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Abstract: Elliptic curve cryptography ensures more safety and reliability than

other public key cryptosystems of the same key size. In recent years, the

use of elliptic curves in public-key cryptography has increased due to their

complexity and reliability. Different kinds of substitution boxes are proposed

to address the substitution process in the cryptosystems, including dynamical,

static, and elliptic curve-based methods. Conventionally, elliptic curve-based

S-boxes are based on prime field GF(p) but in this manuscript; we propose a

new technique of generating S-boxes based on mordell elliptic curves over the

Galois field GF(2n). This technique affords a higher number of possibilities

to generate S-boxes, which helps to increase the security of the cryptosystem.

The robustness of the proposed S-boxes against the well-known algebraic and

statistical attacks is analyzed to classify its potential to generate confusion and

achieve up to the mark results compared to the various schemes. The majority

logic criterion results determine that the proposed S-boxes have up to themark

cryptographic strength.
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1 Introduction

The rapid growth of digital technology and network communications has improved electronic data

transmission across many networks over the last few decades. Since most communication networks

are open, the privacy of sensitive data transmission across that network is controversial, raising

numerous concerns. The study of cryptography is the study of how to address the challenge of secure

transformation. Therefore, Cryptographers have paid close attention to the security of sensitive data

in recent decades. The researchers have suggested different types of informative security techniques

to combat modern information security attacks. Shift cipher, hill cipher, transposition cipher, and

various versions were themost prominent classical cryptosystems. Inmanywell-known cryptosystems,

including AES, S-box is used as a nonlinear component [1]. The safety of such cryptosystems

is therefore dependent on the cryptographic properties of respective S-boxes. The Rijndael block
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cipher [2] has been adopted by the National Institute of Standards and Technology (NIST) as

an Advanced Encryption Standard (AES). Because of the significance of AES, many researchers

investigated the cryptographic characteristics of its S-box. Since S-box plays an essential role in

AES, numerous cryptographers have proposed different S-box transformations based on various

mathematical structures. An S-boxes passed specific tests, such as nonlinearity, approximation, strict

avalanche, and bit independence. In that case, it is cryptographically enough to obtain the desired

confusion. Several schemes based on different structures were designed to develop this nonlinear

component of the block ciphers [3–7]. So, there is a lack of a parallel and less intricate scheme to

design a nonlinear component of the block cipher.

1.1 Related Work

Elliptic curves are also used in the development of powerful cryptosystems. Elliptic curve-based

techniques are the most widely deployed to increase the security of information. Specifically, We will

concentrate on elliptic curve cryptography (ECC) and the various methods put forward by various

researchers throughout this area. Miller [8] proposed the first scheme to use the elliptic curve as a

public key cryptosystem in 1985. In addition, a cryptosystem is supplied that is 20% efficient than the

Diffie-Hellman algorithm. Reference [9] presents a relationship between the nonlinearity of rational

functions over F2n and the number of points on the associated hyperelliptic curve and obtain a lower

bound on the nonlinearity of rational typed vector Boolean functions over F2n . The idea of a discrete

logarithmic issue is utilized to build a highly safe, fast, and efficient security system in [10]. An efficient

approach to multiply the elliptic curve points and their resources are compared with binary and non-

adjacent (NAF)methods are presented in [11]. It is observed that ECCwith a smaller key length ismore

secure than RSAwith a larger key size. In [12], an elliptic curve is utilized over a prime field to generate

elliptic curve points and add the x, y coordinates of each point lying on the elliptic curve followed

by modulo function to construct the different number of 4 × 4 S-boxes. A method for constructing

prime field dependent 8 × 8 substitution boxes (S-boxes) are presented in [13]. In this work, they

use the x-coordinate of an elliptic curve followed by the modulo operation to construct the different

number of prime field-dependent 8× 8 S-boxes. Reference [14] Present novel approaches for creating

S-boxes utilizing total order on an elliptic curve (EC) over a prime field. Instead of the more classical

group rule that costs computationally, a search method is employed to generate an EC efficiently. The

Construction technique for the S-boxes uses the x-coordinates of the points of order elliptic curve

(OEC). These techniques are capable of constructing a different number of 8 × 8 S-boxes. Still, their

output is unpredictable because they may or may not generate an S-box for any input parameter and

are independent of the underlying elliptic curve. Recently Farwa et al. [15] presented an excellent and

novel method for constructing a 4 × 4 S-box by utilizing an elliptic curve over the Galois field GF(24).

