
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.022344

Article

Multi-Path Service Function Chaining for Mobile Surveillance of Animal
Husbandry

Xi Chen1,3, Tao Wu2,* and Mehtab Afzal4

1School of Computer Science and Engineering, Southwest Minzu University, Chengdu, 610041, China
2School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China

3School of Information and Communication Engineering, University of Electronic Science and Technology of China,
Chengdu, China

4Department of Computer Science and IT, The University of Lahore, Lahore, 54000, Pakistan
*Corresponding Author: Tao Wu. Email: wut@cuit.edu.cn
Received: 04 August 2021; Accepted: 07 September 2021

Abstract: Animal husbandry is the pillar industry in some ethnic areas of
China. However, the communication/networking infrastructure in these areas
is often underdeveloped, thus the difficulty in centralized management, and
challenges for the effective monitoring. Considering the dynamics of the field
monitoring environment, as well as the diversity and mobility of monitor-
ing targets, traditional WSN (Wireless Sensor Networks) or IoT (Internet
of Things) is difficult to meet the surveillance needs. Mobile surveillance
that features the collaboration of various functions (camera, sensing, image
recognition, etc.) deployed on mobile devices is desirable in a volatile wire-
less environment. This paper proposes the service function chaining for
mobile surveillance of animal husbandry, which orchestrates multi-pathmulti-
function (MPMF) chains to help mobile devices to collaborate in complex
surveillance tasks, provide backup chains in case the primary service function
chain fails due to mobility, signal strength, obstacle, etc., and make up for the
defects of difficult deployment of monitoring facilities in ethnic areas.MPMF
algorithmmodels bothmobile devices and various functions deployed on them
as abstract graph nodes, so that chains that are required to traverse various
functions and hosting mobile devices can be orchestrated in a single graph-
based query throughmodified and adaptedDijkstra-likealgorithms,with their
cost ordered automatically.Experiment results show that the proposedMPMF
algorithm finds multiple least-costly chains that traverse demanded functions
in a timely fashion on Raspberry Pi-equipped mobile devices.

Keywords: Service function chaining; orchestration; surveillance; shortest
path

1 Introduction

Animal husbandry is the pillar industry in some ethnic areas in China. Affected by cli-
mate, grazing and other factors, animal husbandry areas often face the problems of grassland

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.022344

1960 CMC, 2022, vol.71, no.1

degradation, destruction of plants, wandering away of herds, invasion of natural predators, rain
and snow disasters, etc., which result in remarkable economic losses. In order to effectively reduce
the losses caused by these problems, it is necessary to carry out continuous, long-term and
dynamic monitoring over vast gazing lands and wide-spread livestock. However, the communi-
cation/networking infrastructure in ethnic areas is often underdeveloped, thus the difficulty in
centralized management, and challenges for the effective monitoring.

At the same time, considering the complexity and dynamics of the field monitoring envi-
ronment, as well as the diversity and mobility of monitoring targets (such as mobile herds, lost
individuals, natural enemies, etc.), the requirements of mobility, collaboration and low power
consumption are put forward for monitoring devices. Therefore, simply introducing fixed-position
sensors/cameras to deploy traditional wireless sensor networks (WSN) [1,2] or Internet of things
(IoT) [3,4] is difficult to meet the mobility needs [5–8], so it is necessary to implement the mobile
surveillance over gazing lands and livestock in ethnic areas. On the one hand, it requires that the
wireless communication mechanism used by mobile monitoring devices should have good robust-
ness, and be able to adapt to bad communication conditions; On the other hand, considering the
limited computing power and functions on the devices in the mobile wireless environment, mobile
monitoring devices are also required to have the ability to cooperate with each other in more
complex surveillance tasks. To briefly summarize, orchestration of functionally diverse monitoring
devices plays a key role to fulfill mobile surveillance of animal husbandry, given underdeveloped
monitoring and communication infrastructure in ethnic areas. The mobile wireless environment
is quite volatile in that the established collaborative relationships (e.g., the hop-by-hop routing)
vary over time. Even though chains of mobile devices can be made by orchestration, they might
stop functioning or do not function as expected due to mobility, obstacles, signal strength, etc.
Therefore, orchestration of mobile devices in wireless environment should consider backup chains
in case the primary chain fails. Meanwhile, chains should also reflect the quality in addition to
functions, and better ones should be automatically selected as preferred chains.

