayesian learning can be divided into two methods:
wrapper-based and filter-based. The wrapper-based methods use a classifier as an evaluation function
to score the attributes based on their classification performance, whereas filter-based methods apply
some heuristics to evaluate the characteristics of the attributes.

Among the earlier work that used a filter-based method for attribute weights is the work of
Lee et al. [8]. They used a weighted average of Kullback-Leibler measure across the attribute values
for calculating weight for each attribute. Hall [9] proposed an attribute weighting method based on
decision tree for naïve Bayes. The method first constructs an unpruned decision tree. Attribute weight
is calculated by examining the minimum depth at which attributes are tested in the tree. Duan et al.
[10] used the information gain measure for attribute weights. They first calculate the information gain
for each attribute and then select a set of informative attributes. The information gain from the set of
informative attribute is normalized and the weight is assigned for the corresponding attribute.

Yu et al. [11] proposed a weighted adjusted naïve Bayes, where the attribute weights are iteratively
adjusted using the wrapper method. Weights are updated by using a threshold to evaluate the
performance of the current attribute weights. The final optimised weights are then used to train the
attribute weighted naïve Bayes. A similar work was seen in the work of Yu et al. [12] where they
proposed a hybrid attribute weighting method that combines filter and wrapper approaches. Rather
than initialising a constant weight for each attribute, the correlation-based weight filter is applied
to initialise the weights. The wrapper method is then applied to iteratively update the weights. Such
methods, however, have high computational cost.

There are works [13,14] that applied a correlation-based attribute weighting method where the
weight for each attribute is determined by the difference between attribute-class correlation and
average attribute-attribute inter-correlation. To avoid negative weights when calculating the difference
between attribute-class correlation and average attribute-attribute inter-correlation, Jiang et al. [13]
applied a logistic sigmoid transformation to ensure the weight falls within the range of 0 and 1. Zhang



CMC, 2022, vol.71, no.1 1947

et al. [14] proposed an attribute and instance weighted naïve Bayes that combines attribute weighting
with instance weighting methods. They first compute the attribute weight using correlation-filter and
applied a frequency-based instance weight filter to each instance. These weights are then applied to
naïve Bayes for classification.

3 Proposed Method

In this section, we describe our proposed method and the rationale of our method.

3.1 Naïve Bayes Classifier with Attribute Weights

The naïve Bayes classifier is a probabilistic model that applied the Bayes theorem in classification
[15]. Given an instance to be classified based on the values of n attributes, A = (a1, a2, . . . , an), we can
calculate the conditional probability that the class of this instance is C as below:

P (C|a1, a2, · · · , an) = P (C, a1, a2, · · · , an)

P (a1, a2, · · · , an)
(1)

In practice, we are only interested in the numerator in Eq. (1), which is the joint probability of class
C and the attributes. With the strong conditional independence assumption in naïve Bayes classifier,
this joint probability can be expressed as the following:

P (C, a1, a2, · · · , an) ∝ P (C)

n∏

i=1

P (ai|C) (2)

The naïve Bayes classifier classifies the instance by maximizing the probability at the right hand
side of Eq. (2). The class of this instance is labelled as cj if

cj = arg max
c∈C

P (C)

n∏

i=1

P (ai|C) (3)

In real application of classification, the assumption of conditional independence between
attributes is not always true. One approach to alleviate the independence assumption is to incorporate
attribute weights into the naïve Bayes. We propose to incorporate the weight wi of attribute ai into the
naïve Bayes classifier as in Eq. (4):

cj = arg max
c∈C

P (C)

n∏

i=1

P (ai|C)(
exp(−wi)) (4)

3.2 Rationale of Our Proposed Method

The conditional probability P
(
ai|cj

)
represents the probability of observing the value ai given

that the class is cj. This probability should be larger if the chance to observe ai is highly dependent
on class cj. The weight wi of attribute ai should also be larger if this attribute has a higher influence
compared to other attributes. When we incorporate the weights into the naïve Bayes, we are looking
for a relationship as in Eq. (5),

