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Abstract: The emerging mobile edge networks with content caching capa-
bility allows end users to receive information from adjacent edge servers
directly instead of a centralized data warehouse, thus the network transmis-
sion delay and system throughput can be improved significantly. Since the
duplicate content transmissions between edge network and remote cloud can
be reduced, the appropriate caching strategy can also improve the system
energy efficiency of mobile edge networks to a great extent. This paper focuses
on how to improve the network energy efficiency and proposes an intelli-
gent caching strategy according to the cached content distribution model
for mobile edge networks based on promising deep reinforcement learning
algorithm. The deep neural network (DNN) and Q-learning algorithm are
combined to design a deep reinforcement learning framework named as the
deep-Q neural network (DQN), in which the DNN is adopted to represent the
approximation of action-state value function in the Q-learning solution. The
parameters iteration strategies in the proposed DQN algorithm were improved
through stochastic gradient descent method, so the DQN algorithm could
converge to the optimal solution quickly, and the network performance of
the content caching policy can be optimized. The simulation results show
that the proposed intelligent DQN-based content cache strategy with enough
training steps could improve the energy efficiency of the mobile edge networks
significantly.

Keywords: Mobile edge network; edge caching; energy efficiency

1 Introduction

With the rapid development of wireless communication networks and the fast growing of
smart devices, various mobile Internet applications has been spawned, such as voice recognition,
autonomous driving, virtual reality and augmented reality. These emerging services and applications
put forward higher requirements for high capacity, low latency and low energy consumption. By
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deploying edge server at the wireless access network, the end user’s computing tasks can be executed
near the edge of the network, which could effectively reduce the congestion of the backhaul network,
greatly shortens the service delay, and meets the needs of delay-sensitive applications. The mobile edge
networks are essentially the subsidence of cloud computing capability, and could provide third-party
application at the edge nodes, making it possible for service innovation of mobile edge entry.

With the popularity of video services, the traffic of video content grows explosively. The huge
data traffic is mainly caused by the redundant transmission of popular content. Edge nodes also
have certain storage capacity for caching, and edge caching is becoming more and more important.
Deploying a cache in an edge network can avoid data redundancy caused by many repeated content
deliveries. By analyzing the content popularity and proactively caching the popular content from the
core network to the mobile edge server, then the request for the repeated content could be transmitted
directly from the nearby edge nodes without going back to the remote core network, which greatly
reduces the transmission delay and effectively alleviates the pressure on the backhaul link and the
core network. Edge cache has been widely studied because it can effectively improve user experience
and reduce energy consumption [1]. Enabling caching ability in a mobile edge system is a promising
approach to reduce the use of centralized databases [2]. However, due to the edge equipment size,
the communicating, computing and caching resources in a mobile edge network are limited. Besides,
end users’ mobility makes mobile edge networks, becoming a dynamic system, where the energy
consumption may increase because of improper caching strategies. In order to address these problems,
we focus on how to improve energy efficiency in a cache-abled mobile edge network through smart
caching strategies. In this article, we study a mobile edge network with unknown content popularity,
and design a dynamic and smart content cache policy based on online learning algorithm which utilizes
deep reinforcement learning (DRL).

The rest of this article is arranged as follows. Firstly, Section 2 elaborated the existing related
work and some solutions on the content cache strategy in mobile edge networks. Section 3 introduce
a cache-enabled mobile edge network scenario and builds related system models and energy models.
Section 4 analyzes the energy efficiency of the system, and formulates the optimization problem in
the system according to the deep reinforcement learning models, then the caching content distribution
strategy is proposed to solve the energy efficiency optimization problem of mobile edge networks.
Finally, we design some numerical simulations and analyze the results, which show that the proposed
strategy could greatly improve mobile edge networks energy efficiency without decreasing the system
performance.

2 Related Work

In this section, we will investigate the existing related work and some solutions on mobile edge
networks with caching capability and artificial intelligence (AI) in network resource management.

