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Abstract: In this study, single-channel photoplethysmography (PPG) signals
were used to estimate the heart rate (HR), diastolic blood pressure (DBP),
and systolic blood pressure (SBP). A deep learning model was proposed using
a long-term recurrent convolutional network (LRCN) modified from a deep
learning algorithm, the convolutional neural network model of the modified
inception deep learning module, and a long short-term memory network
(LSTM) to improve the model’s accuracy of BP and HR measurements. The
PPG data of 1,551 patients were obtained from the University of California
Irvine Machine Learning Repository. How to design a filter of PPG signals
and how to choose the loss functions for deep learning model were also
discussed in the study. Finally, the stability of the proposed model was
tested using a 10-fold cross-validation, with an MAE ± SD of 2.942 ± 5.076
mmHg for SBP, 1.747 ± 3.042 mmHg for DBP, and 1.137 ± 2.463 bpm for
the HR. Compared with its existing counterparts, the model entailed less
computational load and was more accurate in estimating SBP, DBP, and HR.
These results established the validity of the model.

Keywords: Photoplethysmography (PPG) signal; deep learning; blood
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1 Introduction

Cardiovascular diseases (CVDs) are one of the world’s leading causes of death. Common
CVDs include heart disease, cerebrovascular disease, hypertension, nephritis, nephrotic syndrome,
and nephropathy. One effective way to prevent CVDs is measuring blood pressure (BP) regularly.
BP is typically measured using a mercury sphygmomanometer, electronic sphygmomanometer and
electrocardiography [1]. Mercury sphygmomanometers are highly accurate but not straightforward
to use [2]. Electronic sphygmomanometers and electrocardiography are more convenient but have
numerous usage limits. Both mercury and electronic sphygmomanometers are discontinuous, cuff-
based methods for measuring BP. Electrocardiography requires a number of electrodes to be attached
to the body, which is an inconvenience when it comes to measuring BP continuously [3–5].
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Photoplethysmography (PPG), which absorbs light energy through a photodetector, can be used to
monitor a patient’s pulse rate. Composed of a light-emitting diode (LED), photodiode, and amplifier,
it is a low-cost optical method that can be used to detect changes in the blood volume of the capillary
beds of body tissues, because the induced voltage of the photodetector changes along with the per-
unit-area volume of blood flow in the vessels, which varies as the heart pulses. The detector absorbs
the most light when the heart contracts; therefore, the volume of blood entering and exiting tissues is
linked with the amplitude of the PPG signal. The PPG waveform consists of direct-current (DC) and
alternating-current (AC) components, with the former corresponding to the transmitted or reflected
light signal detected in tissues and depending on the tissue structures and the blood volume in veins,
and the latter changing with breathing, representing how blood volume varies with breathing between
the systolic and diastolic phases of the cardiac cycle, and having its signal superimposed on the DC
signal. PPG was first used in clinical settings in 1937, when Hertzman and Spielman proposed its use
as a device that utilized lightwaves to measure changes in the volume of blood flowing through the
patient’s fingers, with the measurement results applied in future research [6].

In recent years, deep learning has been applied to solve medical problems, particularly in terms of
PPG-based BP measurement, which eliminates the need to extract features manually. In particular, a
PPG spectrogram can be input into an artificial neural network (ANN), so that the ANN is trained
to estimate PPG features and determine BP values accordingly. The researchers used deep recurrent
neural networks (RNNs) to learn the long- and short-term features from patients’ PPG data [7,8]. The
scholars used a Siamese neural network that obtained near-actual BP values taking into account PPG
signals [9]. The authors proposed “PP-Net,” a deep learning model that estimates systolic pressure,
diastolic pressure, and the heart rate and is built around a convolutional neural network (CNN) and a
long short-term memory (LSTM) network [10]. All of these researchers have tested their proposed
methods on small groups of healthy subjects. Thus, the testing of deep learning methods for BP
estimation among different groups of patients with CVD complications is critical and essential for
facilitating the clinical application of these methods, particularly when it comes to monitoring the
heart condition and the risk of stroke in critically ill patients postoperatively. Several researchers have
discussed the relationship between BP and PPG in the context of cuff-less estimation [11–15]. However,
many of them have used machine learning algorithms and manually extracted features before BP
estimation—a job that is complicated and entails considerable calculation. Compared with traditional
machine learning methods for BP measurement, deep learning models can learn high-dimensional
features and are highly capable of modeling complex, nonlinear systems. Moreover, deep learning
algorithms eliminate the need to acquire features manually and are thus a primary tool in a number
of biomedical applications [16–21].

