
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2022.020623

Article

Exploring the Approaches to Data Flow Computing

Mohammad B. Khan1, Abdul R. Khan2,* and Hasan Alkahtani2

1Department of Electrical and Computer Engineering, Technical University of Munich, Arcisstrasse 21, 80333 Munich,
Germany

2Department of Computer Science, CCSIT, King Faisal University, 31982, Al Ahsa, KSA
*Corresponding Author: Abdul R. Khan. Email: raoufkhan@kfu.edu.sa

Received: 31 May 2021; Accepted: 03 September 2021

Abstract: Architectures based on the data flow computing model provide an
alternative to the conventional Von-Neumann architecture that are widely
used for general purpose computing. Processors based on the data flow archi-
tecture employ fine-grain data-driven parallelism. These architectures have the
potential to exploit the inherent parallelism in compute intensive applications
like signal processing, image and video processing and so on and can thus
achieve faster throughputs and higher power efficiency. In this paper, several
data flow computing architectures are explored, and their main architectural
features are studied. Furthermore, a classification of the processors is pre-
sented based on whether they employ either the data flow execution model
exclusively or in combination with the control flow model and are accordingly
grouped as exclusive data flow or hybrid architectures. The hybrid category
is further subdivided as conjoint or accelerator-style architectures depending
on how they deploy and separate the data flow and control flow execution
model within their execution blocks. Lastly, a brief comparison and discussion
of their advantages and drawbacks is also considered. From this study we
conclude that although the data flow architectures are seen to have matured
significantly, issues like data-structure handling and lack of efficient placement
and scheduling algorithms have prevented these from becoming commercially
viable.

Keywords: Processor architecture; data flow architectures; Von-Neumann
model; control flow architectures

1 Introduction

With the increase in applications that demand high computational power while being power
efficient, the need for efficient parallel computing resources in general purpose, as well as
application specific processors, has increased manifold recently. The traditional Von-Neumann
architecture is inherently sequential as it employs the program counter, and sequences through
the program instructions. Although, a number of parallel processing techniques are deployed in
the modern Von-Neumann processors, there are still applications like those in signal processing,
network processing etc. which are inherently parallel in nature. To exploit this inherent parallelism,

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.020623


2334 CMC, 2022, vol.71, no.2

a contrasting processing paradigm, called data flow processing was proposed and the early pro-
ponents of this model of computation believed that it would provide extensive computing power
and could replace the traditional control-flow architecture.

Data flow computing provides a few major advantages over control flow for parallel process-
ing. Firstly, the data flow model is asynchronous where instruction execution is determined by
the availability of operands hence providing an implicit synchronization of parallel instructions.
Secondly, the data flow graph representation eliminates the need for explicit management of
parallel execution of program by exposing the inherent parallelism of the application.

The first proposals for data flow machines were made in the 70s [1,2]. In the following
decades, a number of other proposals for such processors were made; however, most of these were
based on distributed set of processing elements (PEs) and given the costs of implementing large
PEs on silicon, none of these were economically viable. There was a renewed interest in data flow
computing in the early 2000s, and some of the proposed designs included support for imperative
languages [3,4]. Furthermore, to overcome the inefficiencies in the pure data flow processors, there
was a shift towards adopting a hybrid model which combined both Von-Neumann and data flow
models. Although, data flow processing has been adopted in some accelerators, to the best of our
knowledge, there has been no commercially viable general-purpose data flow processor till date.
This is because of some of the key issues in this model of computation like efficient allocation
of data flow graphs still require additional research [5].

In this paper, we explore the most prominent data flow architectures proposed till date. The
aim of the paper is to provide a comprehensive review of the data flow processor architectures that
provide an alternative to the conventional Von-Neumann processor. The data flow architectures,
even though promising, have failed to become commercially successful and have been limited
to academic research. This paper analyses the drawbacks of the various previously proposed
architectures, which have proved to be an impediment in the progress of the dataflow architecture
towards a mature technology. A few of the remaining challenges are highlighted which may
facilitate the future research work in this particular area.

The paper is organized as follows. First, we begin with a brief conceptual overview of the
two programming models in the second section. In the third section, the data flow processors
proposed in the literature are described in terms of their micro-architecture and execution model
and are accordingly categorized. A comparative discussion of the most prominent features of these
processors is done in the fourth section. Finally, the last section concludes the work and identifies
a few future directions in the design of data flow processors.