In this study, they applied group structure on the elements of the elliptic curve having the same order

as the order of extension field and used the features of the specified elliptic curve to design a bijective

Boolean function.

1.2 Motivation

The following are the primary motivations for this study to improve the strength of S-boxes over

elliptic curves and their application in different cryptosystems.

1. Usually, the elliptic curves are considered over prime fields to construct S-boxes, and the

generation of S-box is not possible for each input EC.

2. Moreover, the prime field dependent S-boxes do not address the maximum number of S-box

possibilities.
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3. In [15], they considered elliptic curve over the 16 order Galois field GF(24) and designed a

single 4× 4 S-box. Whereas the method is given in this study the binary Galois field extension

GF(2n), where n = 8 or an odd n ≥ 9 is considered and develop an effective scheme for

8× 8 S-boxes construction.Moreover, rather than prevailing 8×8 S-box designing Galois field

GF(28) dependent schemes, this study brings a more comprehensive and complex approach in

which one could use the Galois fields GF(2n) of order 256, 512 and higher.

1.3 Our Contribution

The drawbacks of existing schemes prompt us to present this new scheme. The following steps will

explain how to sum up the entire manuscript.

1. We used a simple method instead of arduous S-boxes designing algorithms with outstanding

results to construct 8× 8 S-boxes in the proposed work.

2. In this work, to generate elliptic curve points, we considered Mordell elliptic curve interpreted

over the Galois fields GF(2n) of order 256, 512 and higher.

3. Inverse function under prescribed Galois field and primitive irreducible polynomial as for the

generation of elliptic curve points applied to the pairs of elliptic curve points.

4. To get the different number of S-boxes, one can vary the parameter b of the Mordell elliptic

curve or alter the primitive irreducible polynomial of a degree corresponding to theGalois field

over the binary field.

The remaining paperwork is as follows: In Section 2, we offered some preliminary information.

Section 3 discusses the proposed algorithm. In Section 4, we evaluated the designed S-boxes perfor-

mance indices and compared them to other preexisting S-boxes. The application of designed S-boxes

in image encryption algorithm and majority logic criterion is also carried out in Section 4. In the end,

Section 5 presents some convincing remarks.

2 Preliminaries

Some basic and essential concepts about the elliptic curves, Galois fields, Euler’s totient function,

irreducible polynomials, and primitive polynomials are reviewed in this section.

2.1 Galois Fields

Galois fields, often known as Finite fields, are the foundations of any cryptographic theory,

denoted by GF(pn), where p is any prime and n ∈ Z+ [16]. If n = 1, then GF(pn) is known as Prime

field. If n > 1, then GF(pn) is known as the extension field. The order of the Galois fields is pn.

2.2 Euler’s Totient Function

Reference [17] presents Euler’s phi function, also called Euler’s totient function ϕ(n) gives the

numbers not exceeding n and having gcd 1 with n. By convention ϕ(0) = 1, and for the number n,

which is not prime.

ϕ(n) = n
(

1− 1

p1

) (

1− 1

p2

)

. . .

(

1− 1

pr

)

Where the product runs over all primes p dividing n.

ϕ(p) = p− 1, where p prime.
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2.3 Primitive Polynomials and Galois Fields

In [18], Some basic definitions are stated in this section of reducible, irreducible, and primitive

polynomials over the Galois field. In this section, p = 2 for GF(pn) if not otherwise mentioned.

2.3.1 Definition

There is precisely one finite field for every prime number p and positive integer n having order pn.

All the elements of this finite field except zero forms a cyclic group under multiplication. As a result,

there is an element β which generates all the elements of this finite field except zero and βpn−1 = 1. The

generators of GF(pn) is known as primitive elements.

