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Abstract: This paper introduces a decagonal C-shaped complementary split-
ring resonator (CSRR) textile-based metamaterial (MTM). The overall size of
the proposed sub-wavelength MTM unit cell is 0.28λ0 × 0.255λ0 at 3 GHz. Its
stopband behaviour was first studied prior analysing the negative index prop-
erties of the proposed MTM. It is worth noting that in this work a unique way
the experiments were completed. For both simulations and measurements, the
proposed MTM exhibited negative-permittivity and negative-refractive index
characteristics with an average bandwidth of more than 3 GHz (considering
1.7 to 8.2 GHz as the measurements were carried out within this range). In
simulations, the MTM exhibited negative-permittivity properties within the
range of 1.7 to 7.52 GHz and 7.96 to 8.2 GHz; and negative-refractive index
from 1.7 to 2.23 GHz and 2.33 to 5.09 GHz and 5.63 to 7.45 GHz. When
measured from 1.7 to 8.2 GHz, negative-permittivity and negative-refractive
index characteristics are exhibited throughout an average bandwidth of more
than 3 GHz. Similarly, the transmission coefficient attained in simulations and
measurements indicated about 3 GHz of bandwidth, from 1.7 to 3.88 GHz
and from 6.68 to 7.4 GHz. The satisfactory agreement between simulations
and experiments indicates the potential of the proposed MTM for microwave
applications.
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1 Introduction

Metamaterials (MTMs) are known as artificially engineered materials with stability in their
electromagnetic (EM) characteristics [1]. The MTMs may be graded as single negatives (SNG) or
as double-negatives (DNG)/ left-handed (LH) based on the dielectric permittivity (ε) or magnetic
permeability (μ) values. If one of these properties is negative, the MTM is referred to as SNG MTMs,
but when both properties are negative, the MTM is defined as DNG/LH MTMs [2,3]. The SNG MTM
with negative μ is identified as mu-negative (MNG) MTM and SNG MTM with negative ε is classified
as the epsilon negative (ENG) MTM [4,5]. The degree to which a substance reflects and refracts can be
measured using a material refractive index based on its permittivity and permeability [6]. The substance
with both permittivity and permeability is positive and commonly found in nature which is known as
dual-positive (DPS) MTM [1]. The classification of the MTMs is presented in Fig. 1.

Figure 1: Classification of metamaterials [1]

The common MTMs structures are usually developed in terms of complementary split-ring
resonators (CSRR) [7], split-ring resonators (SRRs) [8], planar pattern, and capacitance-loaded strip
(CLS) [5]. Apart from these, there are other kinds of MTM structures as discussed in [9] which
include electromagnetic bandgap (EBG) and artificial magnetic conductor (AMC). Researchers have
employed MTMs in various applications such as wireless health monitoring [10], invisibility cloaking
[11], RFID tags [12], filters [13], sensors [14], and EM wave absorbers [15]. Besides that, MTMs
are being used for controlling the performances of wearable antennas, radar, and other microwave
applications due to their exotic properties [15]. MTMs have also been reported to improve wireless
body area network (WBAN) antennas in terms of gain, radiation patterns, bandwidth (BW), and
size compactness [7,9,16]. Different types of materials exhibit different EM properties. For example,
researchers in [17] experimented with identical dimension and boundary conditions for two different
materials. However, the extracted results have shown different properties for the rigid and flexible
materials. Furthermore, the MTM can be used for microwave and terahertz fields devices such as
antennas, filters, integrated network sensors, or new superstrate layers to improve parameters or
equipment in the different field of science and technology (see Fig. 2) [16,18–21]. The knowledge
of metamaterials provides vast possibilities for applying and translating the physical concepts of
metamaterials from laboratories to innovative practical engineering applications [22].
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Figure 2: Example of MTMs in different antenna applications