2 Control Flow and Data Flow Architectures

This section covers the preliminaries and basic concepts behind the two contrasting computing
models.

2.1 Control Flow Model
The control flow or commonly referred to as the Von Neumann architecture is the most

successful and commercially viable computing model prevalent till date. It mainly consists of a
processing unit for computation, a control unit for loading the instructions, memory system for
storing data and instructions and an input/output interface. One of the defining features of this
architecture is the program counter (PC), which is a register used to transfer the control between
instructions. The PC enforces a sequence on the instruction in which the program is to be executed



CMC, 2022, vol.71, no.2 2335

by holding the value of the instruction address that shall be executed next. The PC gets the next
address either by automatically incrementing the previous address or could be directed explicitly
by means of a branch or jump instruction.

The sequential execution of programs in this architecture leads to memory ordering schemes
that define the order in which the memory operations occur, that is, according to the order in
which they were fetched. All the imperative programming languages are built with these memory
semantics taken into consideration. As a consequence, all the programs have to be written in a
manner which enforces this sequential execution even if there is no inherent sequential execution
requirement in the program. This, along with other hazards, leads to underutilization of hardware
resources and throughput bottleneck and is a major drawback of this architecture.

Fig. 1 depicts the execution of a simple computation in a control-flow manner. The program
counter is incremented and at each increment performs the corresponding computation. Assuming
all the initial operands are independent, this restricts parallelism as the two addition operations
could have been performed in parallel. To overcome this issue several techniques are employed to
exploit the parallelism in the programs at different granular levels. This could be Instruction-Level
Parallelism (ILP) e.g., Instruction pipelining and Out-of-order execution, Thread-Level Parallelism
(TLP) e.g., multi-threading, or Data-Level Parallelism (DLP).

Figure 1: Execution of a simple computation in a control flow manner using a program counter

2.2 Data Flow Model
The data flow architecture provides a completely contrasting computing model to the con-

ventional Von-Neumann architecture. It eliminates the need of the program counter, as the
instructions are no longer executed in a sequential manner. This architecture provides the means
to exploit the inherent parallelism in a program. The execution in a data flow machine is driven
by the availability of operands and the execution resource. That is, an instruction ‘fires’ as soon
as the operands arrive at a free execution node of the hardware. As such, if all the operands
corresponding to multiple instructions become available, they can be executed in parallel. The
programs are represented by means of a data flow graph (DFG), G(V,E) which consists of
vertices and edges where each vertex v ∈ V represents the instruction and each edge e ∈ E
represents the data-dependency between the instructions. Data-packets or values that propagate
along the paths are commonly referred to as tokens.

Taking the example defined in the previous section the corresponding DFG can be represented
as shown in Fig. 2. Each of the node of the DFG will fire as soon as its operands arrive. As
such, the two addition operations would execute in parallel.



2336 CMC, 2022, vol.71, no.2

Figure 2: Data flow graph representation of the computation

The data flow machines are traditionally classified as Static and Dynamic data flow [6]. The
static data flow allows only one token per arc that is; only a single instance of an instruction
can be executed at once [1,7–9]. The Dynamic version on the other hand allows multiple tokens
belonging to different instances of the instructions per arc, where each token is tagged with the
instance number. Hence, it is also referred to as tagged-token data flow machine [10–12].

3 Classification of Data Flow Architectures

In this section, we aim to classify the recently proposed data flow processors. The classification
is done in a hierarchical manner. First, we broadly classify the architectures into two groups based
on execution model, that is, whether they implement an exclusive data flow execution or combine
the control-flow and data flow techniques to follow a hybrid model. Next, within the hybrid model
we further classify the architectures based on whether the scheduling scheme implements the data
flow and control-flow execution on a unified hardware substrate or statically offloads the data flow
portion to a separate unit.

3.1 Exclusively Data Flow Architectures
The first category of data flow architectures consists of those, which exclusively implement the

data flow execution model. These are generally aimed at replacing the Von-Neumann architecture
in general purpose computing. The first proposal for such a machine was proposed by Dennis
and Misunas [1] in 1974, and in the following decades a number of such machines were proposed
[7,10,11,13]. However, none of these architectures could realize the true potential expected out of
a data flow machines due to issues like memory programming difficulties, token matching overhead
etc. More recently, a few new proposals have been made and two of them are discussed in detail
below.