2.1 Energy-Aware Mobile Edge Networks with Cache Ability

By simultaneously developing computing offloads and smart content caches near the edge of the
network, mobile edge network can further improve the efficiency of network content distribution and
computing capabilities, and effectively reducing latency and improving service quality and the energy
consumption of cellular networks. Thus, adding cache ability at the network edge has become one
of the most important approaches [3,4]. Authors in [5] separated the controlling and communicating
functions of heterogeneous wireless networks with software defined network (SDN)-based techniques.
Under the proposed network architecture, the cache-enabled of macro base stations and relay nodes are
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overlaid and cooperated in a limited backhaul scenario to meet service quality requirement. Authors in
[6] investigated cache policies which aim to improve energy efficiency in information centric networks.
Numerous papers [7,8] focus on caching policies based on user demands, e.g., authors in [9] proposed a
light-weight cooperating edge storage management strategy thus the utilization of edge caching can be
maximized and the bandwidth cost can be decreased. Jiang et al. [10] proposed a caching and delivering
policy for femto cellulars where access nodes and user devices are all able to cache local contents, the
proposed policy aims at realizing a cooperative allocation strategy for communicating and caching
resources in a mobile edge network. A deep-Learning-based content popularity prediction algorithm
is developed for software defined networks in [11]. Besides, due to the users’ mobility, how to cache
contents properly is challenging in mobile edge network, thus many works [12–15] aimed at addressing
mobility-aware caching problems. Sun et al. [16] proposed a mobile edge cloud framework which uses
big medical sensor data and aims at predicting diseases.

Those works inspire us to research on how to improve the energy consumption of the mobile edge
networks by taking advantage of cache ability. However, cache strategies from the work above are all
based on user demands and behavior, which are features that are difficult to extract or forecast. To solve
this problem, many researchers work on using the architectures of the network function virtualization
or software defined networks. By separating control and communicate planes and virtualizing network
device functions, those techniques realized a flexible and intelligent way to manage edge resources
in mobile edge networks. Thus, many smart energy efficiency-oriented caching policies are able to
be integrated as network applications, which are operated by network managers and run on top of
a centralized network controller [17]. Li et al. [18] surveyed Software-Defined Network Function
Virtualization. Mobility Prediction as a Service which was proposed in [19] offers an on-demand
long-term management by predicting user activities, moreover, the function is virtualized as a network
service, which is fully placed on top of the cloud and works as a cloudified service. Authors in [20]
designed a network prototype which takes advantage of not only content centric networks but also
Mobile Follow-Me Cloud, therefore the performance of cache-aided edge networks are improved.
Those works suggested feasible paradigms of mobile edge network virtualization with cache ability.
Furthermore, authors in [21] designed a content-centric heterogeneous networks architecture which is
able to cache contents and compute local data, in the analyzed network scenario, users associated to
various network services but were all allowed to share the communication, computation and storage
resources in one cellular. Tan et al. [22] proposed a full duplex-enabled software defined networks
framework for mobile edge computing and caching scenario, and the first framework suits network
services which are sensitive to data rate, while the second one suits network services which are sensitive
to data computing speed.

2.2 Artificial Intelligence in Network Management

In recent years, deploying more intelligence in networks is a promising approach to realize
effectively organizing [23,24], managing and optimizing network resources. Xie et al. [25] investigated
how to use machine learning (ML) algorithms to add more intelligence to software defined networks.
Reinforcement learning (RL) and related algorithms has been adapted for automatic goal-oriented
decision-making for ages [26]. Wei et al. [27,28] suggested a joint optimization for edge resource
allocating problem, the proposed strategy uses the model-free actor-critic reinforcement learning to
solve the joint optimization problems of content caching, wireless resource allocation and computation
offloading, thus the overall network delay performance is improved. Qu et al. [29,30] proposed a novel
controlled flexible representation and a novel secure and controllable quantum image steganography
algorithm for quantum image, this algorithm allows the sender to control all the process stages during a
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content transmitting phrase, thus a better information-oriented security is obtained. Deploying cache
in the edge network can enhance content delivery networks and reducing the data traffic caused by
a large number of repeated content requests [31]. There are many related works, mainly focusing on
computing offloading and cache decisions and resources allocation [32].

However most of RL algorithms needs lots of computation power. Although the SDN architecture
offers an efficient flow-based programmable management approach, the local controllers mostly have
limited resources (e.g., storage, CPU.) for data processing. Thus an optimization algorithm with
controllable computing time is required for mobile edge networks. Amokrane et al. [33] proposed
a computation efficient approach which is based on Ant-Colony optimization to solve the formulated
flow-based routing problem, the simulation results showed that the Ant Colony-based approach can
substantially decrease computation time comparing with other optimal algorithms.