∇P
(
ai|cj

) ∝ wi (5)

where ∇P
(
ai|cj

)
represents the changes in the conditional probability. Such changes should directly

proportion to the attribute weight. The conditional probability for a particular attribute should have
a larger increment if the weight of this attribute is higher.
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Since the conditional probability is always bounded between 0 and 1, P
(
ai|cj

)x
is larger than

P
(
ai|cj

)y
when x is smaller than y. With this understanding, we observe that P

(
ai|cj

)
is inversely

related to wi when the power of this conditional probability is raised to wi. In order to correctly
reflect the importance of the attributes, the power should be raised as the negative of attribute
weights. The exponential function is included in our weighted naïve Bayes formula to ensure that the
conditional probability remains unchanged when the weight is zero. Incorporating attribute weights
this way not only help to relax the conditional independence assumption, but also preserve the original
mathematical structure of the naïve Bayes.

To further illustrate our proposed method, let us assume that the conditional probability of the
attribute ai given the class cj, P

(
ai|cj

)
, is equal to 0.3. The changes in this conditional probability’s

value, with respect to different weights, is shown in Fig. 1. The conditional probability increases when
the weight is larger and its value is always bounded between 0.3 (the original value without weight) and
1. This ensures that the importance of the attribute weights is reflected in the changes of its conditional
probability. Attribute with higher weight, which is more important and influential to the classification,
will increase the conditional probability more as compared to attribute that is less influential.

Figure 1: The changes in P (ai|C) = 0.3 for different weight values (w)

4 Experimental Setup

The performance of our method is evaluated on a collection of 9 public benchmark datasets
obtained from UCI repository [16] and 1 dataset obtained from the United States Food & Drug
database (FDA) [17]. The FDA dataset contains 7 attributes to classify the severity of adverse drug
events encountered by Osteoporosis patients from year 2004 to 2018. Tab. 1 provides a description of
the datasets used in the experiments.

All instances with missing values were removed from the dataset and numerical attributes were
discretized using the supervised discretisation method of Fayyad et al. [18]. Numerical attributes that
have only one interval after discretization are not included in the modelling process.

To evaluate the performance of our method, these data were cross-validated using a 5-fold cross-
validation method. Stratified sampling method is used to sample the training data. The train:test ratio
is 70:30 for each class. The classification performance was obtained by averaging the results from the
5 runs. Two measurements were used to evaluate the classification performance: accuracy and F1.



CMC, 2022, vol.71, no.1 1949

Accuracy measures the number of times the model correctly makes the prediction, while F1 is the
harmonic mean of precision and recall.

Table 1: Description of the datasets used

Dataset No. of instances No. of attributes % of missing values

Abalone (AB) 4177 8 0
Default of credit card
(CC)

30000 24 0.18

Indian liver patient (LP) 583 10 0.69
Mushroom (MR) 8124 22 30.52
Adult (AD) 48842 13 37.11
Adverse drug event
(AE)

18424 7 0

Heard disease (HD) 298 13 0
Breast cancer wisconsin
(BC)

699 32 2.29

Credit approval (CA) 690 15 5.36
Tic-Tac-Toe endgame
(TTT)

958 9 0

We conducted two sets of experiments. The first experiment compared our method with standard
naïve Bayes, i.e., without applying any attribute weighting method. The second experiment compared
our method with existing baseline method to incorporate attribute weights. The attribute weights in
both experiments are calculated using methods proposed in literature, one based on Kullback-Leibler
(KL) measure [8] and another based on information gain (IG) [10].

5 Results and Discussion
5.1 Standard Naïve Bayes vs. Proposed Method

The classification performance of our method using KL measure as attribute weights and standard
naïve Bayes is presented in Fig. 2. Our method performed better in both accuracy (Fig. 2a) and F1
measures (Fig. 2b) for 6 of the datasets (AB, CC, LP, MR, AD and AE). Both methods achieved the
same performance for BC dataset. The standard naïve Bayes performed better for HD, CA and TTT
datasets.