WAVESCALAR: The Wavescalar is a dynamic data flow machine that is comprised of a
distributed set of PEs which are hierarchically organized into tiles. It was proposed by a team at
the University of Washington in 2003 [14].

Architecture Overview: The Wavescaler programs are executed on a tile-based distributed net-
work of processing elements called the WaveCache as shown in Fig. 3. The processing element
implements a 5-stage execution pipeline consisting of these stages - Input, Match, Dispatch,
Execute, and Output. Two PEs are grouped together to form a pod, which communicate the
ALU results via a common bypass network. Four such pods together form a domain, and four
domains together for a cluster. The cluster can be regarded as the basic building block of the



CMC, 2022, vol.71, no.2 2337

WaveCache as several such clusters can be connected together in a 2- dimensional mesh network
to form a scalable processing substrate. The PEs inside a domain communicate by means of
a pipelined bus, while as the inter-domain communication occurs via a pseudo-PE called NET
pseudo-PE. A similar pseudo-PE, called MEM pseudo-PE is used as a gateway for memory
operations for each domain. The inter-cluster communication is packet-based, and each cluster
contains a network switch, which routes the messages from six ports – four for North, East, South,
and West directions, one for store buffer and L1 data cache and one is shared among the NET
PEs of the domains within the cluster.

Figure 3: Wavecache Architecture [14]. (a) Tile view, (b) Cluster view

Each cluster has one store Buffer, which is responsible for enforcing the memory-ordering
scheme, called the Wave-ordered memory. It works by dividing the program into waves, and within
each wave the memory access instructions are annotated to enforce the memory sequence. As
such, the ordering works at two levels – coarse grain by means of wave numbers, and fine grain
by means of instruction annotations [3]. From the programming perspective each instruction has
a dedicated PE, however, for practicality, a set of 64 instructions are dynamically assigned to each
PE. As the working set of instructions changes, the Wavescalar replaces the unused instructions
with new ones.

Execution Model: The key aspect of WaveScalar ISA is that it supports the conventional
load/store semantics and hence can execute programs written in imperative languages. A program
on a Wave-Scalar is executed in forms of ‘Waves’, which are basically acyclic and directed portions
of the DFG. The compilation step includes the conventional steps like optimization and parsing
and additionally the transformation to make the graph suitable for execution on Wavecache. It
includes decomposing the graph into waves. Waves are similar to ‘hyperblocks’, and the data
that traverses through the waves is annotated with the corresponding wave number, which are
incremented using the ‘WAVE-ADVANCE’ instructions. This allows the instructions to operate on
the different instances of the instructions.



2338 CMC, 2022, vol.71, no.2

To enforce memory ordering, the Wave-scalar annotates the memory instructions within a
wave with sequence numbers resulting in a chain of operations. For example, Fig. 4 shows a
simple load store sequence with the corresponding sequence numbers. The first element is the
sequence number of the predecessor, the second is that of the instruction itself, and the last
one is that of the successor. The ‘.’ Symbol represents that there is no predecessor or successor
instructions, e.g., in the case when the instructions are first or last respectively. The sequence
numbers are assigned in increasing order, such that the instruction with the larger number should
be executed after the instruction with the smaller sequence number. In cases where there are a
number of predecessor or successor paths, a wild card symbol ‘?’ is employed.

Figure 4: Simple Wave-ordered annotations

In order to ensure that there is a complete chain of memory operations along every path, a
MEMORY-NOP instruction is used in places where there are no memory operations in a path
of a branch. Furthermore, independent memory operations are annotated with a ripple number
to allow parallel execution. Along with the wave-ordered memory, the Wavescalar also provides
support for an unordered memory access scheme to avoid any unnecessary ordering of memory
instructions, and both can be used interchangeably within the same graph as well as the same
wave.