The development of textile fabrics such as embroidered fabric material, sewn textile materials,
woven fabrics, nonwoven textile, spinning fabrics, knitted fabrics, braiding, printed fabrics, chemically
treated fabrics, and laminated fabrics have been extensively studied throughout the previous decades
[23]. Devices and smart sensors have been the focus in the past decade to enable them to be readily
integrated into the human body [24]. Electronic functionalities can now be integrated into fabrics with
the miniaturisation of electronic components and the development of emerging technologies [25,26].
In recent years, the creation of new textile-based sensors are focused on areas such as health tracking
[22], emergency rescue and law enforcement [27], and athletic training [28]. However, designing textile-
based MTMs has been challenging as due to their flexible nature and fabrication complexity [23,29,30].
Based on literature survey, it is noticeable that there have been limited research performed on textile
MTMs. For instance, Negi et al. studied a CSRR flexible FR4 based MNG MTM [21]. The reported
work exhibits negative index bandwidth of 2 GHz (from 7.2 to 9.2 GHz). However, the MTM is not
suitable for wearable applications (i.e., wearable sensors/antenna applications) as a rigid substrate was
used besides the limited BW. Another pioneering work by Greinke et al. [31] proposed textile material-
based MTMs and studied their feasibility for practical applications. However, the extracted material
parameters for the MTM reported in the work does not exhibit negative index results.

This paper proposes a flexible, negative index (i.e., negative refractive index (NRI) and epsilon
negative) textile based MTM. It was designed based on a decagonal-shaped complementary split-ring
resonator. To extract the parameters of the MTMs, the robust reflection-transmission (RTR) method
was adopted. Both simulations and measurements showed negative-index characteristics, where the
measured transmission coefficient (S21) within the range of 1.7 to 3.88 GHz and 6.68 to 7.4 GHz;
ENG within the range of 1.7 to 4.13 GHz and 5.6 to 6.38 GHz; and NRI within the range of 2.68
to 5.69 GHz. Simulations showed that the MTM exhibited S21, ENG, and NRI properties within the
range of 1.7 to 5.81 GHz and 5.3 to 5.81 GHz; 1.7 to 7.52 GHz and 7.96 to 8.2 GHz; and 1.7 to 2.23
GHz, 2.33 to 5.09 GHz and 5.63 to 7.45 GHz, respectively. Tab. 1 compares the proposed work against
various related MTMs found in the literature, indicating the MTM’s unique, flexible characteristics.
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Table 1: Comparison of this work with other flexible metamaterials

Reference Substrate type
&
Thickness

Compatible
with wearable
applications

Negative index
properties

Analysis
under
deformed
conditions

[26] Felt (Flexible)
& 1 mm

Yes – Yes

[31] Cotton organza (Flexible)
& 1 mm

Yes – –

[32] Kapton (Flexible)
& 0.1 mm

No S21 BW = –, and
ENG BW = 1.28 GH

Yes

This work Felt (Flexible)
& 3 mm

Yes S21 BW = 4.608 GHz,
ENG BW = 10.57 GH,
and
NRI BW = 5.99 GHz

Yes

2 Metamaterial Unit Cell Design

The proposed MTM unit cell was simulated and manufactured using flexible textiles. ShieldIt
SuperTM conductive textile from LessEMF Inc. was used to construct the MTM, with felt as the
substrate. The material specification is tabulated in Tab. 2. The MTM unit cell was simulated using the
finite integration technique (FIT) in the Computer Simulation Technology (CST) Microwave Studio
Suite (MWS). Several pairs of symmetric decagonal C-shaped complementary split-ring (CSRR)
resonators were assembled to enable the unit cell to operate in a wide frequency range. The MTM
unit cell design was completed in five different steps as presented in Fig. 3. Step 1 begins with the
creation of two decagonal-shaped inner and outer split rings. Followed by steps 2 and 3, in step 4 the
formation of a decagonal SRR was completed. After that in the final step (step 5), the designed SRR
model was subtracted from the W×L mm2 ShieldIt SuperTM conductive textile conductive material
to obtain the proposed CSRR shape. To prevent fabrication complexity, the decagonal-shaped CSRR
was considered in this study. Besides, the use of such a CSRR structure has been proven to enhance
the negative effective permittivity resonance of the material structure [33]. The proposed MTM with
related parameters is illustrated in Fig. 4a–b. Initially, the proposed dimensioned of the MTM was
8 × 8 × 3 mm3, then it has been optimised after the initial fabricated MTM was distorted during
the laser cutting process depicted in Fig. 5. It was observed that a minimum tolerance of 1.2 mm
is needed to effectively cut the gaps between the rings in the CSRR. Hence, its overall optimised size is
28 × 25.5 × 3 mm3, which were taken into account after fabrication limitations and other dimensions
are summarized in Tab. 3.
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Table 2: Material specifications