In order to face these challenges, this paper proposes service function chaining [9,10] for
mobile surveillance of animal husbandry, which orchestrates multi-path multi-function chains to
help mobile devices to cooperate in complex surveillance tasks.

The rest of this paper is organized as follows. Section 2 introduces the mobile device archi-
tecture and functional wireless network topology in an orchestration view. Section 3 gives the
formal modeling of the mobile devices’ orchestration. Section 4 specifies the algorithm that solves
the MPMF problem. Experiments are conducted in Section 5. Related works are summarized in
Section 6. And finally, this paper is concluded and future works are envisioned in Section 7.

2 Mobile Device Architecture and Functional Wireless Network Topology

2.1 Mobile Device Architecture
In order to accomplish the service function chaining of various functions, a mobile device

is roughly divided into 3 layers as shown in Fig. 1, namely, from bottom up, HW (hardware)
layer, OS (operating system) layer, and orchestration layer, as we can see from Fig. 1. HW layer
is the mobile hardware platform. Drones, smart cars, etc., with Raspberry Pi can be chosen to
serve this purpose. HW layer provides mobility and various functions, e.g., camera, sensors, etc.
We choose smart cars as the hardware platform in this paper. OS layer provides the operating
system and basic software capabilities such as network, compute, and storage resources. In this
paper, Raspbian OS is chosen to accommodate software capabilities, since it is lightweight and

CMC, 2022, vol.71, no.1 1961

Linux-compatible. Orchestration layer provides two major functionalities, namely, the collector,
which collects information such as network topologies, various metrics that reflect performances
of mobile devices, etc., and the orchestrator, which accepts service function chaining request and
optimally chains demanded functions as per information gathered by the collector. Based on the
previous discussion, we give the formal definition of the mobile device in this paper.

Figure 1: The mobile device architecture

Definition 1. The mobile device: The mobile device is defined as vi = (Fi,Qi), where Fi =
{fi,1, fi,2, · · · , fi,||Fi||} represents functions deployed on the device (fi,j stands for the j-th function on
the i-th device), such as picture shooting, sensing, etc., and Qi = {qi,1,qi,2, · · · ,qi,||Qi||} represents
qualities of various metrics of the device (qi,j stands for the j-th metric’s quality on the i-th
device), such as bandwidth, delay, etc.

2.2 Functional View of the Wireless Network Topology
To orchestrate various functions deployed on mobile devices in a wireless network, one should

investigate the functional view of the wireless network topology. Usually, one device is deployed
with at least one function, such as photo-shooting, video surveillance, humidity sensing, etc., in
addition to data-forwarding, as we can see from Fig. 2. To model functional view compatible with
conventional topological view, functions can also be seen as nodes, which are directly connected
with the hosting mobile device that are abstracted as nodes themselves. That is to say, functions
are virtually one hop away from the hosting device, and are mutually connected through hosting
devices, forming a cluster-like structure around the mobile device. Meanwhile, in a decentralized ad
hoc wireless network, mutual links between mobile devices are rather temporary due to mobility,
obstacles, signal strength, etc. It is usually a multi-hop network from the source to the destination
device. Links are effective with devices staying within one another’s radio coverage, but ineffective
if outside, forming a mesh-like structure where one device could have multiple radio links with
others, and communicate with others hop-by-hop. To summarize, the functional view of the
mobile wireless network topology, when functions are treated as nodes like mobile devices, is a
mesh-cluster structure, which is multi-hop globally for data streams between mobile devices, and
single-hop locally for data streams between functions and the hosting device. For orchestration
between functions, especially between those deployed on different mobile devices, data streams
traverse in a function-device-function-device-function . . . interleaved manner, similar to service
function chaining in NFV-enabled environments. Therefore, the orchestration of various functions
can be modeled as service function chaining problem.