3.2 Hybrid Data Flow/Control-Flow Architectures
As mentioned in the earlier sections, both the Von-Neumann as well as exclusively data flow

machines have their drawbacks and strengths. While the former is simple to implement and well
suited for sequential applications, the latter is useful for exploiting the maximum parallelism.
As such, to combine the benefits of the two different approaches, several proposals were made
which employ a combination of both the models [4,5,15–17]. Some of these employ control flow
execution between ‘execution blocks’ and data flow execution within the blocks e.g., Tera-op,
Reliable, Intelligently adaptive Processing System (TRIPS) [4], Dynamically Specialized Execution
Resource (DySER) [15] and Tartan [16]. On the other hand, other architectures schedule the
blocks in a data-driven manner, while the instructions within a block are scheduled in a control
flow manner e.g., MT-Monsoon [17], Task Superscalar [5]. Based on the separation of the two
execution models on the hardware, we further divide these into two categories as follows.

3.2.1 Conjoint Architectures
In a conjoint architecture, a program is scheduled using both data flow and control flow

scheduling on a single execution substrate as both the models are inherent to the architecture.
This means that there is no scope for executing an application which could benefit from using
either control-flow or data flow exclusively.



CMC, 2022, vol.71, no.2 2339

TRIPS: TRIPS is a dynamic, tile-based data flow architecture, which implements the Explicit
Data Graph Execution (EDGE) ISA. It was proposed at University of Texas, Austin in 2003 [4].

Architecture Overview: TRIPS processor chip consists of three main components – the pro-
cessors cores, the integrated L2 cache organized into a number of tiled banks (M tiles), and
a lightweight routing network (N tiles) as shown in Fig. 5. Within each processor core, is a
4× 4 network of execution nodes (ET), which is basically a single issue ALU tile consisting
of integer and floating-point execution units, operand and instruction buffers and a router that
enables communication with the neighboring ETs by means of a lightweight network referred to as
‘micronets’. Further, it contains four register files (RT) at the top along with four Data (DT) and
Instruction (IT) cache banks each. The tiles communicate with the L2 cache by means of the four
ports. The Global Tile (GT) contains the I-cache tags, block header state and branch predictor
and is responsible for managing the block execution. The compiler delineates 128 instruction
blocks which are grouped into blocks of 8, at each of the execution unit.

Figure 5: TRIPS architecture [4]

Execution Model: The TRIPS compiler partitions the program into ‘hyperblocks’, where each
block consists of 128 instructions and behaves as a ‘megainstruction’. These blocks are scheduled
in a control flow mode, and the instructions within the block and executed in a data-driven



2340 CMC, 2022, vol.71, no.2

manner with direct communication between the instructions. Hence, it can support imperative
languages without much modification.

The blocks are statically scheduled to the computation blocks such that the dependencies
between the instructions is explicitly expressed. Within a block, each instruction sends its result
to the consumer instructions and as soon as all the operands at the instruction arrive, it fires. As
such, each TRIPS instruction only specifies the target locations of the results, which are statically
determined by the compiler.

To exploit more ILP, it provides support for up to 8 blocks of instructions to be executed
simultaneously. That is, the G-tile can predict the next block of instructions, while it fetches and
maps a block onto the execution array. The GT fetches the blocks by using its branch predictor,
where it obtains the predicted block address and then uses the I-cache tags. If it hits, the block
address is broadcasted to the I-cache banks, where each of them streams the block instructions
into the execution array for their corresponding rows.

3.2.2 Accelerator Style Architectures
In data flow accelerator-style architectures, only a portion of the application is executed in a

data flow fashion. The decision on which portion to accelerate is mostly static and is either taken
by the programmer by means of application profiling or statically determined by the compiler.
Furthermore, in some cases it is possible that the entire application may be executed without the
data flow accelerator. We discuss two examples of such architectures in the following sub-sections.

DySER: The Dynamically Specialized Execution Resource (DySER) architecture aims to
combine both parallelism and functional specialization. It was proposed in 2012 at the University
of Wisconsin – Madison [15].

Architecture Overview: DySER works in conjunction with a general-purpose processor and is
designed to be integrated into the execution phase of the pipeline as shown in Fig. 6. It consists
of a 2-dimensional array of heterogeneous Functional Units (FU). Each FU is connected to
four simple switches (S), which form a circuit-switched network, delivering the data and control
instructions into and out of the FUs by forming configurable data-paths. The FUs are configured
by means of a configuration register, to perform a specific function and read its inputs from
a specific switch. The pipelining is implemented by means of a credit-based flow control. The
validity of the data at each FU is checked by means of forward ‘valid’ signal and a backward
‘credit’ signal asserts the possibility of accepting a new data. For this purpose, the FUs also
include the data and status registers. The configuration of DySER takes 64 cycles, and once
configured it can be used multiple times for a given application phase.