2.3.2 Definition

If f ∗(x) is a polynomial and we cannot factories it into two additional polynomials whose degree

is less than f ∗(x), then f ∗(x) is irreducible in GF(p)[X], and primitive if f ∗(x) is irreducible, and all

the roots of the polynomial are primitive elements in GF(pn). The total number of binary primitive

irreducible polynomials of degree n is ϕ(2n−1)

n
, where ϕ is Euler’s totient function.

2.3.3 Definition

If f ∗(x) is a polynomial having degree m ≥ 1 such that f ∗(0) 6= 0, Then there exists n ∈ Z+ and

n ≤ pm − 1 such that f ∗(x)|(xn − 1). An irreducible polynomial f ∗(x) ∈ GF(p)[X ] having degree m

satisfying min
n∈N
{n : f ∗(x)|xn − 1} = pm − 1, then the polynomial is called primitive. If a polynomial of

degree m is primitive, then n = pm − 1.

2.4 Lemma

For any prime p greater than 3 with the condition that p ≡ 2 (mod 3) the Mordell elliptic

curve, which is of the form: y2 = x3 + b has exactly p + 1 points, and there is no repetition in the

y-coordinates of points lying on the elliptic curve such that, for each integer y ∈ [0, 1] there exists

precisely one integer x ∈ [0, 1] where (x, y) are points lying on the mordell elliptic curve, Washington

[19] (6.6 (c), p. 188).

2.5 Construction of GF(2n)

The Galois field GF(2n) is defined as
F2 [x]

〈f ∗(x)〉
, where 〈f ∗(x)〉 is a maximal ideal of F2[X ], generated by

irreducible polynomial f (x), having degree n. The order of the field is 2n and each polynomial of the

field have degree at most n− 1 having coefficients in F2, [15].

2.5.1 Addition and Subtraction in GF(2n)

As we work on the field of characteristic 2 so the operation of addition and subtraction is the

same. The addition of polynomials is very simple in the Galois field, [16].

2.5.2 Multiplication in GF(2n)

Let f ∗(x), g∗(x) ∈ GF(2n)[X ], and let h∗(x) be the primitive polynomial whose degree is n. Then

their product denoted by m∗(x) is given as.

m∗(x) = (f ∗(x) · g∗(x)) mod h∗(x)
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And if

(f ∗(x) · a∗(x)) mod h∗(x) = 1

Then a∗(x) is called multiplicative inverse of f ∗(x).

Note that whenever we multiply two polynomials or to find the multiplicative inverse of polyno-

mial, both require coefficient modulo 2 and the polynomials modulo h(x).

3 Proposed S-Box Algorithm

In this section, we discussed two different S-box algorithm approaches. In the first technique, the

nonlinear component of a block cipher is developed using Mordell elliptic curve interpreted over 256

order Galois field. In the second technique, instead of deploying 256 order Galois field dependent

S-boxes, we construct a different number of 8 × 8 S-boxes using Mordell elliptic curve over GF(2n),

for different odd values of n ≥ 9.

3.1 Construction of S-Box Using Mordell Elliptic Curve Over Galois Field GF(28)

Choose primitive polynomial

f (x) = x8 + x4 + x3 + x2 + 1 (1)

One can choose independently any other primitive polynomial of degree 8 with coefficients in a

binary field. Choose an elliptic curve of the form:

E : y2 = x3 + b (2)

where b is any element of Galois field except zero. The specialty of this curve is that when we choose

Mordell elliptic curve overGF(28), the number of elements lying on the elliptic curve is 28+1 including

the point at infinity. The other thingwe see that whenever we chooseMordell elliptic curve overGF(28),

then there is no repetition in the x-coordinates of elliptic curve points, and repetition is accrued in y-

coordinates. The strength of this curve is that it has 256 distinct pairs of elements (x, y) excluding

the point at infinity over the GF(28). Our requirement to generate an 8× 8 S-box with 256 distinct

numbers is fulfilled by taking the x-coordinates of each ordered pair of elliptic curve points because

there is no repetition in the x-coordinates elements and gives us precisely 256 elements. Apply inverse

function underGF(28 ) on each element of x-coordinate except zero elements with primitive irreducible

polynomial given in Eq. (1). Finally, we have S-box having nonlinearity 112, which is given in Tab. 1.