When we used IG as the attribute weights, we obtained a similar result as in KL when compared
to the standard naïve Bayes for accuracy. As shown in Fig. 3a, our method performed better for AB,
CC, LP, MR, AD and AE; performed equivalent for BC, but not as good for HD, CA and TTT. In
terms of F1, as shown in Fig. 3b, our method performed better for AB, CC, LP, MR, AD and AE;
performed equivalently for BC and HD; but not as good for CA and TTT.
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Figure 2: Classification performance in terms of (a) Accuracy and (b) F1 between standard naïve Bayes
and proposed method using Kullback-Leibler measure as the attribute weight

5.2 Baseline Method vs. Proposed Method

The majority of the existing work for weighted naïve Bayes [8,9,13,14] incorporate attribute
weights using the following formula:

cj = arg max
c∈C

P (C)

n∏

i=1

P (ai|C)
wi (6)

This experiment compares the classification performance of our method to incorporate attribute
weights (following Eq. 4) with this baseline method (following Eq. 6). The attribute weights are
calculated based on KL and IG measures.

Fig. 4 shows the classification performance of our method and baseline method for attribute
weights calculated based on KL measure. In terms of accuracy, our method performed better for 7
datasets (AB, CC, LP, MR, AD, AE and HD). The baseline method performed better in CA and
TTT datasets. Both methods performed equivalently for BC dataset. In terms of the F1, our method
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performed better for 8 datasets (AB, CC, LP, MR, AD, AE, HD and TTT), performed equivalently
for BC dataset and not as well for CA dataset.

Figure 3: Classification performance in terms of (a) Accuracy and (b) F1 between standard naïve Bayes
and proposed method using information gain measure as the attribute weight

When IG measure is used as the method to compute attribute weights, we observed the same
performance results. As shown in Fig. 5, in terms of accuracy, our method performed better for AB,
CC, LP, MR, AD, AE and HD datasets; has an equivalent performance in BC dataset and not as good
in CA and TTT datasets as compared to the baseline method. In terms of F1, our method performed
better for 8 datasets (AB, CC, LP, MR, AD, AE, HD and TTT), performed equivalently for the BC
dataset, and not as well for CA dataset.

5.3 Further Investigation on the Classification Performance

In order to better understand the experimental results, we have conducted a test to evaluate the
assumption of conditional independence in naïve Bayes. This independence assumption is valid only
if all the variables are pairwise independent. The chi-square test of independence is used to verify if
a pair of attributes are independent; thus it is a suitable test for the verification of this assumption.
Since we are evaluating the independence between attributes condition on the class, each dataset is



1952 CMC, 2022, vol.71, no.1

divided into different subsets according to their classes. The chi-square test is applied on each subset
to evaluate pairwise independence between attributes.

Figure 4: Comparison between baseline method and proposed method based on Kullback-Leibler
measure: (a) Accuracy and (b) F1

The null hypothesis (Ho) of the chi-square test is that a pair of attributes are independent and Ho is
rejected if the p-value is smaller than a level of significance (α). We have used α = 0.05 in our test. If the
p-value is smaller than 0.05, then the attributes are not independent and thus violate the conditional
independence assumption of naïve Bayes.

Tab. 2 presents the results of the pairwise test for 3 attributes (A1, A2 and A3). If an attribute
is independent with another attribute, the cell of the intersection of these attributes in the table is
labelled as “I”. The cell of intersection is labeled as “NI” if these two attributes are not independent.
For readability, the cell with “NI” value is shaded. Tab. 2 showed that A1 is independent with A2, but
not independent with A3. A2 and A3 are also not independent. The independence assumption in naïve
Bayes is not violated if all the attributes are pairwise independent, which means that all the entries in
the table are “I”. The more “NI” values are seen in the table, means that the assumption is violated
more seriously.
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Figure 5: Comparison between baseline method and proposed method based on information gain
measure: (a) Accuracy and (b) F1

Table 2: Chi-square test result

A1 A2 A3

A1 – I NI
A2 – NI
A3 –

Tab. 3 shows the results of the chi-square test on AB dataset, where our method performed better
than the standard naïve Bayes and baseline methods. In the AB dataset, there are 2 classes: “Larger”
and “Smaller”. Tab. 3a is the chi-square test result for class “Larger” and Tab. 3b is the chi-square
test result for class “Smaller”. There are 8 attributes in the AB dataset. All the attributes are not
pairwise independent for both the classes, which means that the conditional independence assumption
is seriously violated for this dataset.
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Table 3: Chi-square test result of AB dataset