Loss functions can be estimated using the mean absolute error, which originates from the mean
error and represents the square form of the mean square error (MSE) [22]. The researchers presented
a theoretical analysis of an upper bound on a generalized loss of MAE for deep neural network
(DNN)-based vector-to-vector regression [23]. The authors used the Huber function to perform robust
estimation in electrical power engineering [24]. The researchers discussed the effectiveness of the
MAE and observed how the error varied when they trained a deep learning model to predict energy
load [25]. The scholars studied the distributional loss for regression from the perspective of effective
optimization, examining the MAE and MSE [26]. The authors applied MAE and MSE loss functions
in a generative adversarial network [27]. The researchers studied the role of the MAE loss function in
DNN-based vector-to-vector regression; they showed that optimizing the regression with the MAE
loss function achieved less loss than with the MSE equivalent, thus leading to higher accuracy during
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model training [28]. Given the cited works, one can conclude that using a good loss function can
effectively improve the performance of a deep-learning neural network.

In the present study, a deep learning framework was developed using a PPG sensor built on
a modified long-term recurrent convolutional network (LRCN) that consisted of a CNN and an
LSTM network [16]. The proposed CNN–LSTM framework—which leveraged the strengths of both
neural networks and the feature extraction capability of the inception module—functioned as a high-
performance model. The novelty of this design resides in a deep learning framework that features
a customized model and a multi-output capability to estimate the diastolic blood pressure (DBP),
systolic blood pressure (SBP), and the heart rate (HR) simultaneously. Such a framework has been
successfully tested with the cuff-less blood pressure estimation dataset, which consists of monitoring
data for ICU patients with different CVD complications [29]. After using the framework to examine
the data derived from 1,551 patients, we obtained a normalized mean absolute error (NMAE) of
0.0121, normalized root mean square error of 0.0227, and correlation coefficient of 0.97. The deep
learning model can also be used to determine DBP, SBP, and the HR, which justifies its role in
examining physiological information by using the time-series data collected via PPG, and its robustness
is confirmed by its ability to perform calculations. All of these suggest that the model can be applied
in the comprehensive medical monitoring of patients with diabetes or stroke, elderly patients, and
patients who have undergone surgery. In addition, the model’s effectiveness in estimating BP and HR
was validated through a comparison with the existing estimation methods. The rest of this paper is
organized as follows. Section 2 describes the proposed method. Section 3 provides an analysis of the
results. Section 4 presents the conclusions.

2 Method

Considering the strengths of PPG and the gaps in the existing literature, we propose a high-
performance deep learning framework with a multi-output capability to estimate DBP, SBP, and HR.
This framework was studied using the cuff-less blood pressure estimation dataset from the University
of California Irvine (UCI) Machine Learning Repository. This dataset was derived from the open-
access Medical Information Mark for Intensive Care II (MIMIC-II), which can be obtained from
the PhysioNet repository and consists of different categories of medical information relating to ICU
patients, which include physiological signals and parameters [30]. The PPG and arterial blood pressure
(ABP) records of 12,000 patients were sampled from the UCI Machine Learning Repository at a
frequency of 125 Hz. The training and test values for SBP and DBP were acquired using the method
proposed in [31]; the method involves extracting the crests and troughs of ABP signals. Moreover,
the number of complete waveforms was estimated to determine the HR, because a full HR reading
includes the SBP and DBP values. The proposed deep learning framework was used in a PPG sensor
to estimate SBP, DBP, and HR simultaneously, thereby ensuring its use in comprehensive medical
monitoring.