Fig. 1 depicts the flowchart of the proposed algorithm.

Table 1: S-box 1 using MEC over GF(28)

0 216 108 72 54 56 36 40 27 24 28 135 18 41 20 227

1 114 237 137 95 35 87 209 84 223 130 229 89 113 63 231

142 192 57 111 248 104 202 17 161 68 159 238 165 200 230 181

244 88 81 46 213 140 91 217 29 79 198 107 53 246 240 234

71 224 96 164 146 129 185 233 124 155 52 235 101 249 134 3

167 62 86 195 78 26 196 251 204 188 194 242 184 67 177 143

(Continued)
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Table 1: Continued

122 76 44 64 166 37 23 218 228 15 70 191 163 215 226 211

186 102 138 94 4 97 77 121 176 92 5 175 158 214 241 201

173 144 112 80 48 19 82 219 73 11 206 197 210 16 250 66

157 222 208 34 136 193 141 119 49 220 59 100 247 115 116 212

221 85 31 207 43 203 239 6 39 189 13 7 98 118 243 232

152 128 74 169 30 99 179 187 45 148 60 123 90 120 180 117

61 160 38 171 22 151 32 132 83 172 156 149 133 153 109 127

170 131 139 12 103 14 236 205 105 9 8 154 125 10 33 255

93 75 51 21 69 55 47 254 2 199 190 174 168 25 178 126

150 42 110 225 147 65 50 252 245 162 183 182 58 145 106 253

Figure 1: Proposed S-box scheme based on MEC over GF(28)

Algorithm 1: Construction of S-box Using MEC over GF(28).

1: Input: Choose primitive irreducible polynomial of degree 8with b ∈ GF(28)−{0} and S ← [0 : 255]

2: Output: S-box

3: A = ∅

4: for each x ∈ S do

5: for each y ∈ S do

6: if y2 − (x3 + b) = 0 then

7: A = A∪ {x, y}

8: end if

9: end for

10: end for

(Continued)
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Algorithm 1: Continued

11: B ← x coordinates from set A

12: i ← 1:256

13: if B(i)← 0 then

14: no change

15: else take inverse under GF(28)

16: end if

3.2 Construction of S-Box Using Mordell Elliptic Curve Over Galois Field GF(2n)

The Galois fields GF(2n) of order 512, 1024 are utilized in this work to establish a more

comprehensive and effective approach for the designing of a large number of distinct 8× 8 S-boxes is

developed.

3.2.1 Construction of S-Box Using Mordell Elliptic Curve over Galois field GF(29)

Firstly, choose primitive polynomial.

f (x) = x9 + x4 + 1 (3)

Over the binary field, any arbitrary primitive polynomial of degree 9 with coefficients in the binary

field can be chosen independently. Choose elliptic curve.

E : y2 = x3 + b (4)

where b is any element of Galois field except zero.

When we choose Mordell elliptic curve over GF(29), the number of elements lying on the elliptic

curve is 29 + 1 including the point at infinity. In this case, there is no repetition in x-coordinates of

points lying on elliptic curve and gives us precisely 0−511 elements, and no repetition is accrued in the

y-coordinates of elliptic curve points and gives us random numbers. The specialty of this curve is that

it has 512 distinct pairs of elements (x, y) except point at infinity over GF(29). Take y-coordinate from

each point lying on the elliptic curve because of no repetition and randomness. Apply inverse function

underGF(29) on each element of y-coordinates except zero with primitive irreducible polynomial given

in Eq. (3) As we required 8 × 8 S-box which has 256 distinct numbers, takes all elements randomly,

which is less than 256. Finally, we get different S-boxes by giving different values to the parameter

b. As the number of primitive irreducible polynomials of degree 9 over GF(2) is 48, so through this

technique, we can construct different 511 × 48 S-boxes. The S-box through this technique is presented

in Tab. 2, having nonlinearity 106.25. The flow chart of the proposed scheme is given in Fig. 2.