Dielectric Material
(Felt)

Specifications Conductive Material
(ShieldIt SuperTM)

Specifications

Electrical permittivity,
(εr)

1.44 Conductivity 1.18 × 105 S/m

Height 3 mm Thickness 0.17 mm
Electrical loss tangent 0.044

Figure 3: MTM unit cell construction strategies: (a) Step 1, (b) Step 2, (c) Step 3, (d) Step 4, and
(e) Step 5

The MTM’s equivalent circuit model is shown in Fig. 4c, without accounting the ohmic losses;
the reason for this is discussed in [33]. The MTM modelled on a transverse plane acts as an LC
resonator, which can be excited by the orthogonal electric field. Conversely, this structure behaves like
an electric dipole when excited by an axial electric field. The primary resonant can also be excited by
the external magnetic field along with the y-axis, as CSRR can also exhibit a magnetic behaviour. The
MTM structure was positioned between two waveguide ports on the positive and negative z-axis and is
excited with a transverse electromagnetic (TEM) wave to characterise the MTM effective parameters,
as seen in Fig. 3d. It was delimited on the ± x-axis by a Perfect Electric Conductor (PEC) boundary
and on the ± y-axis by a Perfect Magnetic Conductor (PMC) boundary. The frequency-domain solver
with a tetrahedral mesh scheme in CST Studio Suite was used to simulate this unit cell without a
conductive layer at the bottom within the range of 1 to 15 GHz [34].
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Figure 4: MTM unit cell: (a) Front view, (b) 3D rear view, (c) Equivalent circuit model, and (d) 3D
view of the MTM simulation setup to extract effective parameters

Figure 5: Fabrication complexity of the textile slots with the use of the laser cutter

The MTM is a transverse plane model that functions as an LC resonator that can be excited by an
orthogonal electric field. As excited by an axial electric wave, this arrangement behaves like an electric
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dipole. The main resonant, as well as the y-axis, can be excited by an external magnetic field, as CSRR
can exhibit magnetic behaviour [33,35]. By properly modelling the CSRRs gaps, the MTM properties
can be tailored. Based on the setup shown in Fig. 3d, the surface current distribution of the proposed
MTM was further analysed, and the findings are described in the following section.

Table 3: Dimensions of the proposed MTM unit cell

Parameter Value (mm) Parameter Value (mm)

L 25.5 g2 3
W 28 g3 1.98
R1 10 d11 1.81
R2 7.8 d2 1.3
R3 5.2 h 3
R4 3.2 t 0.17
g1 2.49

3 Results and Discussion
3.1 Modelling and Simulation

The surface current distributions were studied at distinct frequencies to explain the proposed
MTM’s physical operation when placed in an electric and magnetic field region. Fig. 6 illustrates the
surface current distribution of the MTM unit cell at 1 GHz, 2 GHz, 5 GHz, and 6 GHz. The arrows
show the actual propagation path in the overall layout, whereas the colours reflect the strength. Strong
surface currents can be seen throughout the MTM structure, especially at the edges and corners of the
inner CSRR C-shaped structure. The current flows in opposite directions with respect to the upper and
bottom sides of the C-shaped slot, which nullify the overall currents and create multiple stopbands.
Generally, the use of several slots to attain multiple stopbands operation has been well analysed and
described in the literature [36,37]. The decagonal C-shaped slot in the proposed MTM perturbs the
current distribution, thus strong surface currents concentrate on the edges of these slots and creating
additional resonances. Additionally, the surface current distribution is particularly fluctuant in the
symmetrical decagonal C-shaped outer and middle slot regions, whereas currents flow in two distinct
directions. Likewise, those two anti-symmetric conductor currents were found at the resonance, which
can result in a magnetic moment, from which the proposed structure’s unique artificial magnetism
is formed, resulting in the metamaterial structure’s impactful negative permeability and permittivity,
hence, negative refractive index.