2.1 Stage 1: Preprocessing

Preprocessing was performed according to reference [19]. In particular, PPG data with a recording
duration of < 8 min were removed; data segmentation was then conducted taking an 8 s window with
75% overlapping. Next, a band-pass fourth-order Chebyshev II filter was used to process the PPG data
at the 0.5–10 Hz frequency [10]. Next, down-sampling was performed to cut the number of subjects for
the 8 s window from 1,000 to 250 (Fig. 1) so as to reduce the computational load of the deep learning



1976 CMC, 2022, vol.71, no.1

model. Finally, the PPG data, as well as their corresponding SBP and DBP values, were treated with
min–max normalization and then used in the model.

Figure 1: Raw data vs. down-sampled data

2.2 Stage 2: Deep Learning Model

Our deep learning framework, which used a CNN and an LSTM network, was defined as a mod-
ified LRCN model. Its network structure, designed to achieve multiple outputs, could estimate DBP,
SBP, and HR simultaneously when analyzing PPG signals. Fig. 2 describes the topology of the LRCN
model, which shows the stacking of the multi-scale CNN, the LSTM network, and a dense layer. Within
this topology, a multi-convolution module and a convolution layer served as the feature extractor; the
convolution module consisted of two 1-dimensional convolution layers, BatchNormalization layers,
and ReLU activation layers. The module output features to a maxpooling layer; the features entered a
1-dimensional convolution layer, BatchNormalization layer, ReLU activation layer, and maxpooling
layer sequentially. The output features acquired from the last maxpooling layer then passed through
two LSTM layers and were delivered to the dense layer for the estimation of the three physiological
parameters.

Fig. 3 depicts the proposed model’s architecture, which consisted of a 1-dimensional multi-
convolution module, two LSTM layers, and a dense layer. The model was built on a CNN in which two
multi-convolution modules—one was composed of ten 9 × 1 kernel filters, normalized through batch
normalization, and activated through the ReLU function, whereas the other was composed of ten
25 × 1 filters, normalized through batch normalization, and activated through the ReLU function—
had their feature vectors concatenated. The modules were maxpooled within the spatial dimensions
of 9 × 1, taking into account the inception module, whose increased network width enabled it to
capture more details and features. The 1-dimensional multi-convolution module was composed of a
set of 32 9 × 1 filters, normalized through batch normalization, activated through the ReLU activation
function, and maxpooled within the spatial dimensions of 3 × 1.

Next, the 64 and 128 memory cells of the two LSTM layers for the hyperbolic tangent function
“tanh” were integrated with the CNN model to solve regression problems. A dense layer that contained
three output neurons was used with a linear function to perform prediction, each of these neurons
predicted DBP, SBP, and HR, respectively. To ease overfitting for the proposed model, feature vectors
from the convolution layers were normalized through batch normalization.
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Figure 2: Topology of the proposed multi-scale LRCN model

25
0x

1

+

Input 
layer

Max
pooling4 

LSTM 1

12
8

56
x6

4

3

D
B

P
SB

P
H

R

DenseLSTM 2

Multi-convolution module

Convolution2Max
pooling2 

25
0x

10

...

...

12
1x

32
12

1x
32

12
1x

20

11
3x

32

... ...

12
1x

32
12

1x
32

56
x3

2...

25
0x

10

Figure 3: Architecture of the proposed multi-convolution model



1978 CMC, 2022, vol.71, no.1

2.3 Stage 3: Training and Evaluation

The deep learning model was trained using 50 batches with a size of 100. During training, the
model was optimized using the Adam optimizer. The MSE, MAE and Huber were used as a loss
functions to evaluate the proposed deep learning framework’s performance. The model underwent
k-fold cross-validation because this training/testing method can be used to test a model’s generaliz-
ability [20]. In our experiment, k was set to 10, so the model’s performance was determined on the
basis of the average prediction score by using 10 testing datasets.