Various deep reinforcement learning main architectures and algorithms are presented in [34], in
which reinforcement learning algorithms are reproduced with deep learning methods. The authors
highlighted the impressive performance of deep neural networks (DNN) when solving various man-
agement problems (e.g., video gaming). With development of deep learning, reinforcement learning
has been successfully combined with DNN [35]. In wireless sensor networks, Toyoshima et al. [36]
described a design of a simulation system using DQN.

This paper takes advantages of DQN, which can efficiently obtain a dynamic optimized solution
without having a priori knowledge of the dynamic statistics.

3 System Model

This section analyzes a caching edge network scenario with unknown content popularities, then
we build the energy model for the system. The main notations used in the rest of this article are listed
in Tab 1.

Table 1: Table of main notations

Symbols Definitions

B Macro base station
R Set of relay nodes
Um Set of users who are served by the mth RN
Fc Set of local cached files
Fr Set of requested files
M Number of RNs
N Number of storages on each edge node
K Number of requested files
Xn The nth storage block on the edge node X
BF Cloud Storage
Cm(t) Set of files required by user set Um at time t
P(t) Energy consumption at time t
η(t) Energy efficiency at time t
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3.1 Network Model

A typical mobile edge network scenario is shown in Fig. 1, which contains not only communicating
but also caching resources. The edge accessing devices include macro base stations (MBSs) and relay
nodes (RNs), they all have different communicate and cache abilities, but any of them can connect to
end users and cache data from end user or far cloud. We consider a set of relay nodes R with limited
storage space (in this paper we assume each RN can store N files) while the macro base station B has
unlimited cache space since it connects to far cloud. This article considers a wireless network where
orthogonal frequency division multiplexing-based multiple access technology is adopted, thus the loss
of spectral efficiency can be ignored.

Figure 1: Example of an edge cellular network with caching ability

We consider a cellular wireless accesnetwork that consists of an MBS and a set of RNs, the a
large number of end users who are served by relay Rm are denoted as Um. Each RN can connect to the
MBS and its neighboring RNs. Due to the caching ability, N is the maximum servicing user number
of an RN. At time t, the files cached in nth cache block on relay node Rm is denoted as Fc

m,n(t), the
files requested by user Um,n is denoted as Fr

m,n(t). We use variables Ict
m,n and I lt

m,n to express how the
requested file Fr

m,n(t) are delivered to user Um,n

I ct
m,n(t) =

{
1, when Fr

m,n(t) ∈ Fc(t)
0, when Fr

m,n(t) /∈ Fc(t) (1)
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and

I lt
m,n(t) =

{
1, when Fr

m,n(t) = Fm,n
c
(t)

0, when Fr
m,n(t) �= Fm,n

c
(t) (2)

3.2 Energy Model

The optimization problem here is how to maximize the system energy efficiency. According to
the network architecture which has been analyzed in Section 3.1, the system energy consumption in a
mobile edge network can be divided into three components:

1. Basic power Pbasic: the mobile edge network operational power, it takes into account all the
power consumed by the macro base station and RNs other than the transmitting power.

2. Transmitting power in the mobile edge network Pedge: power consumption of data transferring
among edge nodes, it happens when a requested file is cached in the mobile edge network.

3. Transmitting power between the mobile edge network and far cloud Pcloud: power consumption
of data transferring between local nodes and far cloud, it happens when a requested file is not
stored at the mobile edge network.

Thus the system total energy consumption can be written as:

Psys = Pbasic + Pedge + Pcloud (3)

The Pedge and Pcloud are varying in practical system, especially with different placement of edge nodes
and users’ equipment. To simplify the analysis, here consider a dynamic network, where the location
palaces of the communication equipment are unpredictable but follow a specific distribution, thus the
power consumption of transmitting a file between two edge nodes can be a constant, we express the
constant as α1. Similarity, the power consumption of transmitting a file between the edge network and
cloud is denoted a constant α2

According to the formula (1) and (2), the system energy consumption can be written as:

Psys(t) = Pbasic + α1

M∑
m=1

N∑
n=1

I lt
m,n(t) + α2

M∑
m=1

N∑
n=1

I lt
m,n(t), (4)

where Psys(t) denotes the system power consumption at time t.

In a mobile edge network, the propagation model can be represented by a function of radiated
power:

prx = θd−λptx, (5)

where Pr
x and Pt

x respectively denote transmitted and received power, θ denotes correction parameter,
d denotes the distance between the transmitting device and receiving device, λ is used to denote the
path loss exponent in the formulation.