The simulated S-parameters (simulated reflection coefficients (S11) and transmission coefficients)
are shown in Fig. 7 for the unit cell of the MTM along with 1 × 2, 2 × 2, and 2 × 2 arrays conditions.
Prior to the analysis of the MTM effective parameters, stopband behaviour was first investigated to
enable the proposed MTM to be operated in different microwave applications [16,38]. From the S-
parameters, it could be observed that the stopbands are created when the S21 results are below −10 dB,
and the S11 results are near to zero. For different unit cell array conditions, the stopbands were realised
approximately from 1 to 3.87 GHz, 5.3 to 5.81 GHz, 11.88 to 12.24 GHz, and 14.132 to 15 GHz.
For the homogeneous slab with infinite periodic structure (e.g., AMC structure), the metamaterial
results could be coincided within the accuracy of numerical calculation regardless of the number of unit
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cells conditions. However, metamaterial in this study is neither homogeneous nor periodically infinite
[39]. The RTR method was utilised in this study to extract material effective parameters (permittivity,
permeability, and refractive index) based on [30,40] the MTM’s S-parameters for both simulations and
experiments.

Figure 6: Surface current distribution on the MTM unit cell at different resonances

Figure 7: Simulated S-parameters

Figs. 8 and 9 depict the simulated real and imaginary parts of the effective permittivity and
refractive index, respectively for the unit cell of the MTM along with 1 × 2, 2 × 2, and 2 × 2 arrays
conditions. As shown in Fig. 8, the real negative permittivity (ε) value for different array conditions
approximately ranges from 1 to 7.52 GHz, from 7.96 to 8.43 GHz, from 9.18 to 9.39 GHz, from
11.12 to 12.31 GHz, from 12.59 to 13.74 GHz, and from 13.97 to 15 GHz. It is shown in Fig. 9
that the NRI regions are exhibited for different array conditions are approximately from 1 to
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2.23 GHz, 2.33 to 5.09 GHz, 5.63 to 7.45 GHz, and 13.55 to 13.73 GHz. Since the MTM in this
study was neither homogeneous nor periodically infinite, it has exhibited slight discrepancies in S-
parameters for different array conditions. It also implies that this leads to slight discrepancies in MTM
effective parameters as these parameters were extracted from the S-parameters. Again, considering it is
possible to assign a set of equivalent material properties to every MTM slab, no matter how coarse the
structure of the slab may be. However, in order for these to be useful material properties when structural
periodicity is involved, the periodicity must be extremely short in comparison to the wavelength [41].

Figure 8: Simulated MTM permittivity

Figure 9: Simulated MTM refractive index

3.2 Deformation Analysis

Next, the characteristics of MTM structures are evaluated since they are implemented on flexible
materials. The MTM’s efficiency is tested in deformed conditions, including multiple bent positions
which potentially will occur on clothing due to human body anatomy and postures. The physical
deformations of the MTMs (elongation or bending) potentially resulting in changes of the MTM EM
properties [26,30], are depicted in Fig. 10.

The effective parameters and the S21 result of the MTM under distinctive bending radii (r) were
then studied, with their changes in resonant frequency shown in Figs. 11 and 12. The proposed
design’s effective length varied as a result of bending; thus, there were changes to its resonance
frequency. The more the proposed MTM was bent, the shorter the resonant length became, and the
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resonant frequency became higher. The bending also affected the effective surface current length,
hence, the electromagnetic behaviour of the MTM. When the MTM was bent at the x-axis (Fig. 11),
the EM properties were significantly changed. On the other hand, when the bending analysis was
performed at the y-axis, changes in the MTM EM properties were insignificant (please see Fig. 12).
The discrepancies between the results of x-axis bending and y-axis bending were due to the differences
in surface current distribution. Nonetheless, the MTM still exhibited the required ENG and NRI
characteristics with different bending conditions within the frequencies of interest.

Figure 10: Bending at different radii at the (a) x-axis and (b) y-axis. (c) 3D deformation of the MTM
structure

3.3 Experimental Validations

Fig. 13a depicts the fabricated prototype used in the experimental validations, performed using a
laser cutter to ensure dimensioning accuracy. The outline of the final design was first exported into
a Drawing Exchange Format (DFX) file, which was then used as an input into the laser cutter to
dimension the ShieldIt SuperTM textile, see Fig. 13b. The dimensioned ShieldIt textile was then heated
using a clothing iron to secure it to the felt substrate [30,42].