The communication with the host processor is enabled via a set of named I/O ports which
correspond to FIFO buffers that deliver the data in and out of the switches. The RISC ISA is
extended by five instructions for enabling DySER configuration and the communication of register
and memory data between the host and the accelerator.

Execution Model: The DySER compiler profiles the application to extract the commonly re-
used ‘accelerable’ portions of the program and explicitly partitions the program into phases. The
assumption is made that for a given program phase, only a few data flow blocks are active
which are invoked multiple times. The DySER block is then configured to execute the DFG,
before it is encountered. The register values are then sent to block or data is directly loaded
from memory for each instance of the graph. This portion of the graph consisting of memory
accesses is called ‘invocation slice’ and the remaining portion with computation operations is



CMC, 2022, vol.71, no.2 2341

called the ‘computation slice’. This separation enables the usual memory optimizations to be
implemented without hurdles. As the data arrives at DySER, it is routed through the block as
per the determined configuration in a data flow manner. It can also speculatively invoke the next
instance of the configuration and pipeline their execution.

Figure 6: DySER architecture and integration into execution pipeline [15]

PLUG: The Pipeline Look-Up Grid (PLUG) is an application specific data flow accelerator
designed for optimally performing data structure lookups in a network processor. It was proposed
at the University of Wisconsin-Madison in 2010 [16].

Architecture Overview: As with other tile-based architectures, the PLUG tile consists of three
regions – processing Cores (µCores), SRAM blocks and Routers. Fig. 7 shows a typical PLUG
tile, consisting of 32 cores (red), 4 memory blocks (green) and 6 routers (blue). These resources
can be configured to form virtual tiles consisting of a subset of all the available resources. As
shown in Fig. 7, the tile is abstracted as consisting of 3 virtual tiles. This enables mapping dif-
ferent code-blocks with different computing, memory or routing requirements to a single physical
tile and hence efficient utilization and helps to reduce scheduling losses. The complexity in wiring
and associated overhead of configuring N cores M memories and R routers is simplified by
implementing certain simple rules in the programming model which result in a set of four buses
driven by tri-state buffers.

The On-Chip network is very simple and requires no buffering or flow control. Again,
contention-free routing is made possible by making use of certain code-generation rules. A
restricted multi-cast is employed, whereby the message is delivered to all the nodes appearing on
the path to the final destination and the compiler makes sure that the all the multi-cast targets
fall on the route when multicast is required.

The µCores are simple 16-bit in-order processors which execute one thread and share the
SRAM and routers. Memory access conflicts are avoided as a result of static instruction schedul-
ing which guaranties that only one core will access the memory block. Memory access can be
done in variable word sizes of 2, 3, 4, 6, 8, 12, 14 and 16 bytes. The PLUG ISA also provides



2342 CMC, 2022, vol.71, no.2

another specialization to RISC ISA, whereby it includes additional formats for bit manipulations
and for enabling on-chip network communication.

Figure 7: PLUG architecture [16]. (a) Tile organization, (b) Single tile partitioned into three virtual
tiles

Execution Model: The PLUG architecture works on the concept of transforming the data-
structure lookups into a structured pipeline of memory and computation operations. It exploits
the inherent structure of the lookup data-structure by mapping the data-structure to on-chip tiled
storage. The parts of the data-structure representing one logical level are grouped to form a big
‘logical page’ with portions of the code, called Code-blocks, associated with each logical page.
These code-blocks are agnostic to each other and perform the memory accesses independently
within the scope of their own logical pages. Furthermore, they determine the next logical page that
should be looked up next which results in a network message, which in turn, triggers the execution
of another code-block. These logical pages are mapped to physical resources, after being explicitly
portioned to match the storage space of the given tile. As such, these code-blocks associated with
each logical page represent the nodes of the DFG and execution of programs is data flow driven
by messages sent from tile to tile.