3 Analysis of Results

The deep learning framework used in the experiment was realized with Kera 2.4.3, which uses
Tensorflow 2.4.0 as the backend engine. The hardware setup for the experiment consisted of a
6-GB Nvidia GEFORCE RTX 2060 GPU, which trained, validated, and tested the model, and was
implemented on a 64-bit Windows operating system with an Intel Intel(R) Core(TM) i7-8700 CPU @
3.20 GHz and 32-GB RAM.

3.1 Deep Learning Model’s Performance Across Different Loss Functions

Tab. 1 shows the performance of the proposed deep learning model as estimated by three different
loss functions.

A loss function is typically expressed as the MSE or MAE. Thus, the MSE and MAE were
included in our analysis of the model’s performance. The performance was determined through both
loss functions, and the results were compared with those obtained using the Huber loss function. As
shown in Tab. 1, the model exhibited the highest performance with the MAE as a loss function.

Table 1: Performance of the proposed deep learning model estimated by different loss functions (with
the units of the error measures for both BP values and HR expressed, respectively, in mmHg and bpm)

Parameter LOSS function

MSE MAE Huber

SBP MAE 3.139 2.942 3.34
DBP MAE 1.927 1.747 2.005
HR MAE 1.783 1.137 1.814

3.2 Role of Chebyshev II Filter in the Preprocessing of Input Data

As mentioned earlier, PPG signals were filtered through a Chebyshev II filter to attenuate the
noise of the measured signals and improve the proposed model’s estimation accuracy. Therefore, a
comparison was made in the model’s estimation performance using PPG data preprocessed by the
filter vs. the PPG data not preprocessed by the filter.

The difference of overall estimates of SBP, DBP and HR of NMAE with/without PPG data
preprocessed by the Chebyshev II filter was 0.0019 as shown in Tab. 2. These results suggested that
the expected PPG waveforms derived from the filter directly affected the proposed deep learning
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model’s estimation accuracy. Thus, preprocessing PPG signals through the designed Chebyshev II filter
effectively improved the model’s accuracy.

Table 2: Model performance with data preprocessed by a Chebyshev II filter vs. not preprocessed by
the filter (the error measures for both BP values and the HR are expressed, respectively, in mmHg and
bpm)

Filter Chebyshev II filter

Used Not used

SBP NMAE 0.0163 0.0174
DBP NMAE 0.0134 0.0141
HR NMAE 0.0065 0.0066

3.3 Performance Evaluation

One objective of this experiment was to build a deep learning model that, even with fewer layers,
could perform satisfactorily to enable real-time monitoring on a mobile platform. Thus, the model
was developed by modifying an LRCN model in ways that replaced a CNN layer with an inception
module and adjusted the model to estimate DBP, SBP, and HR simultaneously, which are otherwise
evaluated through separate models. Moreover, downsampling was performed to filter the PPG signals
input into the model, thereby reducing the complexity of data processing and thus the calculation load
of the model. Our model was modified according to reference [10], with the number of data points
reduced from 1,000 to 250 after downsampling.

Tab. 3 presents the performance of the proposed model evaluated through a 10-fold cross-
validation, with the overall NMAE averaging 0.0121 and NRMSE 0.0228 among SBP, DBP and HR.
Fig. 4 presents a comparison of the true and predicted values for SBP, DBP and HR obtained through
500 tests, with the true and predicted values colored in blue and orange, respectively. Fig. 5 depicts the
normal distribution of errors for SBP, DBP and HR.