1962 CMC, 2022, vol.71, no.1

Figure 2: The functional view of the wireless network topology

For example, in Fig. 2, the blue dashed arrow indicates a service function chain that orches-
trates camera, temperature sensor, humidity sensor, and recognition as a “herd food analysis”
application, across multiple mobile devices, capable of, collectively, taking photos of and recog-
nizing grass species and conditions in the herd’s habitat with perceived temperature and humidity
status. Also, a surveillance → recognition → alarm chain can be built as a “natural enemies
driving” application that first monitors and recognizes natural enemies, then tries to proactively
drive them away with deployed alarming equipment.

Based on the previous discussion, we give the formal definition of the functional mobile
wireless network topology in this paper.

Definition 2. The functional mobile wireless network: The functional mobile wireless net-
work is defined as undirected graph G = (V ,F ,E), where V = {v1, v2, · · · , v||V ||} represents mobile

devices, F = ∪||V ||
i=1 Fi = {f1,1, · · · , fi,j, · · · , f||V ||,F ||V ||} represents all on-device functions, and E =

{e1, e2, · · · , e||E||} represents radio links, where ek can also be depicted as ei,j if vi and vj can
communicate directly, and functional links, where ek can also be depicted as ei,j if vi has fi,j
deployed on it.

Every radio link ei,j will be assigned with a cost according to 3.1. The cost for a functional
link is set to 0. According to the previous definition, mobile devices and functions are all equally
treated as nodes in an undirected graph, so that graph theories can be applied for service function
chaining to orchestrate function-device interleaved chains in a single graph query.

3 Problem Statement and Modeling

3.1 Cost Evaluation
Note that gathered metrics of a mobile device are usually a vector, including bandwidth, delay,

packet loss, etc. To simplify orchestration and reduce the problem dimensions, a vector of metrics

CMC, 2022, vol.71, no.1 1963

can be transformed as a scalar value (i.e., the “cost”), as per the properties of metrics. Let ci,j
denote the cost corresponding to qi,j, i.e., the j-th metric of mobile device vi. We consider the
following metrics and their transformation methods, so that they can be evaluated as additive
costs to apply Dijkstra-like algorithms for shortest paths-based service function chaining: (1) delay,
ci,j = qi,j; (2) bandwidth, ci,j = qbench

qi,j
, where qbench is the benchmark bandwidth similar to that in

OSPF; (3) packet loss, ci,j = log
(

1
1−qi,j

)
; (4) availability, ci,j = log

(
1
qi,j

)
. After transformation, every

mobile can be evaluated with a cost function using weighted summation: cost(vi)=
∑||Qi||

j=1 wj× ci,j,

where
∑||Qi||

j=1 wj = 1, which is then divided equally to be assigned to its effective physical radio

links, i.e., cost(ek)= cost(vi)
Ni

, where Ni is the number of radio links ek of mobile device vi, to apply

Dijkstra-based algorithms for service function chaining.

3.2 The Orchestration Model
Since mobile devices have limited computing capabilities and functionalities, to accomplish

complex surveillance tasks, it might require various functions to be orchestrated as a whole appli-
cation, so that devices collaborate smoothly. That is, a service function chain consists of multiple
functions. Considering the instability and volatility of the wireless network, service function chains
have higher probability of failure, thus the necessity of finding multiple chains. Meanwhile, chains
should also reflect the quality in addition to functions. Based on these intuitions, we model the
service function chaining of mobile devices as multi-path multi-function orchestration as follows.