Table 2: S-box 2 using MEC over GF(29)

175 179 145 23 27 247 243 36 7 114 252 69 212 133 73 47

221 121 105 130 214 106 37 51 54 234 15 180 203 29 249 245

140 230 142 246 144 240 153 98 237 151 42 120 59 58 132 32

244 190 12 46 55 136 162 213 193 139 232 209 154 74 26 149

(Continued)
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Table 2: Continued

57 72 205 118 126 189 41 226 16 65 238 255 222 96 67 70

167 242 77 183 158 155 122 217 52 146 134 31 227 6 38 225

101 216 39 124 9 152 2 3 50 172 254 176 78 248 156 66

19 195 191 33 1 95 81 86 159 188 79 202 108 18 76 83

143 94 4 186 228 208 163 99 119 92 61 24 102 56 48 147

103 60 231 210 220 113 89 28 20 115 75 196 64 90 43 93

173 204 150 241 34 224 45 169 10 235 116 127 35 97 80 177

5 192 215 201 68 44 123 125 131 219 14 187 63 185 178 218

88 110 62 107 111 160 91 161 197 53 87 17 100 157 168 25

0 165 181 82 182 13 250 141 112 138 128 137 184 30 109 199

236 253 49 223 174 251 171 233 104 206 170 8 135 85 198 11

84 71 129 22 21 148 166 164 40 117 207 211 229 239 200 194

Figure 2: Proposed S-box scheme based on MEC over GF(2n)

Algorithm 2: Construction of S-box Using MEC over GF(2n )

1: Input: Choose primitive irreducible polynomial of degree n with b ∈ GF(2n) − {0} and S ←

[0:n− 1]

2: Output: S-box

3: A = ∅

4: for each x ∈ S do

5: for each y ∈ S do

6: if y2 − (x3 + b) = 0 then

7: A = A∪ {x, y}

8: end if

9: end for

10: end for

(Continued)
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Algorithm 2: Continued

11: B ← y coordinates from set A

12: i ← 1:2n

13: if B(i)← 0 then

14: no change

15: else take inverse under GF(2n)

16: end if

17: Take all random elements less than 256

3.2.2 Construction of S-Box Using Mordell Elliptic Curve Over Galois Field GF(211)

Choose primitive polynomial.

f (x) = x11 + x4 + 1 (5)

In the binary field, any arbitrary primitive irreducible of degree 11 with coefficients in the binary

field can be selected independently. Choose Mordell elliptic curve.

E : y2 = x3 + b (6)

where b ∈ GF(211) − {0}. The specialty of this elliptic curve over GF(211) is that the number of

points (x, y) lying on an elliptic curve is 211 + 1 including the point at infinity. In this case, there is no

repetition in y-coordinates of elliptic curve points and random numbers, while in x-coordinates, there

is no repetition but in the sequence. Skip the x-coordinates and take y-coordinates of each elliptic curve

point to construct the robust S-boxes. Apply inverse function under GF(211) on each y-coordinate of

elliptic curve points except zero with primitive irreducible polynomial given in Eq. (5) As we need 256

distinct numbers to construct 8 × 8 S-boxes, we randomly choose all elements that are lee than

256. To construct a different number of S-boxes, one can vary the value of b. As the total number of

primitive polynomials of degree 11 over binary field is 176, one can construct the different number of

2047 × 176 S-boxes through this technique. S-box through technique is given by Tab. 3, and the flow

chart is presented in Fig. 2.

