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Abstract: Since the introduction of the Internet of Things (IoT), several
researchers have been exploring its productivity to utilize and organize the
spectrum assets. Cognitive radio (CR) technology is characterized as the best
aspirant for wireless communications to augment IoT competencies. In the CR
networks, secondary users (SUs) opportunistically get access to the primary
users (PUs) spectrum through spectrum sensing. The multipath issues in the
wireless channel can fluster the sensing ability of the individual SUs. Therefore,
several cooperative SUs are engaged in cooperative spectrum sensing (CSS)
to ensure reliable sensing results. In CSS, security is still a major concern
for the researchers to safeguard the fusion center (FC) against abnormal
sensing reports initiated by the malicious users (M Us). In this paper, butterfly
optimization algorithm (BOA)-based soft decision method is proposed to
find an optimized weighting coefficient vector correlated to the SUs sensing
notifications. The coefficient vector is utilized in the soft decision rule at the
FC before making any global decision. The effectiveness of the proposed
scheme is compared for a variety of parameters with existing schemes through
simulation results. The results confirmed the supremacy of the proposed BOA
scheme in both the normal SUs’ environment and when lower and higher
SNRs information is carried by the different categories of MUs.

Keywords: Internet of Things; cognitive radio network; butterfly
optimization algorithm; particle swarm optimization; malicious users;
genetic algorithm

1 Introduction

Exponential growth in mobile devices and rising demand of data rates pose challenges to
mobile network operators [1]. The 5G broadband systems are anticipated to deliver huge con-
tents to the users over highly reliable wireless links. In addition to increased throughput, 5G
systems are expected to provide lower latency and outage probability, higher spectral efficiency,
and lower infrastructure deployment costs. The extensive use of cognitive radio (CR), software
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defines radio (SDR), and software defined networking are the main features that distinguish the
5G from previous mobile communication generations [2,3]. The fast technological development
in 5G mobile broadband, Internet of Things (IoT), Big Data, Cloud Computing and SDR, has
made those technologies one after another and created strong interdependence among one another.
IoT introduces a new era of pervasive computing and communication by empowering physical
objects to see, hear, think, and conversate to swap information for coordinate decisions [3-7].
Wireless communication technologies emerge as a cost-effective solution to provide essential inter-
connectivity between IoT enabled devices and accessibility to remote users [8]. Big data generated
by IoT devices will be largely computed and stored using Cloud which further requires high bit
rate and low latency offered by 5G for faster and cost-effective transmission of data [4,9]. Radio
frequency spectrum scarcity has emerged as one of the major challenges with the unprecedented
growth in the number of devices connected in the IoT [10].

The researchers argue that in IoT, along with the connectivity, the objects should have the
cognitive capability to learn and understand the environment by themselves. This entails the need
to develop a new paradigm, named cognitive Internet of Things (CIoT) to empower the current
IoT with Intelligence [5]. Similarly, the scarcity of the frequency spectrum in IoT paradigm is
another significant challenge. Introduction of cognitive radio network (CRN) and CR in IoT
enabled devices can improve the efficiency of the spectrum [11]. The integration of CR in IoT
networks, has shown considerably better performance in radio frequency spectrum control and
management to optimize the scare spectrum resources as compared to traditional communication
technologies. Furthermore, the studies suggest that the benefits of IoT without cognitive skills
such as CR and intelligence is unsound [£].

In the CRN, secondary users (SUs) perform spectrum sensing to dynamically access the
primary users’ (PUs) channel when the PU is not active [5,12]. The SU vacates the channel
when PU becomes active to avoid any interference to the PU. The wireless channel proper-
ties of the multipath fading and shadowing create ambiguities in the individual SU sensing.
Thus, to tackle these challenges, it is more appropriate to utilize cooperative spectrum sensing
(CSS) [13-15]. In the centralized CSS, a central base station, such as fusion center (FC) receives
sensing information from the SUs in the hard or soft modes for final decision about the pres-
ence or absence of PU [16,17]. The hard decision fusion (HDF) often employs logical AND,
logical OR, and majority voting schemes [18-20]. In the soft decision fusion (SDF) schemes,
such as maximum gain combining (MGC), equal gain combining (EGC), and Kullback-Leibler
(KL) divergence, SUs forward soft sensing reports to FC [21-24]. Influenced by certain motives,
malicious users (MUSs) intrude into the CSS networks. The security threats and protection of
CSS from the malicious users (MUs) are currently the major concern for researchers [25-27].
The work in [28-30] examined defensive mechanisms to reduce the presence of Byzantine attacks,
jamming attacks, and primary user emulation attackers (PUEA). In [20] and [31], authors focused
on the optimization of detection and false alarm probabilities of the SUs using particle swarm
optimization (PSO) and genetic algorithm (GA) for the centralized CSS.