Definition 3. The Multi-Path Multi-Function Orchestration (MPMF): Given an orchestration
request F ′ = 〈f ′1, f ′2, . . . , f ′||F ′||〉 where f ′i ∈ F , and a positive integer K, the MPMF orchestration finds

the set PK = {p1,p2, . . . ,pK} ⊆PF ′ , where PF ′ is the set containing all the chains from f ′1 to f ′||F ′ ||,
such that:

• segi = 〈f ′i , v′1, v′2, . . . , v′j, . . . , f ′i+1〉, v′j ∈V , f ′i ∈ F , i.e., two consecutive functions are chained by

one or more hosting mobile devices.
• pk = 〈seg1, seg2, . . . , segf ′||F ′|| 〉, ∀k ∈ {1, 2, . . . ,K}, i.e., a chain must traverse all the functions in

the order demanded by F ′.
• ∀i, j ∈ {1, 2, . . . ,K}, pi
= pj, i.e., no duplicated chain.
• ∀k ∈ {1, 2, . . . ,K − 1}, cost(pk) ≤ cost(pk+1), i.e., pk is found before pk+1 (shorter chains are
found earlier).

• ∀p ∈PF ′ −PK , cost(pK)≤ cost(p), i.e., only the K least-costly chains are to be found.

4 The Orchestration Algorithm

Intuitively, to solve the MPMF problem is to enumerate all sub-paths segi ordered by cost
between two consecutive functions f ′i and f ′i+1, and concatenate them to pick the K least-costly
chains as per the order of orchestration request F ′. This is feasible for simpler topologies, but not
for more complex topologies with even just tens of mobile devices and a couple of functions per
device, since the complexity increases exponentially. Specifically, two major challenges are faced
as per the requirements of MPMF. Challenge 1: plain Dijkstra algorithm does not find multiple
shortest paths. Besides, the concatenation of sub-paths should also be carefully designed to reduce
the problem complexity, other than pure enumeration that could be time-consuming for larger
networks. Challenge 2: Dijkstra-like algorithms do not restrain the traversed nodes (i.e., functions

1964 CMC, 2022, vol.71, no.1

in the case of MPMF), thus not applicable for service function chaining. To this end, we combine
and improve Dijkstra and KSP (K Shortest Paths) algorithms to solve MPMF problem that
requires the K least-costly chains and traversing all demanded functions.

4.1 The Multi-Path Aspect
We firstly cope with challenge 1, i.e., multi-path aspect. Tabs. 1 and 2 show in detail the

adapted and modified KSP algorithm, where dsp(vs,vt) calculates the shortest path from the source
node vs to the destination node vt using Dijkstra algorithm. The routine nextPath(vs,vt) finds the
next shortest path between vs and vt using deviation method (see details in Tab. 2). restoreGraph()
is used to set the graph back to its initial linkage states after temporary deletion of arcs. PK is
the ordered set that stores the K shortest chains. PC is the set that stores the shortest chains
candidates. Detailed explanations are shown in the comments in Tabs. 1 and 2.

Table 1: KSP(vs, vt, K) algorithm

Input: vs: the source node
vt: the destination node
K: the number of shortest paths

Output: PK: the K shortest paths set
1 PK =∅; //PK: shortest paths set.
2 PC =∅; //PC: shortest path candidates set
3 p1 = dsp(vs, vt); //find the shortest path using Dijkstra algorithm
4 if p1 ==NULL then
5 return PK ; //no connectivity from source to target
6 end if
7 PK =PK ∪ {p1};
8 while ||PK ||<K do
9 curSPath = nextPath(vs, vt); //see Tab. 2 to find next shortest
10 if curSPath==NULL then
11 break; //no more shortest path, break
12 end if
13 end while
14 return PK;

CMC, 2022, vol.71, no.1 1965

Table 2: nextPath(vs, vt) routine

Input: vs: the source node
vt: the target node

Output: curSPath: the current shortest path
1 prevSPath = max(PK); //shortest path found in the last iteration
2 for i= 1; i≤ prevSPath.length; i++ do
3 root = subprevSPath(1, i) //get root for every node
4 for each path from PK do
5 rootpath = subpath(1, i);
6 if root= rootpath then
7 ci,i+1 =∞; //determine the furthest node as deviation
8 end if
9 spur = dsp(vi, vt); //get spur from deviation node
10 restoreGraph(); //restore the linkage for deviation nodes
11 if spur=NULL then
12 return NULL; //no more valid spur, return NULL
13 end if
14 if root∩ spur=∅ then
15 cPath = root+spur; //construct a loopless candidate
16 PC =PC ∪ {cPath};
17 end if
18 end for
19 end for
20 curSPath=min(PC); // shortest from PC is the current shortest
21 if curSPath!=NULL then
22 PC =PC− {curSPath}
23 PK =PK∪ {curSPath};
24 end if
25 return curSPath;