Besides generating the assembly code for the code-blocks, the compiler is also responsible
for partitioning the logical pages into smaller physical pages, which can then be mapped to the
specific tiles. The logical pages are generally lists of data-blocks, and the compiler simply divides
these into equal sized chunks such that these are small enough to fit in a single memory. To map
the DFG to PLUG chip, a greedy scheduling algorithm is employed which does a breadth first
traversal and assigns them to the tiles which are ranked based on the distance from the reference



CMC, 2022, vol.71, no.2 2343

point (Input port). Moreover, the compiler also has the responsibility to assign the DFG arcs to
the On-chip network for which a graph-coloring approach is employed.

4 Comparison and Discussion

In this section we compare the above-mentioned architectures and broadly discuss their advan-
tages and drawbacks. Tab. 1 summarizes the main features of these architectures. Features which
present advantages are marked with (+) and those that are disadvantageous are marked with (−).
The advantages and disadvantages are discussed in the text.

Table 1: Comparison of the main features of the discussed architecture

Feature Architecture

Wavescalar DFSC TRIPS DySER PLUG

Compute Unit
organisation

Homogeneous
PEs in 2D tiles,
hierarchical
grouping into
pods, domains &
clusters (+)

Homogeneous PEs
in non-hierarchical
organisation (-)

Hierarchical
grouping of
heterogeneous
Execution units into
Tiles and cores

Heterogeneous
compute
units organized.
in flat 2D network

Homogenous
Units organised in
tiles and cores

Scale 2000 PEs (+) Up to few hundred
DFUs depending
on resource
availability (-)

100 Execution units Approx. 8–10
execution
units

Few hundred
µCores

Network Unit
Organisation
& Routing

Crossbar
interconnect within
domains, packet
switched
interconnect between
domain (+)

Custom crossbar
interconnect

Micronets between
adjacent compute
units. Separate tiled
network outside
cores for memory
requests

2D single grid
network

Lightweight no
buffering 2D
multigrid
network (+)

Granularity of
execution
block

64-instruction block Single instruction 128-instruction
blocks (+)

Few Hundred
Instructions

256-instruction
block

Parallelism level ILP, TLP (+) ILP ILP, TLP, DLP ILP, TLP ILP
ISA Wavescalar Custom DFSC ISA EDGE RISC (+) RISC (with

Specialization) (+)
Scheduler Inter-domain: by

Function, Topology
and Execution
Order.
Intra-domain:
custom Fine
DAWG algorithm

(NA) Optimized Spatial
Path Scheduler (-)

Specialized greedy
algorithm

Hand-scheduled (-)

4.1 Exclusively Data Flow Architectures
The Wavescalar is the most prominent architecture belonging to this class. Another recent

FPGA-based architecture was proposed, called the Data Flow Soft Core (DFSC) in 2016 [18].
While the Wavescalar is aimed to be a general-purpose processor, the DFSC on the other hand
is designed for accelerating scientific computations. The first architectural difference between the
two lies in the organization of the compute and routing resources. While the Wavescalar groups
the PEs in a hierarchical manner with different interconnection methods at different levels, the
DFSC organizes them in a flat manner with a custom crossbar. Although the flat organisation is
simple to implement and manage, the hierarchical organization provides advantages in terms of



2344 CMC, 2022, vol.71, no.2

communication latency, as the PEs in the pods can snoop on each other’s ALU. With the right
placement algorithm employed, the frequently communicating instructions are placed as close to
each other as possible, which could avoid long latency of a ‘mesh’ interconnect. Furthermore, the
packet based inter-cluster network is simplified by organising the pods into domains and making
it possible to work at a higher abstraction level, without caring about individual PEs or pods.

The tiled structure of Wavescalar enables building large computation substrate with up to
2000 PEs, by appending the tiles together, which are easy to reproduce. The DFSC on the other
hand relies on the sufficient availability of compute and interconnection resources on the FPGA,
however, making it relatively easy to implement.

The support for imperative languages is the major advantage of the Wavescalar architecture
as it eliminates the use of functional programming languages as in the case of many data
flow processors. However, the Wavescalar literature does not cover the process of loading and
termination of DFGs in much detail, which is possibly the main drawback of this architecture.
Furthermore, the scheduling algorithm it employs, has only been experimentally evaluated, and its
optimality hasn’t been proved formally [19].