In order to meet the user QoS, a fixed transmission rate R0 should be a maintained. Therefore, the
received power can be calculated as follow according to Shannon formulation:

pr
x = N0W(2R0/W − 1), (6)

where W and N0 respectively denote transmission bandwidth Gaussian white noise power density.

Comparing to a traditional mobile edge network, a cache-enabled mobile edge network focuses
on delivering contents to end users rather than transmitting data. Thus the EE in the analyzed system
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is defined as the size of delivered contents during a time slot, instead of transmitted data. The EE can
be written as follow:

η(t) = N × M × L
Psystem

(7)

where L denote content size of each file.

Therefore, the system EE maximization problem can be written as an optimization formulation
as follow:

arg maxIltm,n(t), Irtm,n(t) η(t)

s.t. SINR(ru
i ) >= γ

Fc
m,n(t − 1) = Fr

m,n(t), ∀m ∈ {1, . . . M}, ∀n ∈ {1 . . . N}

I lt
m,n(t), Irt

m,n(t) ∈ {0, 1} (8)

where the first constraint means that the users’ QoS should be satisfied by defining the minimal SINR
threshold, the second constraint means that each requested file should be transferred to the edge
node which serves the user. We use the optimization variables I lt

m,n(t), Irt
m,n(t) to represent the cache

distribution strategy.

4 Solution with DQN Algorithm

In this section we first formulate the energy efficiency-oriented cached content distribution
optimization problem, which has been discussed in Section 3, according to reinforcement learning
model, then we give the solution of a caching strategy based on DQN algorithm.

4.1 Reinforcement Learning Formulation

There is an agent, an action space and a state space in a general reinforcement learning model,
the agent learns which action in the action space should be taken at which state in the state space.
For example, we use sτ to denote the cached content distribution state in a mobile cache-aided edge
network, and sτ updates across adjustment steps τ = {1, 2 . . . }. Thus, the caching distribution state at
step τ can be written as

sτ = Fc
1,1(τ ), . . . Fc

1,n(τ ), Fc
m,1(τ ), . . . Fc

m,n(τ ) (9)

The state space is represented as S, where ∀sτ ∈ S.

During a time slot, the caching distribution state changes from an initial state s1 to a terminal state
sterm. In order to deliver the requested content to corresponding user, the first caching distribution state
s1 of time slot t, is the terminal state of last time slot,

s1(t) = Fc
1,1(t − 1), . . . Fc

1,n(t − 1), Fc
m,1(t − 1), . . . Fc

m,n(t − 1). (10)

And the terminal state of time slot t sterm(t) is the users’ requests at t time slot, it can be represented as
formulation (11):

sterm(t) = Fc
1,1(t), . . . Fc

1,n(t), Fc
m,1(t), . . . Fc

m,n(t). (11)
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In our problem, we assume that there is a blank storage block v in a mobile edge network, thus
the cache distribution in the mobile edge network can be adjusted through swapping the empty cache
space. The vacant storage block can cache the contents from a valid storage block which is located
in a neighboring accessing node, thus the vacant storage block is movable in the edge network. The
swapping action which is executed in iteration step τ is represented as aτ . Thus the action space Aτ at
iteration step τ of the designed model can be written as

aτ =
{ {aneighbour RNs, aBS}, when v is on an RN

{aall RNs}, when v is on the BS (12)

The executed action serial, which starts from the initial state s1 to the terminal state sterm, during the
time slot t is represented by At,

At = {aτ | τ = 1, 2 . . .} (13)

The reinforcement learning system obtains an immediate reward after an action is performed.
Because reinforcement learning algorithm is using for a model-free optimization problem. The value
of the immediate reward is zero until the agent reaches the terminal state. We denote the immediate
reward as rτ , according to the energy efficiency optimization problem which has been analyzed in
Section 3, rτ can be calculated as following formulation:

rτ =
{

R(s, a), if sτ+1 = sterm,
0, otherwise. (14)

where R(s, a) is an energy consumption function related to state and action.