4.2 The Multi-Function Aspect
We then cope with challenge 2, i.e., multi-function aspect. The MFMP algorithm is shown

in Tab. 3. It takes as the input the functions required by the service function chaining request F ′
which must be traversed. To get the least costly chain that traverses all the demanded functions,
the algorithm gets the shortest path for every f ′i and f ′i+1 function pair along the request F ′. These
are the shortest segments that constitute the shortest path and are put into the set, PKi i.e., the
shortest segments between f ′i and f ′i+1 in the chain. Also, the second shortest segments from f ′i to
f ′i+1 are calculated for later iterations. The above is the initialization of the algorithm, shown in
lines 3–7.

1966 CMC, 2022, vol.71, no.1

Table 3: MFMP(K, F ′) algorithm

Input: K: the number of shortest paths
F ′: functions that must be traversed, i.e., service chaining request

Output: PK : the K shortest paths set
1 PK =∅; //PK : shortest paths set.
2 PC =∅; //PC: shortest path candidates set
3 for i= 1; (i+ 1)≤ chain.length; i++ do
4 sPart= dsp(f ′i ,f

′
i+1) → PKi ;

5 p1 += sPart;
6 nextPath(f ′i ,f

′
i+1) →PKi

7 end for
8 if p1 ==NULL then
9 return PK ; //no connectivity from source to target
10 end if
11 PK =PK ∪{p1};
12 while ||PK ||<K do
13 for i= 1; (i+ 1)≤ chain.length; i++ do
14 concatNewPaths(PKi) →PC ;
15 let I be index of: min(PKi .getLast());
16 end for
17 curPath= min(PC) →PK ;
18 nextPath(f ′I ,f

′
I) →PKI ;

19 end while
20 return PK ;

Concatenating all the new segments in PKi , P
K
i+1, · · ·, generates a new batch of feasible paths

from f ′1 to f ′||F ′|| which are put into PC . The shortest one from PC is the next shortest path (shown

in lines 14 and 17). The next problem is to determine from which node to generate the next
segment so that the next batch paths can be found. Since the algorithm invokes nextPath() routine,
it is guaranteed the last one in PKi is the longest of currently found shortest segments from f ′i to

f ′i+1. All the PKi .getLast() are compared to pick the shortest segment, then the corresponding vi
is the node to derive new segments, i.e., the deviation node (shown in lines 15 and 18). In this
way, the algorithm does not have to derive new segments from every node in the next iteration;
it only derives new segment from deviation node, thus time complexity is minimized. The above
is the main loop of the algorithm, shown in lines 12–19.

5 Experiments

We conduct service function chaining in a wireless network consists of tens mobile devices,
each with 5 functions (commonly seen functions in animal husbandry, e.g., surveillance, sensing,
etc.), implemented on the smart cars with Raspberry Pi and Raspbian OS. These mobile devices
were networked through the methods proposed in our previous work [11]. The orchestrator, i.e.,
the MPMF algorithm, and the collector are implemented in its orchestration layer (see Fig. 3).