Individual SUs in CSS, report from distinct geographical locations observe distinct Rayleigh
fading effects. Therefore, it is unfair to weight their sensing reports equally at the FC. Contrary
to above mentioned studies who dealt the normal and MUSs statistics in a similar manner, this
work allocates weights to the sensing data considering the reliability of SU by utilizing butterfly
optimization algorithm (BOA). The BOA is considered effective among the various optimiza-
tion classes to best estimate the PU activity. The BOA is a nature-inspired global optimization
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algorithm that was inspired by the behavior of butterflies to find food/mating partners using their
senses, sight, taste, and smell. The main contributions of this paper itemized as follows:

e A centralized CSS is inspected in the normal users and MUs environment when sensing
data is reposted to the FC. The working norms of the MUSs’ considered in the proposed
work is the yes always (YA), no always (NA), and opposite always (OA), and opposite
random (OR). The BOA governs the optimum weighting coefficient vector for the normal
SUs and various classes of MUs’ along with a dynamic (adaptive) threshold in contrast to
the static threshold adjustment schemes investigated in [20,23,28,31].

e The coefficient vectors determined by the proposed BOA-based SDF scheme are further
employed in the SDF scheme at the FC to get concluding remarks of the channel availabil-
ity. In this the received sensing reports of the normal and MUs are adjusted with the help
of the optimum coefficient vector and matched with the BOA identified optimum threshold.

e Simulation outcomes of the error probabilities are collected at multiple variations of: (1)
sensing samples; (2) population size of the optimization algorithms; (3) algorithm iterations;
(4) total number of cooperative SUs. The results validated the improvement in, sensing
response of the CSS with minimum sensing error, high detection, and low false alarms for
the proposed BOA-based SDF scheme in comparison with the MGC-SDF, PSO-SDF, and
GA-SDF schemes.

The rest of the paper is organized as follows. In Section 2, the system model of the paper is
presented. In Section 3, the BOA-based SDF scheme is elaborated. Section 4 evaluates the sug-
gested and conventional schemes through simulations. Finally, conclusion is furnished in Section 5.
Tab. 1 comprises of the acronyms used in the paper. Algorithm of the BOA-based SDF is shown
in Tabs. 2 and 3 shows the simulation parameters.

2 System Model and Background
2.1 System Model

The system model adopts a CSS consisting of a PU, normal SUs, MUs, and a common FC
as shown in Fig. 1. The objective in the model is to adopt an appropriate detection scheme that
resembles the actual PU conditions at the FC.

The local sensing users in Fig. | perform their sensing responsibility and report their findings
to the FC for final decision. The PU’s activity in the sensing channel is characterized with the
binary testing hypothesis at the individual SUs as

Hy: Xi[n]= Wiln] ,
{H1: Xi[n] = &S] + Wiln]” iel,....M,nel,... K, (1)
where X;[n] is the i user reported information to the FC in the n” sensing slot. S[#] is the PU
signal and W;[n] is the additive white gaussian noise (AWGN). g; is the channel gain between
PU and i SU. Similarly, M represent the total number of cooperative users and K is the total
number of sensing samples experience by users. The Hy hypothesis in Eq. (1) denotes no activity
of the PU in the given sensing channel, while H; hypothesis shows occupancy of the PU channel
by the licensee. The total sensing samples are K =2BTy, with T sensing period and B bandwidth.
S[n] is also assumed as an independent and identically distributed (i.i.d) random variable with

zero mean and variance o2, i.e., S[n]~ N (0,02). Likewise, W;[n] for the i user in Eq. (1) is also

assumed to have zero mean and variance oﬁl_, ie, Wiln]~N (0,0’1%[).



CMC, 2022, vol.71, no.1

Table 1: Summary of acronyms

Notation Explanation

IoT Internet of things

CloT Cognitive internet of things
SDR Software defined radio

CR Cognitive radio

CRN Cognitive radio network

PU, SU Primary user, secondary user
MU Malicious user

PUEA Primary user emulation attacker
CSS Cooperative spectrum sensing
FC Fusion center

HDF, SDF Hard decision fusion, soft decision fusion
MGC Maximum gain combination
EGC Equal gain combination

BOA Butterfly optimization algorithm
KL Kullback-leibler

PSO Particle swarm optimization
GA Genetic algorithm

YA, NA Yes always, no always

OA, OR Opposite always, opposite random
AWGN Additive white gaussian noise
SNR Signal-to-noise-ratio

Table 2: Algorithm of BOA-based SDF scheme

Forn=1 to Sensing Interval

Fori=1to M
Energy reported by the i”* SU as Z;
End

Initialize randomly weights W an N x M
Normalize weights w in W

Calculate (®,, Pp,) based on Z;

For s=1to N

Investigate threshold against the s vector as B (wy).
Determine Py (wy) based on B (wy) and wy

Estimate P, (wy)

End

Sort W in ascending order based on error probabilities.
The vector at the top of W is selected as the current best wg

For ¢t=1 to iteration
For s=1to N

(Continued)
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Table 2: Continued

373

Investigate threshold against the s vector as B (wy)
Determine Py (wy) based on B (wy) and wy
Determine P, (wg) based on B (wy) and wy
Estimate P, (wy)

Calculate the fragrance of each butterfly as f;
If (rand < P)