Sex Length Diameter Height Whole Shucked Viscera Shell

(a) Class = “Larger”

Sex – NI NI NI NI NI NI NI
Length – NI NI NI NI NI NI
Diameter – NI NI NI NI NI
Height – NI NI NI NI
Whole – NI NI NI
Shucked – NI NI
Viscera – NI
Shell –

(b) Class = “smaller”

Sex – NI NI NI NI NI NI NI
Length – NI NI NI NI NI NI
Diameter – NI NI NI NI NI
Height – NI NI NI NI
Whole – NI NI NI
Shucked – NI NI
Viscera – NI
Shell –

Tab. 4 shows the results of chi-square test on CA dataset, where our method did not perform as
good as the standard naïve Bayes and baseline methods. This dataset has 9 attributes with two classes:
“positive” and “negative”. Although some “NI” values were observed in Tab. 4, there are also many
“I” values. These results showed that some of the attributes in CA dataset are pairwise independent.
Although the independence assumption does not hold for all the attributes, the violation is not as
serious compared to AB dataset.
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Table 4: Chi-square test result of CA dataset

A1 A2 A3 A4 A5 A6 A7 A8 A9

(a) Class = “positive”

A1 – I NI I NI NI NI NI I
A2 – I NI I NI NI NI NI
A3 – NI NI I I NI NI
A4 – I NI I NI NI
A5 – I NI I NI
A6 – NI NI I
A7 – I NI
A8 – I
A9 –

(b) Class = “negative”

A1 – I I I NI NI I NI I
A2 – I NI I NI NI NI NI
A3 – NI NI I I NI I
A4 – I NI I NI NI
A5 – I NI I NI
A6 – NI NI I
A7 – I I
A8 – I
A9 –

For the other datasets where our method performed better, we see a similar results of chi-square
test alike the one in AB dataset. For example, out of 55 pairwise chi-square test in MR dataset with 11
attributes, only 2 pairs of attributes are independent in one class and 7 pairs are independent in another.
This again means that there is a serious violation on the independence assumption. Our method to
incorporate attribute weights is still able to achieve a higher performance even when the independence
assumption is seriously violated.

We have also compared the performance of the baseline method to the standard naïve Bayes and
the results are presented in Tab. 5. In terms of accuracy, when KL measure is used to calculate the
attribute weights, the baseline method performed slightly better for datasets AB and LP, but not as
good for 5 datasets (CC, AD, AE, HD and TTT). When IG measure is used, the baseline method only
performed better in the AB dataset and not as good for 7 datasets (CC, LP, AD, AE. HP, CA and
TTT). In terms of F1, the baseline method with KL performed better for LP and CA datasets, but
not as good for 5 datasets (CC, MR, AD, HD and TTT). The baseline method with IG performed
slightly better for AB and CA datasets, but not as good for 6 datasets (CC, LP, MR, AD, HD and
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TTT). The improvement is marginal with only 1 or 2 percent even when the baseline method has a
better performance in some datasets.

Table 5: Comparison between standard naïve Bayes and baseline method

Dataset Standard
naïve Bayes

Baseline method

KL IG

(a) Accuracy (%)

AB 61 62 62
CC 73 70 71
LP 67 69 65
MR 85 85 85
AD 83 77 77
AE 61 61 61
HD 83 80 80
BC 97 97 97
CA 86 86 85
TTT 72 71 71

(b) F1-measure (%)

AB 69 69 70
CC 83 80 81
LP 74 76 71
MR 78 76 76
AD 88 83 83
AE 66 66 66
HD 81 75 78
BC 98 98 98
CA 84 86 85
TTT 80 77 77

6 Conclusions

This paper proposed a new method to incorporate the attribute weights in the computation of
conditional probabilities for naïve Bayes classifier. In this paper, we explored two attribute weights
based on Kullback-Leibler and information gain measures, and incorporated these weights using
our method. We evaluated our method on public benchmark datasets obtained from UCI and
FDA repositories. Our attribute weighting method outperformed both the standard naïve Bayes and
baseline weighting methods in terms of accuracy and F1. Our method is able to achieve a better
performance even when the conditional independence assumption is seriously violated, which is
validated with the chi-square test.
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