CMC, 2022, vol.71, no.1 1967

Figure 3: The prototype based on Raspberry Pi and Raspbian OS

Several counterparts capable of service function chaining with necessary modifications,
CPSPARQL [12–14] and Virtuoso (discussion on them can be found in Section 6), are compared
with MPMF. The experiments are conducted in two wireless networks, containing 10 and 20
mobile devices respectively, and the results are shown in Figs. 4a and 4b, where the suffix “-x”
in the legends indicates the number of functions in a service function chaining request, i.e., how
many functions to be traversed by a chain. All counterparts are evaluated by chaining time in
ms (the y-axis) when finding K different chains (the x-axis). MPMF conducts chaining by means
of deviation method. That is, based on the current shortest path, the most appropriate node is
selected, from which there derives a new shortest path that traverse all the required functions,
instead of enumerating all the possible paths. In this way, the K least-costly paths are found and
ordered one by one without enumeration. This, at large, saves chaining time. As we can see from
the figure, MPMF scales almost linear to the number of functions demanded by the request and
the number of chains to be found. And its performance is time-efficient. For the scenario of 10
mobile devices, it takes about 200 ms for MFMP to find 5 chains that traverse 6 functions, among
which the shortest one is used as the primary chain and others stand by as backups in case of
any failure or malfunction of the primary one. It takes about 475 ms to accomplish the same task
for the 20 mobile devices. See orange lines in Figs. 4a and 4b.

CPSPARQL takes similar philosophy to our work, to compose service function chains, though
different in techniques. That is, CPSPARQL finds and orders the K least-costly chains gradually.
Notice that the performance of CPSPARQL is less-efficient with regard to time consumed. One
major reason for this is that CPSPARQL uses more redundant data structures of RDF (Resource

1968 CMC, 2022, vol.71, no.1

Description Framework) triples because the primary usage of CPSPARQL is in the field of
Semantic Web, where, usually, data are stored as half-structured triples. Triples take the form of
three ordered entities, i.e., [subject → predicate → object], where edge-similar predicates are also
modelled as nodes, increasing the size of abstract graph. Expressive enough for triples though,
to express a simple relationship using triples, it adds more nodes and edges in the abstract
graph, which as a result lowers the performance with regard to time complexity, especially when
applied in the orchestration of more complex wireless networks. Therefore, RDF triples might be
heavyweight in this scenario. It takes about 354 ms for CPSPARQL to find five 6-function chains
in the scenario of 10 mobile devices, and 980 ms in the scenario of 20 mobile devices. See purple
lines in Fig. 4a and 4b.

Figure 4: The experiment results (a) a wireless network with 10 mobile devices (b) a wireless
network with 20 mobile devices

Virtuoso is also a high-efficient Semantic Web query engine that provides good performance to
search useful information in RDF triples. Virtuoso takes a different technical path that enumerates
all possible chains that traverse all required functions, and order them in one shot. This is feasible
when the network size is small. We can see from Fig. 4a that, Virtuoso, with good optimization
of implementation, even outperforms MPMF and CPSPARQL in the scenario of 10 mobile
devices, although seemingly time-consuming enumeration strategy is taken. That is, it takes only
about 150 ms to find five 6-function chains, superior to MPMF and CPSAPRQL. One thing
worth noticing is that Virtuoso provides the same temporal performance for different K (i.e.,
the number of service function chains) because it enumerates all chains. That is, K is irrelative
for Virtuoso. However, in the scenario of 20 mobile devices, the performance of enumeration
degrades considerably. To accomplish the same task, it takes about 1385 ms. See green lines in
Figs. 4a and 4b.

To summarize, MPMF provides good performance for service function chaining that orches-
trates various functions deployed on mobile devices. Therefore, this algorithm is a fitting candidate
for the potential usage in the mobile surveillance of animal husbandry in ethnic areas.