4.2 DQN Algorithm

RL problems can be described as the optimal control decision making problem in MDP. Q-
learning is one of effective model-free RL algorithms, which has been analyzed in Section 4.2. The
long-term reward, which is learned by Q-learning algorithm, of performing action aτ at environment
state sτ is represented as a numerical value Q(sτ , aτ ). Thus, the agent in a dynamic environment
performs the action which can obtain a maximal Q value. In this paper, the EE optimized caching
strategy adjusts cached content distribution state in a mobile cache-aided edge network by using
learned information of Q-learning algorithm. In each iteration, the Q-value is updated according to
the formulation as follows:

Q(sτ , aτ ) ← (1 − α)Q(sτ , aτ ) + α(rτ + γ maxa+1Q(sτ+1, aτ+1)), (15)

where α is the learning rate (0 < α < 1), γ is the discount factor (0 < γ < 1), rτ is the reward
received when moving from the current state sτ to the next state sτ+1, rτ can be calculated according to
formulation (14).

Based on (15), Q-learning algorithm is effective when solving the problem with small state and
action spaces, where a Q-table is able to be stored to represent all the Q values of each state-action
pair. However, the process becomes extremely slow in a complex environment where the state and
action space dimensions are very high. Deep Q-learning is a method that combines neural network
and Q-learning algorithm. Neural network can solve the problem that needs to store and retrieve a
large number of Q values.
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The agent in our RL model is trained by DQN algorithm in this paper, the DQN algorithm
uses two neural networks to realize the convergence of value function. As we have analyzed, due to
the complex and high-dimensional network cached content distribution state space, calculating all
the optimal Q-values requires significant computations. Thus, we approximate Q-values with a Q-
function, which can be trained to the optimal Q value by updating the parameter θ . The calculation
formula for Q-function is as follows:

Q(sτ , aτ , θ) ← (1 − α)Q(sτ , aτ , θ) + α(rτ + γ maxa+1Q(sτ+1, aτ+1, θ−) − Q(sτ , aτ , θ)). (16)

where θ is the weight vector of the neural network, it is updated according to network training
iterations.

DQN uses a memory bank to learn the previous experience. At each update, some previous
experience is randomly selected for learning, while the target network is updated with two network
structures with the same parameters and different network structures, making the neural network
update more efficient. When the neural network can’t maintain convergence, there will be some
problems such as unstable training or difficult training. DQN uses experience playback and target
networks to improve on these issues. Experience replay is usually used to store the collected sequence
of observations (s, a, r, s′). This transfer information is stored in the cache, and the information in the
buffer becomes the experience of the agent. The core idea of the experience replay mechanism is to
train the DQN using the transfer information in the cache, rather than the information at the end of
the loop. The experiences of each cycle are correlated with each other, so randomly selecting a batch of
training samples from the cache will reduce the correlation between experiences and help to enhance
the generalization ability of agents. At each epoch, the neural network is trained by minimizing the
following loss function:

L(θ) = E[(yt − Q(sτ , aτ , θ))
2], (17)

where yt is the target value for iteration τ .

The process of the proposed DQN-based cache strategy based can be illustrated with pseudocode
as shown in Algorithm 1.

Algorithm 1: The pseudocode of the Cache Strategy process based on DQN Algorithm
Reset neural network net_performance with random weights θ .
Reset target neural network net_target with weights θ

− = θ .
Reset the experience replay memory Dmemory for the DQN with capacity C.

For epi = 1, . . . , K do
Reset the initial state vector sequence x(0) with the random caching distribution.

For t= 1 . . . T do
Choose an action a(t) from the action space with ε-greedy policy:
Execute the selected action a(t), calculate the immediate reward.
Store the tuple (x(t), a(t), R(t), x(t + 1)) in Dmemory.
Randomly sample a tuple (x(j), a(j), R(j), x(j + 1))

Set yi =
{

R(j), if episode terminates at step j + 1
R(j) + ε max Qnet_target(x, a; θ−), otherwise

Iteratively optimize the DNN parameters by means of minimizing the loss function.
Update the neural network parameters Qnet_target ← Qnet_performance every S steps.
End For

End For
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5 Simulation

This section conducts a number of simulations to evaluate and test the performance of the
proposed DQN-based caching strategy in mobile edge networks. The numerical simulations are
conducted in the simulation software MatLab 2020a. We firstly test and verify the energy efficiency
improvement with the DQN training-based caching policy in a simple cellular, then we evaluate the
energy efficiency of the proposed caching policy in a more general complex network scenario.