Table 3: Performance of the proposed deep learning model (with the units of the error measures for
both BP values and the HR expressed, respectively, in mmHg and bpm)

Parameter Performance

NMAE NRMSE

SBP 0.01634 0.7532
DBP 0.01345 0.5561
HR 0.00659 0.5387

3.4 Proposed Method vs. Existing Methods

1. BP: The proposed method was compared with the existing methods in terms of feasibility.
While the existing methods involve feature selection and extraction, our model-which yielded
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an MAE ± SD of 2.345 ± 4.059 mmHg by estimating BP with data from 1,551 subjects-showed
better performance (Tab. 4). This result confirmed our model’s feasibility in clinical settings.

2. HR: Tab. 5 presents a comparison of the performance of HR estimation between the proposed
method and the existing methods. Compared with most of the existing models, our model used
more data to determine the HR to achieve greater accuracy and generalizability. In addition,
while numerous researchers have focused specifically on the HR (Tab. 5), we examined DBP,
SBP, and HR, although this led to an increased training load in our model. However, our
model performed almost as good as some existing models, and better than the others, with an
MAE ± SD of 1.137 ± 2.463 bpm.

We estimated DBP, SBP, and HR simultaneously, without having to train our model for each of
the parameters separately. Therefore, the model might require less computational load in the context
of real-time system analysis.

(a) (b)

(c)

Figure 4: True vs. predicted values obtained through 500 tests: (a) SBP, (b) DBP, and (c) HR

(a) (b)

(c)

Figure 5: Normal distributions of errors for (a) SBP, (b) DBP, and (c) HR
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Table 4: BP estimation performance of proposed method vs. existing methods (with the error measures
for SBP and DBP expressed in mmHg)

Work Subjects Method Validation
method

Performance (MAE ± SD) (mmHg)

SBP DBP
EMBC’16
Gaurav
et al. [13]

3,000
subjects

Feature extraction
(46 features) and
artificial neural
network (ANN)

Conventional
method

4.47 ± 6.85 3.21 ± 4.72

TBME’16
Kachuee
et al. [14]

1,000
subjects

DWT, PCA,
whole based, and
physiological
feature extraction
and conventional
regression
algorithms

10-fold
validation

11.17 ± 10.09 5.35 ± 6.14

BSPC’18
Mousavi
et al. [15]

441
subjects

FFT, FFT1,
Feature
extraction, PCA,
and conventional
regression
algorithms

10-fold
validation

3.97 ± 8.901 2.43 ± 4.173

ICASSP
Schlesinger
et al. [9]

304
subjects

Siamese learning
Algorithm

Conventional
method

5.95 ± 6.69 3.41 ± 3.97

IEEE
Sensors
Journal
Panwar
et al. [10]

1,557
subjects

LRCN deep
learning
Algorithm

10-fold
validation

3.97 ± 5.41 2.30 ± 5.65

EMBC’20
Kyriacou
et al. [32]

Feature extraction
(7 features)
and recurrent
network models

Neural
network (NN):
4.23 ± 4.78
Long
short-term
memory
(LSTM):
3.23 ± 4.74
Gated
recurrent units
(GRUs):
3.25 ± 4.76

Neural
network (NN):
2.37 ± 2.26
Long
short-term
memory
(LSTM):
1.59 ± 1.96
Gated
recurrent units
(GRUs):
1.43 ± 1.77

This work 1,551
subjects

10-fold
validation

2.942± 5.065 1.747± 3.042
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Table 5: HR estimation performance of proposed method vs. existing methods

Work Subjects Method Validation
method

Performance
(MAE ± SD)

HR
TBME’15
Zhang
et al. [33]

23 subjects Signal processing
method (signal
decomposition, temporal
difference, sparse signal
reconstruction, spectral
peak tracking)

2.34 ± 2.47
1–12 subjects
3.19 ± 3.61
13–23 subjects
2.77 ± 3.04 23
subjects

TBME’15
Zhang
[34]

23 subjects Signal processing
method (joint sparse
spectral reconstruction,
spectral subtraction,
peak tracking)