CMC, 2022, vol.71, no.1 1969

6 Related Works

Service function chaining is an active research area in recent years. Reference [15] proposes
the low-latency and resource-efficient service function chaining orchestration in network function
virtualization (NFV) [16]. However, it does not suit well in the context of wireless orchestration,
nor does it find multiple chains to as backups in case the primary one fails in a volatile envi-
ronment. StEEIRNG [17] tries to arrange a path traversing specific middleboxes by extending
the OpenFlow and NOX controller, suitable for service function chaining in the context of SDN
(Software-Defined Networking) [18,19]. The key of the extension is the split of a monolithic
flow table into several micro tables to constrain the “rule explosion”. StEEIRNG solve the path
planning problem using Graph Theory. The main deficiency of StEEIRNG is the lack of QoS
support. It conducts the chaining mainly based on middleboxes functions. SlickFlow [20] focuses
on the source routing (similar to service function chaining) based fault recovery. The fault recovery
application on the controller pushes the path information as special headers on the ingress
switches. The path consists of several segments where next hop and the alternative path from that
hop are contained in each segment. Upon network failure at a certain node, alternative path is
adopted proactively by the current node to reduce controller intervention. Reference [21] considers
the service function chain orchestration in a network slice across multiple domains. Reference [22]
also considers a similar energy-efficient and traffic-aware service function chaining orchestration
in multi-domain networks, which is formulated as an integer linear programming (ILP) model to
find an optimal solution. A low-complexity heuristic algorithm is derived to chain VNFs across
multiple domains.

We can see that recent works in service function chaining mainly focus on the wired network
scenarios, as opposed to wireless networks. Therefore, these works do not fit well in the context
of wireless orchestration with node mobility that increases the instability and volatility. Our work
differs from these works in that we consider multiple backup chains in case of chain failure due
to various factors in wireless networks.

CPSPARQL and Virtuoso, although they originate from the Semantic Web field, can be
applied for chaining purposes with necessary modifications and adaptations. Nevertheless, their
performances are not as good as expected in mobile device orchestration, due to their RDF-
based data structures (i.e., triple-like) contains redundant nodes and edges that compromise the
performance in case of more complex networks.

7 Conclusion

To implement mobile surveillance for animal husbandry in ethic areas of China, where
communication or networking infrastructure is less-developed, this paper proposes the multi-path
service function chaining, which orchestrates multiple chains with the least costly one as the
primary chain and several others as backups, to accommodate wireless volatility and instability.
The proposed MPMF algorithm performs well in the orchestration in wireless networks with tens
of mobile devices.

In this paper, the quality of chains is evaluated by a scalar, i.e., the cost. It can be understood
as a “best effort” service, since no quality constraints are imposed [23], i.e., no restriction on
delay, bandwidth, packet loss, etc. If multiple constraints in addition to quality preference are put
forward for service function chaining, the complexity becomes high. We will study the possibility
of applying reinforcement learning in the field of wireless service function chaining in the future

1970 CMC, 2022, vol.71, no.1

work, to provide an efficient and topology-adaptive service function chaining framework with self-
learning capabilities.

Acknowledgement: The authors would like to thank the time and efforts by the editors and
reviewers.

Funding Statement: This research was partially supported by the National Key Research and
Development Program of China (2018YFC1507005), China Postdoctoral Science Foundation
(2018M643448), Sichuan Science and Technology Program (2020YFG0189), and Fundamental
Research Funds for the Central Universities, Southwest Minzu University (2020NQN18).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] F. Xiao, W. Liu, Z. Li, L. Chen and R. Wang, “Noise-tolerant wireless sensor networks localization

via multinorms regularized matrix completion,” IEEE Transactions on Vehicular Technology, vol. 67, no.
3, pp. 2409–2419, 2018.

[2] A. Shahraki, A. Taherkordi, Ø. Haugen and F. Eliassen, “A survey and future directions on clustering:
From WSNs to IoT and modern networking paradigms,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 2242–2274, 2021.

[3] Z. Li, B. Chang, S. Wang, A. Liu, F. Zeng et al., “Dynamic compressive wide-band spectrum sensing
based on channel energy reconstruction in cognitive internet of things,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 6, pp. 2598–2607, 2018.

[4] R. Lohiya and A. Thakkar, “Application domains, evaluation data sets, and research challenges of
IoT: A systematic review,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 8774–8798, 2021.

[5] H. Zhu, D. Gao and S. Zhang, “A perceptron algorithm for forest fire prediction based on wireless
sensor networks,” Journal on Internet of Things, vol. 1, no. 1, pp. 25–31, 2019.

[6] D. Corral-Plaza, J. Boubeta-Puig, G. Ortiz and A. Garcia-de-Prado, “An internet of things platform
for air station remote sensing and smart monitoring,” Computer Systems Science and Engineering, vol.
35, no. 1, pp. 5–12, 2020.