4.2 Conjoint Data Flow Architectures
TRIPS effectively redefined the concept of data flow computing by combining the data flow

scheduling with control flow. By allowing control-flow scheduling at for inter-block scheduling, it
provides the support for imperative languages which is a major advantage. Along with exploiting
ILP, it can also employ loop-unrolling or multithreading to exploit DLP or TLP respectively.

The concept of ‘megainstructions’ enables amortization of the sequential semantics over 128
instruction blocks. Moreover, the functional units in the substrate can be configured according to
the desired application providing much flexibility to the processor.

A major drawback that has been identified with TRIPS is the placement of instructions. The
scheduler isn’t able to optimally map the instructions to minimize communication latencies and
contention [17].

4.3 Accelerator Style Architectures
The accelerator-style data flow processors seem to be the most promising solutions currently.

That is because they are mostly aimed at applications, which contain frequently recurring portions
of computations that have little data dependencies, for example, in the case of signal processing
algorithms where the same computation is performed on an array of values. The Von-Neumann
architectures employ techniques like vectorization to implement such algorithms but given the
availability of multiple execution resources in typical tiled substrates, data flow computing could
potentially better exploit the parallelism in these applications. For instance, DySER was shown to
outperform SIMD (Single Instruction Multiple Data), for several benchmarking applications like
convolution and volume rendering [15].

The PLUG architecture on the other hand is application specific and has been shown to
perform competitively with other conventional specialized designs and even outperforms some in
terms of power efficiency while providing more flexibility and programmability [16]. The power
efficiency can be attributed to the lightweight designs of the computation and communication
resources, in addition to efficient parallelism exploitation using the data flow programming model.

Most of the architectures in this category depend on the static determination of accelerable
portions of the code by profiling and hence the configuration of the accelerators is determined



CMC, 2022, vol.71, no.2 2345

statically. This limits the run-time adaptability and requirement of profiling information serve as
major drawback for the architectures in this class. Furthermore, there are parallel applications,
which have a high communication/computation ratio that limit the speedups of the application.

5 Conclusions and Future Work

In this paper a survey of the recent data flow architectures was presented. These were
classified on the basis of the execution model that the architectures adopted and the separation of
the two models in the case of hybrid architectures. Furthermore, a few advantages and drawbacks
of the architectures belonging to each of these classes were discussed. This led to a number
of questions that could be of interest and addressed in the future work. Firstly, the scheduling
algorithms corresponding to each of the presented architectures could not be comprehensively
understood. And as such, several questions still remain unanswered: a) How the algorithms
ensure maximum utilization of each execution unit b) the efficiency of implemented pipelines c)
the process of termination and replacement of DFGs. The Integer Linear Programming based
generic scheduling framework [20] addresses the first two questions by applying certain constraints,
however it generates around 20–25 constraints and as such the feasibility of such framework
needs to be evaluated. Furthermore, the interplay of control cores and accelerators could not be
considered in much detail and leaving the picture incomplete. Lastly, the support for imperative
languages and memory ordering schemes was only covered for the Wavescalar architecture in detail
and needs more work for the remaining architectures.

There have been considerable advancements in the data flow computing architectures over the
years, and some prototypes, particularly hybrid ones, have shown promising results. However, there
are still a few challenges that have been identified which need further research before the data flow
computing paradigm becomes a truly competitive alternative to Von-Neumann models in general-
purpose processors. The first major issue is the handling of data-structures e.g., arrays. Since the
data flow processors work with ‘tokens’ which are scalar values, the handling of a collection of
tokens or a data-structure, poses serious challenges. The other major challenge being tackled is
that of the optimal program allocation. The optimal selection of code-block granularity and the
partitioning of programs into code-blocks, to maximize parallelism and minimize communication
costs between the DFG nodes is an essential aspect which would considerably affect the success of
the data flow machines and is being extensively researched. Lastly, optimally limiting the unrolling
of loops to reduce resource requirements and handling of dynamic parallelism are other issues
that is being addressed [5–21].

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a basic data-flow processor,” in Proc.

of the 2nd Annual Symp. on Computer Architecture - ISCA ’75, New York, NY, USA, pp. 126–132, 1974.
[2] A. L. Davis, “A data flow evaluation system based on the concept of recursive locality,” in 1979 Int.