Perform the global search phase to measure w/t!
Else

Perform the local search phase to measure w'*!
End

End S

Find new wg as wg_yep

If P, (wg_new) < P, (wg)

We = Wge_new

Else

We = Wq

End

End iteration ¢

Select the optimal 8 and w with minimum P,
Fori=1to M

Z; =WwW; X Z,‘

End

If 30, (z) >~

Global Decision= H;

Else

Global Decision= H

End

End sensing interval

Table 3: Simulation parameters

Parameters Scenario-1 Scenario-2

Scenario-3

Scenario-4

Total users 10-22 14
Average SNRs —13.5dB —11.5 dB
Iterations 50 50-110
Sensing samples 270 270
Population 30 20

14

—11.5 dB
50

270
20-80

In Fig. 1, the YA MUSs’ reports higher energy values to the FC irrespective of the actual
PU channel occupancy [28]. The YA presence in the CSS drastically lessens data rate of the
normal SUs. On the other hand, the NA always reports low energy signals to the FC that creates
interference for the PUs’. The OA users persistently report signals to the FC that always negate
the PU activity, hence, their contribution results in reduce SUs data rate and increased interference
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for the PU. While the OR act as OA with probability (P) and as normal user with probability
(1-=P).

(9 . iy
A S m—— P Malicious user

x * « p» Normal users <(( )))) E- « p Malicious user center (MUC)
é + « pFusion center (FC) =P « « P Signal by normal user

«p + « pPrimary user signal = « « p Signal by malicious user

Figure 1: System model

The sensing energy conveyed to FC by the i SU in K sensing samples is as follows
K
Zi=Y Ui, )
n=1

where U;[n] = ,/PprihiX;[n]+ N;[n] is the i SU signal to the FC in the n™ time slot. Ppr; is the

i SU communication power. The channel gain between the FC and i" SU is h; with AWGN
N;[n] that has mean zero and variance o7, i.e., N;[n]~ N (0,07).

In the given CSS model, the FC takes its global decision by combining soft energy reports
with optimum weighting coefficient vector (w) such as

M
Z=Y wiZ, 3)
i=1

where w; is the assigned weight to the i user’s sensing report. As the sensing report of the i
user is assumed to be Gaussian distributed, hence their combined sensing statistics Z also follow
the Gaussian distribution nature as [20,32]
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M
E(Z|Hy) =Y wiKog,, (4)
i=1
M
E(Z|H))=)Y wiKo}, (5)
i=1
M 2
var(Z |Hy) = Y 2wiK (o—o%l. + 5,.2) =w!®p,w, (6)
i=1
M 2
Var(Z|H1)=Z2WfK(oﬁi+a&i> =wT(DH1w. (7

i=1

In the above the variances of U,[n] are 002J. and 012,1' in the Hy and H; hypotheses. (d) Hy> D H1)
are the covariance matrices with Hy and H;. 81-2 is the noise variance of the channel between i* SU
and FC. The 002, ; and ‘712,1' expressions are more clearly represented in [32] as O’OZJ- = Pp; \hil? av%,l.+8i2
and ‘712,1' = Prilgil |hil* o2 + G(ii’ respectively.

A model of the proposed CSS scheme retaining the weighted SDF to reduce the impacts of
abnormal sensing is shown in Fig. 2.

]
® g A Iy i

"’z

£

Z
H,[H,

. 2 Us[n] | B
((EJ/ @ & _’= n=I|U3[”]|‘ ’: | Z;:] W’.Z’. _>

Em [<3) I
ﬁ Iy Uy, l-"l L= I|U" [ﬂ]
A Vo]

Figure 2: Weighted CSS scheme

The selection of the optimal coefficient vector w = [wiw,---wps]? in Eqs. (4)—(7) is based on
the identification of a suitable threshold (8) that reduces the error probability to its lowest value.
The covariance matrices ((D Hy> D H1) for the reported data of Hy and H; is well enlightened as

Oy, =diag <2Ko*6tl-) , (8)

2
Oy, = diag (21< (PR,,- \gil? |hil> o2 + 0—5{1.) ) : )
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In these equations, the diagonalization practice is specified by diag (.). The detection and false
alarm probabilities at the FC are [26,32]

. _ (B—EZH)\ [ B=—w"ng
B _ (B—EZIH)\ [ B—w'n
Py=(Z>p|H)=Q <—’—var T ) =0 <——wT(DH1w) ; (11)

B—wlpg win, —B
Po=Pr+Pp=0| ———|+0| ———=]- (12)
WO, w VWl @ w

In Eq. (12), the false alarm (Pf) and misdetection probabilities (Py,) are anticipated as Py =
P,,. The false alarm and detection probabilities relation in the derivation of the error probability
(P.) 1s kept as Pr=1— P, that further leads to the formulation of optimal threshold as

VWO wplw+/wl © g wplw
JWIT 0w+ /Wl Ogw

In Eq. (12), it is evident that the error probability is exceptionally subject to the selection of
the weighting coefficient vector w and optimal threshold. Therefore, the selection of the optimal
threshold g is critical to compute high detection, low false alarm, and error probabilities. In the

proposed CSS scheme, the choice of w is such that 0 <w; <1 and ,/Zj‘il w? =1 to maintain the

search space and lower the computational complexity.