1.28 ± 2.61
1–12 subjects
3.05 ± 3.35
13–23 subjects
2.17 ± 2.98

TBME’ 16
Khan
et al. [35]

12 subjects Signal processing
method (ensemble
empirical mode
decomposition, adaptive
filtering, decision
making processing)

1.02 ± 1.79
1–12 subjects

TBME’17
Tempko
[36]

23 subjects Signal processing
method-WFPV algorithm
(pre-process, de-nosing
phase decoder, post
processing)

1.02 ± 1.25
1–12 subjects
2.95 ± 3.71
13–23 subjects
1.99 ± 2.00 48
subjects

Sensors
Letters
Zhu
et al. [37]

12 subjects Neural network, linear
regression, post
processing

1.03 ± 1.82 12
subjects

BSPC∗19
KR
et al. [38]

12 subjects Signal processing
method (cascaded three
-stage adaptive filters,
FFT)

0.92 ± 1.17
1–12 subjects

TBioCAS’19
Biswas
et al. [39]

25 subjects CNN and LSTM deep learning
Algorithm

5-fold
validation

1.99 ± 4.64 12
subjects
0.86 ± 1.86
13–23 subjects
1.47 ± 3.37
25 subjects

IEEE
Sensors
Journal
Panwar
et al. [10]

12,000
subjects

LRCN deep learning
algorithm

10-fold
validation

2.32 ± 0.095
12,000
subjects

This work 1,551 subjects LRCN deep learning
algorithm

10-fold
validation

1.137 ± 2.463
1,551 subjects
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3.5 Verification of Proposed Model by British Hypertension Society (BHS) Standards

The BHS standards were used as the yardstick to determine the validity of our model’s BP
estimation results. By these standards, the model’s BP estimation accuracy was examined in terms of
the cumulative error percentage across three grades (Tab. 6). The model’s BP estimation results—based
on data from 1,551 subjects—were verified according to the standards, satisfying Grade A for the SBP
and DBP measurements (Tab. 7). The correlation coefficients of DBP (with data points colored in red)
and SBP (with data points colored in blue) are plotted in Fig. 6.

Table 6: BHS grading scale for BP estimation

Grade Cumulative error percentage

≤5 ≤10 ≤15

A 60% 85% 95%
B 50% 75% 90%
C 40% 65% 85%

Table 7: Proposed model’s BP estimation performance under BHD standards

Method Physiological
parameter

≤5 (mmHg) ≤10 (mmHg) ≤15 (mmHg)

This SBP 92% 97% 98%
work DBP 96% 99% 99%

Figure 6: Scatter plot of SBP (blue) and DBP (red)
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4 Conclusion

Overall, the results underscored the validity of the proposed deep learning framework because it
estimated SBP, DBP, and HR simultaneously, a feature that may play an important role in clinically
determining these physiological parameters among a more diverse groups of subjects with high
accuracy. The proposed method performed better in measuring these parameters for patients with
CVD complications than the existing methods, and it proved to have potential clinical applications.
While deep learning methods have been found to work well in much of the literature, this study
presented a deep learning framework that used single-channel PPG data to estimate DBP, SBP, and
HR-with an NMAE of 0.0121, NRMSE of 0.0227, and R2_score of 0.97. Of all the loss functions
used in the study, the MAE loss function worked best in our model. Preprocessing PPG data through
a filter led to better DBP, SBP, and HR results. Moreover, as the results were obtained using a sample
of patients with CVD complications, the proposed model may have good use in comprehensive medical
monitoring. This model estimates BP values and the HR simultaneously, which makes it a more
straightforward solution than the existing neural network models, which measure these parameters
separately. The model also eliminates the need to perform feature selection and extraction separately
(a common practice in conventional machine learning processes) because features are extracted during
training. This helps to reduce the cost of data processing. Finally, in terms of the BHS standards, the
model satisfies Grade A for DBP and DBP measurement.
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