Table 3: S-box 3 using MEC over GF(211 )

159 230 90 102 4 253 247 75 19 176 135 193 197 255 224 180

36 137 195 209 243 29 202 181 119 45 10 189 24 53 113 91

169 32 31 233 50 86 1 27 237 61 116 26 46 44 103 246

231 89 191 238 140 121 67 222 144 198 151 160 146 110 148 5

178 12 150 117 142 174 210 158 41 33 8 70 184 82 11 97

52 161 221 14 143 20 163 64 122 118 48 225 167 212 55 249

69 206 85 115 227 83 65 134 49 188 208 101 16 132 239 40

105 9 2 252 190 0 203 76 111 57 145 248 128 254 109 120

58 6 139 216 229 98 138 104 62 220 168 177 77 124 213 47

155 215 93 165 179 38 23 235 74 186 201 170 157 35 84 28

(Continued)
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Table 3: Continued

219 51 192 245 95 112 194 218 166 232 228 30 37 236 133 42

79 152 234 240 106 100 96 126 223 171 94 211 226 39 250 251

214 217 127 241 56 185 199 78 22 173 13 207 7 63 25 187

147 141 3 68 34 88 242 153 107 182 156 54 108 154 71 200

80 196 131 123 164 162 21 87 114 18 73 136 17 59 15 99

43 81 205 183 72 66 125 60 244 92 130 175 129 149 172 204

4 Security Analysis

In this section, we mainly discussed the algebraic properties of newly designed S-boxes. We

analyzed the cryptographic features of our proposed nonlinear component and compared the results

to current benchmarks. Our proposed technique has clear advantages as compared to other algorithms

as mentioned in the below tables.

4.1 Nonlinearity

To calculate the nonlinearity of a given S-box, one can calculate the smallest distance of Boolean

function h from a set of affine functions. An unknown individual might identify the information and

actions of concerned Boolean functions if the proposed nonlinearity is insufficient. The nonlinearity

of the S-box measures the confusion ability of the S-box over GF(28) in [20]. Our S-box average

nonlinearity is the highest among all S-boxes based on the elliptic curve or other chaotic maps.

Minimum and maximum nonlinearity are also better than many other S-boxes.

Table 4: Comparison of newly designed S-boxes nonlinearity with some preexisting schemes

of S-boxes

S-box Scheme Minimum value Maximum value Average value

Proposed 1 EC 112 112 112

Proposed 2 EC 104 110 106.25

Proposed 3 EC 104 108 105.75

Ref. [3] Chaos 100 110 105

Ref. [7] Choas+group 98 110 105.5

Ref. [13] EC - - 104

Ref. [21] EC - - 106

Ref. [22] EC - - 106

Ref. [23] Chaos 98 106 103

Ref. [24] Chaos 104 110 106

Ref. [25] Pseudo-random 102 106 104

Ref. [26] Chaos 102 108 106

Ref. [4] Chaos 104 108 105.8
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4.2 Strict Avalanche Criterion

In [27], Webster and Tavares invented the theory of SAC in 1985. The criteria of SAC are fulfilled

when the output bits deviation probability is 1/2, in the case when a single input bit is complemented.

A 0.5 value of SAC assures that the correlation between input and output bits is minimal and makes

the encryption procedure secure against various leakages. The SAC values of our S-boxes are close

to 0.5, and the square deviation is also comparable to other existing S-boxes mentioned in Tab. 5. It

clearly illustrates that the proposed S-boxes meet the requisite criteria better than different preexisting

S-boxes SAC values.

Table 5: A comparison of SAC of newly designed S-boxes with some preexisting schemes of S-boxes

S-box Proposed

S-box 1

Proposed

S-box 2

Proposed

S-box 3

Ref. [28] Ref. [29] Ref. [13] Ref. [21] Ref. [22]

Minimum

value

0.4375 0.390625 0.40625 0.453 0.437 0.391 0.406 0.406

Maximum

value

0.5625 0.578125 0.40625 0.525 0.526 0.625 0.609 0.641

Average

value

0.487061 0.499268 0.510498 0.510 0.487 - - -

Square

Deviation

0.015289 0.019158 0.0195339 0.0165 0.015 - - -

4.3 Bit Independent Criteria

The BIC is an important test to evaluate the diffusion creation capability of the S-box. In [30],

BIC is started off to check the dependence of two output bits when a single input bit is placed.

The BIC parameters are as follows:

Let h∗
1
, h∗

2
, . . . , h∗

8
be the component of Boolean functions of the S-box, then S-box satisfies BIC

when the below two conditions are fulfilled:

i. The function h∗h∗ = h∗
i
⊕ h∗

j
where (i 6= j, 1 ≤ i, j ≤ 8) is highly nonlinear.

ii. SAC criteria satisfied.