B (13)

2.2 Butterfly Optimization Algorithm

Nature-inspired optimization algorithms have got a high interest in various disciplines of engi-
neering, where real-world problems are expressed as optimization problems. These optimization
problems require enormous computational complexity that is difficult to solve using traditional
methods [33]. This motivation directs researchers to the use of optimization methods to pro-
duce better results with lower computational complexity. Most of the time, the nature-inspired
optimization algorithms can discover optimum solutions to the complex problems, however, the
optimum solutions are not always guaranteed. The two general procedures to optimize a function
are to either follow mathematical programming or metaheuristic methods [34]. Some of the
commonly used metaheuristic algorithms till now are PSO, GA, BOA, firefly algorithm, surrogate
optimization, tabu search, gravitational search, ant colony optimization, and many more [34,35].

In recent times, Arora introduced BOA as a promising metaheuristic algorithm, which is
inspired by the butterfly’s food searching movements. The studies demonstrate that the BOA
has superior results when compared with some other metaheuristic algorithms [36]. In the BOA,
butterflies perform optimization and work as search agents. The butterflies can smell or sense
the fragrance of the food and flower through their sense receptors also called chemoreceptors.
These chemoreceptors are scattered over the butterfly’s body parts such as antennae, palps, and
legs. A fragrance with intensity is generated when the butterflies change their residence. Further,
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the objective function decides the butterfly’s stimulus intensity. The fragrance of some intensity is
assumed to be generated by every butterfly that is sensed by all other butterflies in the territory.
This emitted fragrance is then correlated with butterfly fitness. Hence, the butterfly fitness varies
accordingly, whenever the butterfly tries to move from one position to the other in a search
space. A collective social data network is formed as the propagated fragrance is sensed by the
butterflies [33]. When a butterfly senses some high intense fragrance emitted by other butterfly that
will move towards the high intensity fragrance butterfly in the region. This phase of the BOA is
named as the global search phase. However, when the butterfly is not able to sense high-intensity
fragrance than its own, a random walk is performed and this is the local search phase of the
BOA [33,35].

The BOA’s main strength lies in its fragrance modulating mechanism. To know fragrance
modulation, it is first important to realize how any sense is processed by the stimulus of a living
organism. The sensing basic concepts are dependent on three vital parameters such as power
exponent (a), sensor modality (¢), and stimulus intensity (/). In this, the sensor modality is the
method through which energy is measured and processed at the sensors in BOA. Similarly, in BOA
it is the sensory modality that allows butterflies to sense and differentiate fragrances from each
other. In short, the natural performance of butterflies is built on two essential issues: modification
of stimulus intensity (/) and planning of fragrance magnitude (fs) [0].

3 Proposed BOA-Based SDF Scheme

This section illustrates the proposed BOA-based SDF scheme in the participation of the MUs
to discover the optimum coefficient vector and threshold adjustments. The FC resolves the global
decision by employing this weighted SDF approach to settle the PU channel detection based on
the SUs’ sensing data.

2

The proposed BOA-SDF scheme consists of the following steps, while sensing the PU
spectrum, such as (1) Initialization phase (2) Iteration phase (3) Final Phase [37].

3.1 Phase 1: Initialization Phase

The number of butterflies in the proposed work are fixed to N. The algorithm starts with the
random population of N butterflies with M dimension as

w11 w12 e WM
w21 w2 e WM T

W=]|. ) o =[wi w2 ... wn] . (14)
WN1 WN2 ... WNM

Similarly, the switching probability (P) is carefully tuned as 0.8, power exponent (a) as 0.01,
and sensor modality (¢) as 0.01 that produced precise sensing decision in the proposed work. The
stimulus intensity (/) in this scheme is similar to the fitness P, (w).

The suitability of the coefficient vectors is based on P, (w;), P, (W3),..., P, (wy). The current
best coefficient vector in the initial population with minimum error P, is selected as w, and the
consequent § is selected as the current best threshold. This concludes the initialization stage.

3.2 Phase 2: Iteration Phase

In the second phase of this algorithm, i.e., the iteration phase, algorithm gets several iterations
to grasp the desired objective. The butterflies in the given solution space try to move to a distinct
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position and their fitness values are measured. The algorithm first computes butterflies’ fitness on
different positions in the solution space. Then these butterflies cause fragrance as follows

fs=cx P, (wy)*, sel,...,N, (15)

where f; is the fragrance magnitude, i.e., how strongly the fragrance is perceived by other but-
terflies with ¢ as the sensory modality and P, (wg) as the stimulus intensity. ¢ in Eq. (15) is the
power exponent reliant on modality (fragrance in our case), that accounts for the varying degree
of captivation. For most of the cases in this work, ¢ and ¢ are in the range of 0 to 1.

Likewise, the local search phase is as follows
wé“:wé—k(rzxwll-—w,l{) X fy Jok,sel,...,N, (16)

where w} and wj_are the j™ and k™ butterflies from the solution space. If wi and w;_ belong to

the same swarm, then Eq. (16) becomes a local random walk.