[7] S. Jha, L. Nkenyereye, G. P. Joshi and E. Yang, “Mitigating and monitoring smart city using internet
of things,” Computers, Materials & Continua, vol. 65, no. 2, pp. 1059–1079, 2020.

[8] W. He, S. Guo, Y. Liang, R. Ma, X. Qiu et al., “Qos-aware and resource-efficient dynamic slicing
mechanism for internet of things,” Computers, Materials & Continua, vol. 61, no. 3, pp. 1345–1364,
2019.

[9] Z. Ye, X. Cao, J. Wang, H. Yu and C. Qiao, “Joint topology design and mapping of service function
chains for efficient, scalable, and reliable network functions virtualization,” IEEE Network, vol. 30, no.
3, pp. 81–87, 2016.

[10] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci et al., “Service function chaining in
next generation networks: State of the art and research challenges,” IEEE Communications Magazine,
vol. 55, no. 2, pp. 216–223, 2017.

[11] X. Chen, T. Wu, G. Sun and H. Yu, “Software-defined MANET swarm for mobile monitoring in
hydropower plants,” IEEE Access, vol. 7, no. 1, pp. 152243–152257, 2019.

[12] F. Alkhateeb, J.-F. Baget and J. Euzenat, “Extending SPARQL with regular expression patterns (for
querying RDF),” Web Semantics, vol. 7, no. 1, pp. 57–73, 2009.

[13] F. Alkhateeb and J. Euzenat, “Constrained regular expressions for answering RDF-path queries modulo
RDFS,” International Journal of Web Information Systems, vol. 10, no. 1, pp. 24–50, 2014.

[14] F. Alkhateeb, J.-F. Baget and J. Euzenat, “Constrained regular expressions in SPARQL,” in Proc. Int.
Conf. on Semantic Web and Web Services (SWWS), Las Vegas, Nevada, USA, pp. 91–99, 2008.

CMC, 2022, vol.71, no.1 1971

[15] G. Sun, Z. Xu, H. Yu, X. Chen, V. Chang et al., “Low-latency and resource-efficient service function
chaining orchestration in network function virtualization,” IEEE Internet of Things Journal, vol. 7, no.
7, pp. 5760–5772, 2020.

[16] A. Alsarhan, A. Itradat, A. Y. Al-Dubai, A. Y. Zomaya and G. Min, “Adaptive resource allocation and
provisioning in multi-service cloud environments,” IEEE Transactions on Parallel andDistributed Systems,
vol. 29, no. 1, pp. 31–42, 2018.

[17] Y. Zhang, N. Beheshti, L. Beliveau and G. Lefebvre, “StEERING: A software-defined networking for
inline service chaining,” in Proc. IEEE Int. Conf. on Network Protocols, Göttingen, Germany, pp. 1–10,
2013.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson et al., “Openflow: Enabling
innovation in campus networks,” SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–
74, 2008.

[19] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky et al., “Software-defined
networking: A comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[20] R. M. Ramos, M. Martinello and C. E. Rothenberg, “Slickflow: Resilient source routing in data center
networks unlocked by openFlow,” in Proc. IEEE Conf. on Local Computer Networks (LCN), Sydney,
Australia, pp. 606–613, 2013.

[21] G. Sun, Y. Li, D. Liao and V. Chang, “Service function chain orchestration across multiple domains:
A full mesh aggregation approach,” IEEE Transactions on Network and Service Management, vol. 15, no.
3, pp. 1175–1191, 2018.

[22] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du et al., “Energy-efficient and traffic-aware service function
chaining orchestration in multi-domain networks,” Future Generation Computer Systems, vol. 91, no. 1,
pp. 347–360, 2019.

[23] S. Long, W. Long, Z. Li, K. Li, Y. Xia et al., “A game-based approach for cost-aware task assignment
with QoS constraint in collaborative edge and cloud environments,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1629–1640, 2021.