The BIC of the newly designed S-boxes is calculated using this technique by assessing the

nonlinearity and SAC of h∗
i
⊕ h∗

j
. The average and minimum value of the BIC nonlinearity of the

proposed S-boxes is significantly higher than other existing S-boxes mentioned in Tab. 6. The square

deviation of our S-boxes is comparatively excellent when compared with different schemes. BIC

nonlinearity of designed S-boxes is significantly greater than other preexisting S-boxes, as required.
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Table 6: Comparison of BIC of newly designed S-boxes with some preexisting schemes of S-boxes

S-box Proposed

S-box 1

Proposed

S-box 2

Proposed

S-box 3

Ref. [23] Ref. [31] Ref. [32] Ref. [21] Ref. [22]

Average

value

112 103.8 104.357 112 103.2 103.643 98 98

Minimum

value

112 98 100 112 94 96 - -

Square

deviation

0 2.82482 1.85577 0 3.53 2.7283 - -

4.4 Differential Approximation Probability

The DAP of an S-box is used to assess its resistance against differential approximation attacks.

Reference [33] Introduces the probability of differential approximation to describe the probability

effect of a reasonable difference in the input bit on the resulting output bit difference. The lower the

value of DAP, the more secure S-box is against differential approximation attacks. The DAP of the

proposed S-boxes is better than the various S-boxes mentioned in Tab. 7.

Table 7: Comparison of LAP, DAP of newly designed S-boxes with some preexisting schemes

of S-boxes

S-box Proposed

S-box 1

Proposed

S-box 2

Proposed

S-box 3

Ref. [28] Ref. [31] Ref. [32] Ref. [13] Ref. [21]

Max (LP) 144 162 160 144 164 162 - -

LP 0.0625 0.132813 0.140625 0.0625 0.0159 0.1484 0.145 0.188

DP 0.015625 0.0390625 0.0390625 0.015625 0.0281 0.0468 0.039 0.039

4.5 Linear Approximation Probability

The linear approximation probability is discussed in [34]. This determines the probability of getting

a linear approximation of a given S-box. The LAP of the S-box is calculated by the correlation of input

and output bits. If an S-box has a low LAP, it is highly resistant to linear attacks. The LAP value of

the proposed S-boxes is very low as compared to other S-boxes mentioned in Tab. 7.

4.6 NPCR and UACI Analysis

Hackers typically attempt to make minor changes to the original image before encrypting it with

the proposed technique. Examine the original image with the image with changes after substitution.

They discover the relationship between the original and encrypted images using this technique. Two

significant studies are used to compute the influence of a one-pixel change in the original image on

the image after substitution. The findings of the two most well-known tests, Unified averaged changed

intensity (UACI) and several pixels changing rate (NPCR), are described in this part to measure the
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system’s resistance to differential attacks. Mathematically NPCR is defined as

NPCR =

∑

m∗ ,n∗
B(m∗, n∗)

K∗ × L∗
× 100%

And UACI is defined as

UACI =
1

K∗ × L∗

[

∑

m∗ ,n∗

abs(E∗
1
(m∗, n∗)− E∗

2
(m∗, n∗))

255

]

× 100%

where K∗ presents width and L∗ presents the height of the image. The NPCR and UACI values of

proposed S-boxes compared to other existing schemes are presented in Tab. 8.

Table 8:Comparison of newly designed S-boxes NPCR andUACIwith preexisting schemes of S-boxes

Algorithms NPCR UACI

Proposed S-box 1 99.42 33.21

Proposed S-box 2 99.64 33.68

Proposed S-box 3 99.58 33.51

Ref. [35] 99.58 28.62

Ref. [36] 98.47 32.21

Ref. [37] 99.42 24.94

Ref. [38] 99.54 28.27

Ref. [39] 99.61 33.08

Ref. [40] 99.59 33.45

4.7 Majority Logic Criterion Test

Reference [41] provides a detailed description of the majority logic criteria (MLC). These evalu-

ations compare plaintext and encrypted images and so provide an accurate assessment of encryption

technology. MLC performs statistical studies on both plain and encrypted data. MLC is essential

in statistical feature analysis, such as in the enciphering process manipulation of data, which results

in modifications in the plain data. MLC specifies a criterion for evaluating the outcomes of several

statistical investigations, such as homogeneity, energy, correlation, contrast, and entropy. Its evaluation

determined whether the S-box is appropriate for the use of an image encryption application or not.