3.3 Phase 3: Stopping Criteria

The BOA repeats step 2 if the fitness functions (i.e., minimum P,) are not accomplished or
the requisite number of iterations have not been utilized by the system.

A general flowchart of the proposed BOA-based SDF scheme is shown in Fig. 3 followed by
its algorithm in Tab. 2.

4 Numerical Evaluation and Discussions

In this section, we verify the performance of the proposed BOA-based SDF scheme in
contrast to some other conventional schemes. The number of SUs in the CRN are set to 10 and
14 in this portion of the simulations. Out of the total SU, 4 of them are assumed as YA, NA, OA,
and RO malicious. In the simulation, SNRs is kept at an average of —13.5 and —11.5 dB while
determining sensing error. The 1 ms sensing period is further divided into 270-335 sensing slots.
The SUs at different positions senses the PU channel separately. The opening BOA population has
total N butterflies with M dimensions. The algorithm attempts to search for an optimum sensing
solution in the 50 iterations. The fragrance function is selected from 1 to M.

The proposed scheme results are evaluated in simulations and compared with the conventional
PSO-SDF, GA-SDF, and MGC-SDF schemes. Furthermore, the results are distributed into 4
different scenarios as in Tab. 3 to indorse the proposed scheme reliability. Scenario 1 discusses the
error probability results collected at different number of SUs in the CSS with retained values of
the SNRs for the SUs, algorithm iterations, population size, and sensing samples. In a similar way
the error probability outcomes are shown for the increase in number of iterations in scenarios
2. Here the total number of SUs, SNRs, population size, and sensing samples parameters are
kept constant. In scenario 3, the changing sensing samples effects on the collection of error
probabilities are investigated, while keeping the SUs, SNRs, algorithm iterations, and population
size as constants. Finally, scenario 4 tests the effectiveness of the proposed scheme in terms of
the error probabilities estimated against the increasing algorithm population size.

4.1 Scenario 1

The graphical illustrations of scenario 1 are composed at the involvement of the normal NUs
environment, lower SNRs subsidized by MU’s in CSS, and higher SNRs sensing contribution from
MU’. The average SNR values in respect of all users are kept at —13.5 dB with 270 sensing
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samples in each iteration. The population is 30 with total SUs varying from 10 to 22 users. In
addition, the number of MUSs are 4 that report sensing data along with the normally behaving
users to the FC.

Radio Environment Sensing

Initialize the butterfly population randomly

Phase 1

Initialize switching probability (P), Power
exponent (), sensor modality (c)

Y
Fitness of the Butterflies-suitability of each co-
efficient vector-

Global best threshold and coefficient vector is
determined
The current best is identified

Determine the butterflies fragrance

f 5 No Update butterflies
= If{ random <Switching Probability) ——=——j» popula}tlon“solutlon
--. - ocally

Update butterflies population solution
globally

v

Search for the new current best and
threshold

T A T L. N JUPN St ST, Syl B Sy
|
|
|
|
I
|
|
|
I
|
|
|
|
|
I
|
|
l

Phase3 | <= f IF (Fitness Achieved) n"

Figure 3: A flowchart of the proposed BOA-based SDF scheme

In Fig. 4, results for different SDF schemes such as PSO-SDF, MGC-SDF, BOA-SDF, and
GA-SDF are presented. The result in Fig. 4 indicated that the BOA scheme is outperforming all
other schemes with minimum error probability as the number of users exceeds from 14 to 20.
The MGC-SDF shows poor sensing results with a higher error probability than all other schemes.
Similar, results are shown for cases in scenario 1 when MU’ participated in CSS of Figs. 5
and 6.
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Figure 4: Error probability vs. number of cooperative users at normal users
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Figure 6: Error probability vs. number of cooperative users at higher SNRs by malicious

In Fig. 5, the MU’s behavior is purposely selected such that it reports low SNRs information
in contrast with the normal behaving users. The proposed BOA-SDF is able to get the optimum
sensing results as the number of cooperative users is increased from 14 to 20 in contrast with
the other SDF schemes. Similarly, in Fig. 6 the results are collected from MUs’ and normal SUs
under the same parameter settings with the assumption of high SNRs information contributed by
the MUs’ to reduce the system performance. The BOA-SDF algorithm reduces the impact of these
MUs’ and resulted in minimum sensing error out of all SDF schemes. The MGC-SDF scheme in
this case performed poorly when MU’s participated in sensing.
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4.2 Scenario 2

In scenario 2, the simulation parameters are selected with 14 cooperative users, fixed average
SNRs at —11.5 dB, 20 population size and 270 sensing samples. The algorithm iterations in this
case are kept changing from 50 to 110. The results in Figs. 7-9 are obtained in this case when
only normal users, low SNRs assignment to the MU’, and high SNRs assignment to the MU’s.