Next, measurements were conducted using an Agilent Technologies E5071C network analyser to
measure its S-parameters. Four different sets of standard horn antennas were used to test the MTM
[43,44]: WR430, which operates within 1.7 to 2.6 GHz; WR284, which operates within 2.6 to 3.95 GHz;
WR187, which operates within 3.95 to 5.85 GHz; and WR137, which operates within 5.85 to 8.20
GHz. The MTM was mounted in between the horn antennas for measurements, as shown in Fig. 14.
Threads and clear tapes were used to secure the proposed MTM between the horn antennas during
measurements, without placing the horn antennas in the anechoic chamber. The distance between
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each pair of horn antennas was kept to a minimum during measurements. All the scattering data were
integrated within the frequency range of 1.7 to 8.2 GHz after the MTM measurements were completed.
Finally, the RTR approach was used to retrieve the MTM’s parameters.

Figure 11: Effects of bending with different radii (r) at the x-axis: (a) S21 result, (b) Permittivity, and
(c) refractive index

The measured S21, ε, and refractive index of the MTM are depicted in Figs. 15, 16 and 17,
respectively. Results showed an S21 BW of 2.9 GHz (from 1.7 to 3.88 GHz, and from 6.68 to 7.4 GHz),
and this is in good agreement with simulations, with a simulated S21 BW of 2.68 GHz. On the other
hand, the measured ENG BW is 3.32 GHz (from 1.7 to 4.13 GHz, and from 5.6 to 6.38 GHz), whereas
simulations indicated that this ENG BW is 6.06 GHz. Finally, an NRI BW of 3.01 GHz was obtained
from measurements (from 2.68 to 5.69 GHz), whereas simulations indicated an NRI BW of 5.11 GHz.
The attained negative index regions in measurements are highlighted in grey. All results between 1.7
GHz and 8.2 GHz are summarised in Tab. 4. Furthermore, the measured S21 BW increased by 150
MHz whereas the second resonance band increased by 90 MHz, with the starting frequency of the
second band shifting from 5.3 GHz to 6.68 GHz. Similarly, the ENG BW decreased by 2.85 GHz in
measurements, where the first ENG band is narrower by 3.39 GHz, and the frequency of the second
band is lowered, starting from 5.6 GHz instead of 7.96 GHz (in simulations). On the contrary, the
measured NRI BW decreased by 2.1 GHz compared to the simulations, and measurements indicated
the shifting of the starting frequency to a higher frequency by 980 MHz. However, the simulated NRI
is triband, whereas measurements exhibited a dual band operation.
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Figure 12: Effects of bending with different radii (r) at the y-axis: (a) S21 result, (b) Permittivity, and
(c) Refractive index

Figure 13: (a) Fabricated prototype of the proposed MTM structure. (b) Under the process of laser
cutting
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Figure 14: Measurement setup. (a) Schematic representation of the measurement setup, and (b) Photos
of the material under test (MUT) located between the horn antennas. WR284 standard horn antennas
and waveguide adapters were used

Figure 15: Measured S21 results
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Figure 16: Measured permittivity

Figure 17: Measured refractive index

Table 4: Simulated and measured S21, ENG, and NRI between 1.7 GHz and 8.2 GHz

Array structure S21 BW
(GHz)

ENG BW
(GHz)

NRI BW
(GHz)

Simulated 1.7 – 3.87, and
5.3 – 5.81

1.7 – 7.52, and
7.96 – 8.2

1.7 – 2.23,
2.33 – 5.09, and
5.63 – 7.45

Measured 1.7 – 3.88, and
6.68 – 7.4

1.7 – 4.13, and
5.6 – 6.38

2.68 – 5.69
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4 Conclusions

A full textile flexible MTM was developed and demonstrated in this paper. The unit cell of
the MTM consists of a several pairs of symmetric decagonal C-shaped CSRR resonators. The
operation of this textile MTM was validated using simulations and experimental validations, with
a negative index characteristic was observed within the S and C bands. On the other hand, simulated
ENG characteristics were observed within the X-band. Apart from that, drawbacks pertaining to
fabrication complexity was highlighted in the paper as dimension of the textile-based structure
should be considered during design process. The proposed MTM has the potential to implement into
the antenna design to enhance gain, improve bandwidth, mitigate mutual coupling effectively and
reduction in specific absorption rate. Furthermore, the MTM can be utilised for sensor application
for wireless body sensor networks. Moreover, upcoming research will be foreseen to be concentrated
on the implementation of the proposed MTM to design a compact MTM-based antenna for medical
application.
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