The 256× 256 image of Lena is used for MLC analysis, and the result of the proposed scheme is given

in Tab. 9. The MLC analysis indicated that the diffusion level of the newly designed S-boxes is up to

the mark. All this can be seen in Fig. 3.
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Table 9:Comparison of MLC analyses of newly designed S-boxes with preexisting schemes of S-boxes

S-boxes Entropy Contrast Correlation Energy Homogeneity

Proposed 1 7.9479 9.9955 0.0036 0.0158 0.3948

Proposed 2 7.9524 9.9894 0.0028 0.0157 0.3884

Proposed 3 7.9543 9.9954 0.0016 0.0157 0.3908

Ref. [42] 7.9633 8.5969 0.0019 0.0174 0.4070

Ref. [43] - 10.3986 0.0072 0.0158 0.4214

Ref. [29] 7.7461 9.8198 0.0573 0.0163 0.4228

Ref. [28] 7.2415 7.4568 0.0785 0.0223 0.4731

Ref. [39] 7.9353 9.9764 0.0487 0.0161 0.4171

Ref [42] Ref [39] Ref [28]

Figure 3: (O) Original lena image (1, 2, 3) Encrypted lena image using S-box 1, S-box 2, and S-box 3

4.8 Comparative Analysis

The proposed algorithms of S-boxes construction are compared with other S-box designing

schemes to assess their efficiency and resilience against various cryptographic attacks. The following

point by point comparison is presented.

1. Tab. 4 shows some S-boxes based on chaos and elliptic curves with low nonlinearity compared

to the proposed algorithm. The features of elliptic curves are used to construct nonlinear

components of a block cipher in [13,21,22], but all work is done over the prime field. Instead of

designing prime field dependent S-boxes, we used an innovative technique to consider elliptic

curves over binary extension fields, and our results outperformed these algorithms.

2. The proposed S-boxes BIC and SAC results are much better than the existing algorithms

[21–22,28] shown in Tabs. 5 and 6. In addition, our S-box BIC value is the optimal value.
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Consequently, the proposed S-boxes have a far more impressive diffusion creation power than

other S-boxes.

3. The proposed S-boxes have lowerLP values than the other schemes [13,21,28,32] S-boxes values

shown in Tab. 7. As a result, the proposed algorithm is highly resistant to linear attacks and

generates significant data confusion. Furthermore, the proposed S-boxes have lower DP values

than the S-boxes in Tab. 7, making our scheme more resistant to various attacks.

4. In terms of NPCR and UACI, the proposed S-boxes outperform the schemes presented in

Tab. 8. Compared to techniques [28–29,39,42], the MLC analysis of the proposed algorithm

provided in Tab. 9 is considerably more refined, making our algorithm excellent for image

encryption.

From comparative analysis, we may realize that the proposed S-boxes design method has an

upright resistance against cryptanalysis compared to the prevailing S-box algorithms. According to

the MLC test, the proposed S-boxes have outstanding image encryption features.

5 Conclusion

In this paper, the complex structure of elliptic curves defined over the binaryGalois field extension

GF(2n), where n = 8 or an odd had been used to develop an efficient method for S-box construction.

Generally, the elliptic curves are considered over prime fields. The performance of the newly designed

S-boxes over Galois field n ≥ 9GF(2n) showed relatively better results as compared to the prevalent

S-box construction schemes. Also, we have utilized S-boxes for the substitution process, and outcomes

are considerably better than various existing schemes. From the futuristic point of view, the proposed

method can be extended to prove some general results about theMordell elliptic curve over the Galois

field extension GF(pn) of the prime field GF(p).
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