Probability of Error (Pe)

50 60 70 80 90 100 110
Iterations

Figure 7: Error probability vs. algorithm iterations at normal users

o
v

Probability of Error (Pe)
o
I o
= o
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Figure 8: Error probability vs. algorithm iterations at lower SNRs by malicious
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Figure 9: Error probability vs. iterations at higher SNRs by malicious
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In Fig. 7, the results are drawn for PSO-SDF, MGC-SDF, BOA-SDF, and GA-SDF under
the participation of the normal users. Fig. 7 shows that the MGC-SDF results have poor sensing
performance by delivering high error probability followed by the GA-SDF, and PSO-SDF. The
proposed BOA-SDF scheme has achieved better sensing results with minimum sensing error. BOA-
SDF shows the best performance at iteration range by providing a minimum error probability of
0.13 at the iteration of 50 and that reduces to the lowest error probability of 0.04 as the number
of iterations exceed to 110, which is the minimum in all other SDF schemes.

In Fig. 8, the results of error probabilities against the increasing number of iterations are
investigated when high SNRs are assigned to the MU’s. In this part, the GA-SDF result in poor
sensing performance by giving maximum error probability, followed by the PSO-SDF with an
error probability of 0.25. Similarly, the MGC-SDF begins with an error probability of 0.2 and at
the end of 110 iterations its error probability reduces to 0.07. The proposed BOA-SDF indicates
the best performance when the number of iterations exceeds 75. The BOA-SDF scheme error
probability at the 75 iterations is 0.126 and further gets down to 0.02 at the 110-iteration level to
beat all other schemes.

In Fig. 9 the BOA-SDF scheme shows the best results at all algorithm iterations. It is visible

from the results in Fig. 9 that at 110 the error probability is 0.17 which is the minimum error
probability of all other SDF schemes.

4.3 Scenario 3

In this scenario, the error probability results are shown for the increasing number of sensing
samples varying in the range 270-335. Here the total number of the SUs are 14 with an average
SNRs as —11.5 dB. The algorithm population size is kept as 20 with total 50 iterations. All other
parameters are retained as identical to get the results in Figs. 1012,
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Figure 10: Error probability vs. sensing samples at normal users

In Fig. 10, the GA-SDF results are poor among all with maximum error probability while
sensing PU. MGC-SDF and PSO-SDF-based combination schemes also has minimum accuracy
in sensing as compared with the proposed BOA-SDF schemes. The starting error probability of
BOA-SDF is 0.17 at 270 sensing samples that further gets down as the number of samples is
increased. This improvement in terms of the error probability is noticeable at 335 sensing samples,
where the BOA-SDF scheme error probability reduces to 0.06 at 335 sensing samples.
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In Fig. 11, the proposed BOA-SDF scheme and PSO-SDF schemes have similar sensing
results in this case, while the MGC-SDF and GA-SDF schemes’ performance is poor. As the
sensing samples exceed 310, the proposed BOA-SDF dominate PSO-SDF results.
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Figure 11: Error probability vs. sensing samples at lower SNRs by malicious

In Fig. 12, BOA-SDF shows improved sensing results with minimum sensing error. At the
beginning of 270 sensing samples, BOA-SDF has a maximum error probability of 0.53. As
the sensing samples exceeds 310 outstanding results are achieved by the proposed scheme with
minimum sensing error of 0.23 at 335 samples in comparison with all others.
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Figure 12: Error probability vs. sensing samples at higher SNRs by malicious

4.4 Scenario 4

This scenario discusses the results of error probability against population size ranging from 20
to 80. The SDF scheme results are collected in this case to investigate the performance by keeping
the total number of cooperative users fixed at 14, average SNRs —11.5 dB, sensing iterations 50,
and fixed sensing samples as 270.

In Fig. 13, as the algorithm population increases error probability of the SDF schemes
reduces. The error probability of the MGC-SDF is the maximum of all i.e., 0.25 when the
population size is 20. As the population size approaches 80, MGC-SDF error probability reduces
to 0.14. The GA-SDF achieves accurate sensing performance with an error probability of 0.18
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in the beginning that reduces to 0.08 as the population is increased to 80. In this scenario, the
results of the PSO-SDF and the proposed BOA-SDF are closer until 75. The result shows that
as population size exceeds 75, BOA-SDF outcomes in a minimum sensing error of 0.01 at 80.
Whereas, the PSO-SDF has its error probability of 0.05 at a population size of 80.
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Figure 13: Error probability vs. algorithm population at normal users

The result in Fig. 14 shows that error probabilities of the proposed scheme reduce as the
population size exceeds 50. The proposed scheme has a minimum error probability of 0.04 among
all other schemes as the population size increases to 80.
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Figure 14: Error probability vs. algorithm population at lower SNRs by malicious

In Fig. 15 as high SNRs are assigned to the MUs, the MGC-SDF show reduced sensing
performance with high sensing error. The proposed BOA-SDF scheme has better sensing relia-
bility than the PSO-SDF, MGC-SDF, and GA-SDF schemes with error probabilities of 0.34 at
population 20 that further gets down to 0.24 as the population rises to 80.
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Figure 15: Error probability vs. algorithm population at higher SNRs by malicious

5 Conclusion

The integration of CR with the IoT is anticipated to expand the devices connectivity and
services in future. The CR increases spectrum utilization by getting accurate sensing information
through the SUs’ cooperation. Although CSS can sense the PU spectrum opportunities more
reliably, the deceitful sensing data stated by the MU’s in the CSS can essentially influence the FC
decision. This paper proposed a BOA-based SDF scheme to determine a coefficient vector against
SUs’, while making a global decision at the FC. The weighting coefficient vector in the proposed
BOA-SDF scheme support in the PU channel identification with high detection, minimum false
alarm and low error probabilities through the assignment of high weights to the normal SUs
sensing in comparison with the MUs.