Workshop on Managing Requirements Knowledge (MARK), New York, NY, USA, pp. 1079–1086, 1979.
[3] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam et al., “The waveScalar architecture,”

ACM Transactions on Computer Systems, vol. 25, no. 2, pp. 1–54, 2007.



2346 CMC, 2022, vol.71, no.2

[4] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John et al., “Scaling to the end of silicon
with EDGE architectures,” Computer, vol. 37, no. 7, pp. 44–55, 2004.

[5] B. Lee and A. R. Hurson, “Issues in dataflow computing,” in Advances in Computers, vol. 37, Elsevier,
pp. 285–333, 1993.

[6] A. H. Veen, “Dataflow machine architecture,” ACM Computing Surveys, vol. 18, no. 4, pp. 365–396,
1986.

[7] A. L. Davis, “The architecture and system method of DDM1: A recursively structured data driven
machine,” in Proc. of the 5th Annual Symp. on Computer Architecture - ISCA ’78, Palo Alto, CA, USA,
pp. 210–215, 1978.

[8] A. Plas, D. Comte, O. Gelly and J. C. Syre, “LAU system architecture: a parallel data driven processor
based on single assignment,” in Proc. of the 1976 Int. Conf. on Parallel Processing, Michigan, USA, pp.
293–302, 1976.

[9] R. Vedder and D. Finn, “The hughes data flow multiprocessor: Architecture for efficient signal and
data processing,” ACM SIGARCH Computer Architecture News, vol. 13, no. 3, pp. 324–332, 1985.

[10] J. R. Gurd, C. C. Kirkham and I. Watson, “The manchester prototype dataflow computer,” Communi-
cations of the ACM, vol. 28, no. 1, pp. 34–52, 1985.

[11] M. Kishi, H. Yasuhara and Y. Kawamura, “DDDP-A distributed data driven processor,” in Proc. of
the 10th Annual Int. Symp. on Computer Architecture - ISCA ’83, Stockholm, Sweden, pp. 236–243, 1983.

[12] N. Ito, M. Sato, E. Kuno and K. Rokusawa, “The architecture and preliminary evaluation results of
the experimental parallel inference machine PIM-D,” ACMSIGARCHComputer Architecture News, vol.
14, no. 2, pp. 149–156, 1986.

[13] K. Hiraki, K. Nishida, S. Sekiguchi, T. Shimada and T. Yuba, “The SIGMA-1 dataflow supercomputer:
A challenge for new generation supercomputing systems,” Journal of Information Processing, vol. 10, no.
4, pp. 219–226, 1987.

[14] S. Swanson, K. Michelson, A. Schwerin and M. Oskin, “Wavescalar,” in Proceeding of the 36th Annual
IEEE/ACM Int. Symp. on MicroArchitecture - MICRO ’36, San Diego, CA, USA, pp. 291–302, 2003.

[15] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish et al., “DySER: Unifying functionality
and parallelism specialization for energy-efficient computing,” IEEE Micro, vol. 32, no. 5, pp. 38–51,
2012.

[16] A. Kumar, L. De Carli, S. J. Kim, M. de Kruijf, K. Sankaralingam et al., “Design and implementation
of the PLUG architecture for programmable and efficient network lookups,” in Proc. of the 19th Int.
Conf. on Parallel Architectures and Compilation Techniques - PACT ’10, Vienna, Austria, pp. 331–341,
2010.

[17] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz et al., “An evaluation of the TRIPS
computer system,” ACM SIGARCH Computer Architecture News, vol. 37, no. 1, pp. 1–12, 2009.

[18] L. Verdoscia and R. Giorgi, “A data-flow soft-core processor for accelerating scientific calculation on
FPGAs,” Mathematical Problems in Engineering, vol. 2016, pp. 1–21, 2016.

[19] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin et al., “Instruction scheduling for a
tiled dataflow architecture,” ACM SIGARCH Computer Architecture News, vol. 34, no. 5, pp. 141–150,
2006.

[20] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan et al., “A general constraint-
centric scheduling framework for spatial architectures,” ACM SIGPLAN Notices, vol. 48, no. 6, pp.
495–506, 2013.

[21] D. E. Culler and A., “Resource requirements of dataflow programs,” ACM SIGARCH Computer
Architecture News, vol. 16, no. 2, pp. 141–150, 1988.