Firstly, we set a cellular network scenario that consists of an MBS, an RN and 3 end users. The
cellular covers an area with radius Ra = 0.5km. We set a polar coordinate, and place the location
of MBS in the center. We assume that there are 10 files cached in the network. The end users are
distributed in the overall area according to the Poisson point process. The popularity distribution
of all the service contents follow the zipf distribution. The basic energy consumption of an MBS is
set as Pm = 66mW , while an RN assumes 10% energy of an MBS. The calculated path loss from
MBSs to RNs is formulated as PLB,R = 11.7 + 37.6lg(d), the path loss from RNs to MBSs is formulated
as PLR,B = 42.1 + 27lg(d), the pass loss among RNs is formulated as PLR,R = 38.5 + 27lg(d) and the
path loss from RNs to end users is formulated as PLR,U = 30.6 + 36.7lg(d). The Q-learning algorithm
parameters are set as α = 0.2, γ = 0.8, R = 100. The parameters of the adapted DNN can be seen in
Tab. 2.

Table 2: Parameters of adopted DNN

Layer DNN1 DNN2 DNN3 DNN4

Input size 22 37 35 39
Activation ReLU ReLU ReLU ReLU
Output size 37 35 39 \

As shown in Fig. 2, we evaluate the system energy efficiency with a random caching policy, where
the service contents are cached in either the MBS or RN randomly, and compare with the energy
efficiency performance of the caching policy with DQN training. The red line with triangles in the
figure denotes the system energy efficiency with DQN training, while the blue line with squares denotes
the system energy efficiency with random caching policy. We generate user distribution ten times and
each of them is used for a certain training step number. As can be seen in the figure, with enough
training steps, the energy efficiency of DQN training caching policy can improve the system energy
efficiency.

For a better analysis on the performance of proposed policy and its convergency, we simulate the
relationship between training steps and system energy cost. It can be seen in Fig. 3 that system energy
cost declines with the increasing of training steps, which means that the algorithm trends to converge
with 1500 steps.

In order to test the proposed caching policy in complex network scenes, we simulate a mobile edge
network with different numbers of RNs. In this part, we set the end user number is 20, the numbers of
RNs are M = 2, 3, 4, 5, 6. Consider a polar coordinate situation, the MBS is located at the place [0,0],
and the m-th RN is located at the place [500, 2πm/M]. The Q-learning algorithm parameters in the
formulation 15 are fixed.

We evaluate and compare the energy efficiency performance of the networks under three types
of mobile edge networks architecture, includes a mobile edge network without caching ability, a
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mobile network with random caching strategy and a mobile edge network with the proposed DQN-
based caching strategy. A mobile edge network without caching ability (as shown in Fig. 4 “non
cache”) firstly send the requested contents to the MBS from far cloud, then deliver the contents to
corresponding end users through edge nodes. A mobile edge network with random caching strategy
caches contents in edge nodes by random, under this caching strategy, a requested content has to be
acquired from cloud when it is not stored in an edge node who cannot connect to corresponding end
user directly.

Figure 2: Comparison of the random and DQN policies

Figure 3: Cost in each training as function training numbers

The energy efficiency comparison with multi-RNs is showed in Fig. 4. By comparing the mobile
edge networks energy efficiency with and without storage function, we can see that adding caching
ability to mobile edge networks can significantly increase system energy efficiency. By comparing the
energy efficiency of mobile edge networks with DQN-based caching strategy and random caching
strategy, we can see that the proposed DQN-based caching strategy shows better energy efficiency
improvement than random caching strategy when M > 2. Besides, we can also see the network energy



3288 CMC, 2022, vol.71, no.2

efficiency as a function of RN numbers, the more RNs in a mobile edge network, the better network
performance the proposed caching strategy can achieve.
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Fig. 5 shows the computation time when algorithm converges for Q-learning and DQN. Due to the
enormous computation burden, general Q-learning algorithm usually costs lots of computation time,
which is unacceptable in real scenes. The experimental results show that the algorithm convergence
speed of the proposed DQN policy is significant faster than general Q-learning method.
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6 Conclusion

In this paper, we investigate and focus on the energy efficiency problem in mobile edge networks
with caching capability. A cache-enabled mobile edge network architecture is analyzed in a network
scenario with unknown content popularity. Then we formulate the energy efficiency optimization
problem according the main purpose of a content-based edge network. To address the problem, we put
forward a dynamic online caching strategy using the deep reinforcement learning framework named
deep-Q learning algorithm. The numerical simulation results indicate the proposed caching policy
can be found quickly and it can improve the system energy efficiency performance significantly in
both networks with single RN and multi-RNs. Besides, the convergence speed of the proposed DQN
algorithms is significant faster than general Q-learning.
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