The simulation results at different SUs, average SNRs, and sensing samples confirm that the
proposed BOA-based SDF essentially outperforms the traditional MGC-SDF, PSO-SDF and GA-
SDF schemes.

Funding Statement: This work was supported in part by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. 2016R1C1B1014069) and in
part by the National Research Foundation of Korea (NRF) funded by the Korea government
(MIST) (No. 2021R1A2C1013150).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

[11 T. Q. Duong and N. S. Vo, “Editorial: Wireless communication and network for 5G and beyond,”
Mobile Networks and Applications, vol. 24, no. 2, pp. 443-446, 2019.

[2] J. Ali and B. H. Roh, “An effective hierarchical control plane for software-defined networks leveraging
TOPSIS for end-to-end QoS class-mapping,” IEEE Access, vol. 8, pp. 88990-89006, 2020.

[3] R. Chavez-santiago, M. Szydelvo, A. Kliks, F. Foukalas, Y. Haddad ef al, “5G, the convergence of
wireless communication,” Wireless Personal Communication, vol. 83, no. 3, pp. 1617-1642, 2015.

[4] B.-S. P. Lin, F J. Lin and L.-P. Tung, “The role of 5G mobile broadband in the development of IoT,
big data, cloud and SDN,” Communication and Networks, vol. 8, no. 1, pp. 9-21, 2016.

[5] Q. Wu, G. Ding and Y. Xu, “Cognitive internet of things: A new paradigm beyond connection,” IEEE
Internet of Things Journal, vol. 1, no. 2, pp. 129-143, 2014.



386

(6]

[7]

(8]

]

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]
[19]

(20]

[21]

(22]

[23]

CMC, 2022, vol.71, no.1

J. Ali and B. H. Roh, “Quality of service improvement with optimal software-defined networking
controller and control plane clustering,” Computers Materials & Continua, vol. 67, no. 1, pp. 849-875,
2021.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aldhari and M. Ayyash, “Internet of things: A
survey on enabling technologies, protocols, and applications,” IEEE Communication Survey and Tutorial,
vol. 17, no. 4, pp. 2347-2376, 2015.

A. A. Khan, M. H. Rehmani and A. Rachedi, “When cognitive radio meets the internet of things?,” in
Proc. IEEE Int. Wireless Communications & Computing Conf. (IWCMC), Paphos, Cyprus, pp. 469-474,
2016.

W. Ejaz, A. Anpalagan, M. A. Imran, M. Jo, M. Naecem et al., “Internet of things (IoT) in 5G wireless
communication,” IEEE Access, vol. 4, pp. 10310-10314, 2016.

F. A. Awin, Y. M. Alginahi, E. A. Raheem and K. Tepe, “Technical issues on cognitive radio based
internet of things: A survey,” IEEE Access, vol. 7, pp. 97887-97908, 2019.

S. Chatterjee, R. Mukherjee, S. Ghosh, D. Gosh, S. Gosh et al, “Internet of things and cognitive
radio-issues and challenges,” in 2017 4th Int. Conf. on Opto-Electronics and Applied Optics ( Optronix),
Kolkata, India, pp. 1-4, 2017.

Y. Arjoune and N. Kaabouch, “A comprehensive survey on spectrum sensing in cognitive radio net-
works: Recent advances, new challenges, and future research direction,” Sensors, vol. 19, no. 1, pp. 126,
2019.

A. Ranjan, Anurag and B. Singh, “Design and analysis of spectrum sensing in cognitive radio based
on energy detection,” in Proc. IEEE Int. Conf. on Signal and Information Processing (IConSIP), Nanded,
India, pp. 1-5, 2016.

I. Ilyas, S. Paul, A. Rahman and R. K. Kundu, “Comparative evaluation of cyclo- stationary detection
based cognitive spectrum sensing,” in Proc. 2016 IEEE 7th Annual Ubiquitous Computing, Electronics &
Mobile Communication Conf. (UEMCON), New York, NY, USA, pp. 1-7, 2016.

I. F. Akilidz, B. F. Lo and R. Balakrishnan, “Cooperative spectrum sensing in cognitive radio networks:
A survey,” Physical Communication, vol. 4, no. 1, pp. 40-62, 2011.

D. Cabric, S. M. Mishra and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive
radios,” in Conf. Record of the Thirty-Eighth Asilomar Conf. on Signals, Systems and Computers, Pacific
Grove CA, USA, pp. 772-776, 2004.

N. Gul, M. S. Khan, J. Kim and S. M. Kim, “Robust spectrum sensing via double-sided neighbor
distance based on genetic algorithm in cognitive radio networks,” Mobile Information Systems, vol. 2020,
pp. 1-10, 2020.

D. Lee, “Adaptive random access for cooperative spectrum sensing in cognitive radio networks,” IEEE
Transactions on Wireless Communications, vol. 14, no. 2, pp. 831-840, 2015.

Y. He, J. Xue and T. Ratnarajah, “On the performance of cooperative spectrum sensing in random
cognitive radio networks,” IEEE Systems Journal, vol. 12, no. 1, pp. 881-892, 2016.

N. Gul, I. M. Qureshi, A. Elahi and I. Rasool, “Defense against malicious users in cooperative
spectrum sensing using genetic algorithm,” International Journal of Antennas and Propagation, vol. 2018,
pp. 1-11, 2018.

D. Hamza, S. Member, S. Aissa, S. Member and G. Aniba, “Equal gain combining for cooperative
spectrum sensing in cognitive radio networks,” IEEE Transactions on Wireless Communications, vol. 13,
no. 8, pp. 4334-4345, 2014.

R. Biswas, J. Wu and X. Du, “Mitigation of the spectrum sensing data falsifying attack in cognitive
radio networks,” in Proc. ICC, 2019 - 2019 IEEE Int. Conf. on Communications (ICC), Shanghai, China,
pp. 1-6, 2019.

N. Gul, I. M. Qureshi, A. Omar, A. Elahi and M. S. Khan, “History based forward and feedback
mechanism in cooperative spectrum sensing including malicious users in cognitive radio network,”
PLOS One, vol. 12, no. 8, pp. 0183387, 2017.



CMC, 2022, vol.71, no.1 387

[24]

N. Gul, I. M. Qureshi, S. Akbar, M. Kamran and I. Rasool, “One-to-many relationship based kullback
leibler divergence against malicious users in cooperative spectrum sensing,” Wireless Communications
and Mobile Computing, vol. 2018, no. 1, pp. 1-14, 2018.

M. Jenani, “Network security, a challenge,” International Journal of Advanced Networking and Applica-
tions, vol. 8, no. 5, pp. 120-123, 2017.

M. S. Khan, N. Gul, J. Kim, I. M. Qureshi and S. M. Kim, “A genetic algorithm-based soft decision
fusion scheme in cognitive [oT networks with malicious users,” Wireless Communications and Mobile
Computing, vol. 2020, no. 2, pp. 1-10, 2020.

I. S. Turbin, “Security threats in mobile cognitive radio networks,” in Proc. 2018 IEEE East- West Design
& Test Symposium (EWDTS), Russia, pp. 1-6, 2018.

N. Gul, I. M. Qureshi, A. Naveed, A. Elahi and I. Rasool, “Secured soft combination schemes against
malicious-users in cooperative spectrum sensing,” Wireless Personal Communication, vol. 2019, no. 108,
pp. 389-408, 2019.

H. A. B. Salmeh, S. Almajali, M. Ayyash and H. Elgala, “Spectrum assignment in cognitive radio
networks for internet of things delay sensitive applications under jamming attack,” IEEE Internet of
Things, vol. 5, no. 3, pp. 1904-1913, 2018.

Sh Lin, Ch Wen and W. A. Sethares, “Two-tier device based authentication protocol against PUEA
attacks for IoT applications,” IEEE Transaction on Signal and Information Processing over Networks, vol.
4, no. 1, pp. 3347, 2018.

N. Gul, M. S. Khan, S. M. Kim, M. St-Hilaire, I. Ullah et al, “Particle swarm optimization in the
presence of malicious users in cognitive IoT networks with data,” Scientific Programming, vol. 2020,
pp. 1-11, 2020.

M. Akbari, M. R. Manesh, A. A. Saleh and M. Ismail, “Improved soft fusion based cooperative
spectrum sensing using particle swarm optimization,” IEICE Electronics Express, vol. 9, no. 6, pp.
436-442, 2012.

S. Arora, S. Singh and K. Yetilmezsoy, “A modified butterfly optimization algorithm for mechanical
design optimization problems,” Journal of the Brazilian Society of Mechanical Sciences and Engineering,
vol. 40, no. 1, pp. 1-17, 2018.

S. A. Salem, “BOA: A novel optimization algorithm,” in Int. Conf. on Engineering and Technology, ICET,
2012 - Conf. Booklet”, Cairo, Egypt, pp. 1-5, 2012.

S. Arora and S. Singh, “Node localization in wireless sensor networks using butterfly optimization
algorithm,” Arabian Journal for Science and Engineering, vol. 42, no. 8, pp. 3325-3335, 2017.

S. Arora and S. Singh, “An improved butterfly optimization algorithm with chaos,” Journal of Intelligent
and Fuzzy Systems, vol. 32, no. 1, pp. 1079-1088, 2017.

Z. Quan, S. Cui and A. H. Sayed, “Optimal linear cooperation for spectrum sensing in cognitive radio
network,” IEEFE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 28-40, 2008.



