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Abstract: Segmentation of vessel in retinal fundus images is a primary step
for the clinical identification for specific eye diseases. Effective diagnosis of
vascular pathologies from angiographic images is thus a vital aspect and
generally depends on segmentation of vascular structure. Although various
approaches for retinal vessel segmentation are extensively utilized, however,
the responses are lower at vessel’s edges. The curvelet transform signifies edges
better than wavelets, and hence convenient for multiscale edge enhancement.
The bilateral filter is a nonlinear filter that is capable of providing effective
smoothing while preserving strong edges. Fast bilateral filter is an advanced
version of bilateral filter that regulates the contrast while preserving the
edges. Therefore, in this paper a fusion algorithm is recommended by fusing
fast bilateral filter that can effectively preserve the edge details and curvelet
transform that has better capability to detect the edge direction feature and
better investigation and tracking of significant characteristics of the image.
Afterwards C mean thresholding is used for the extraction of vessel. The
recommended fusion approach is assessed on DRIVE dataset. Experimental
results illustrate that the fusion algorithm preserved the advantages of the both
and provides better result. The results demonstrate that the recommended
method outperforms the traditional approaches.

Keywords: Blood vessel extraction; curvelet transform; fast bilateral filter;
C mean thresholding

1 Introduction

Blood vessels are the preeminent and utmost steady structure that gives the idea inside the retina
that can be directly inspected in vivo. The success of analysis for ophthalmologic ailments is relying
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on the timely recognition and modification in pathology of retina. The physical labelling of blood
vessels is a tedious procedure which requires expert trainer. Automated segmentation offers steadiness
and accurateness and decreases the time consumption by a surgeon or a technical expert for manual
portraying. Thus, an automatic certain technique of vessel segmentation is beneficial for the rapid
identification and characterization of the morphological variations in the retinal blood vessel. Usually,
the automated extraction of the retinal images is a difficult task. The leading complications in the retina
images are the insufficient contrast, illumination differences, noise effect, and anatomic changeability
subjected to the individual patient. The treelike geometry is frequently twisted and complex due to
which the features such as bifurcations and overlaps may mislead the recognition scheme. Furthermore,
the challenges encounter in automated vessel recognition involves a broad variety of vessel widths, low
contrast over background, and presence of various of structures in the image comprising of optic disc,
the retinal boundary, the lesions, and other pathologies.

Numerous principles and approaches for the segmentation of retinal blood vessel are described
in the literature. Fraz et al. [1] have given a detailed report for the various approaches available
for the retinal vessel segmentation. Detection of retinal blood vessel segmentation is classified into
techniques on the basis of pattern recognition, match filtering technique, morphological approach,
vessel tracking, multiscale analysis, and model-based algorithms. The pattern recognition approaches
are categorized into two types: supervised approaches and unsupervised approaches. Etraction of
blood vessel features and classification is coming under supervised approach. These approaches
comprise principal component analysis, neural networks, k nearest neighbour classifiers, support
vector machine (SVM). Some of the unsupervised approaches that use ground truth data include
matched filtering along with specially weighted fuzzy C-means clustering, radius based clustering
algorithm, maximum likelihood estimation of vessel parameters.

In spite of the fact that continuous development and efforts are addressed in the area of fundus
image analysis, various challenges still required to be overcome. Furthermore, noise and low contrast
still express as a vital hindrance to accomplish the high-quality enhancement, especially for optical
imaging.

Thus, this work recommends a new algorithm for the enhancement of the vasculature by fusing
traditional curvelet transform with fast bilateral filter (FBF) and top hat filter. In this work multi-
wavelet transformation is explored by utilizing curvelet transform that provides superior spatial and
spectral localization of retinal image in comparison to other multi-scale representations. The reason is
that the curvelet transform handles curve discontinuities efficiently with small number of coefficients.
For denoising and preserving the edges of the retinal images FBF is used that consists of range and
space filter. For space filtering, values nominated demonstrate the preferred amount of combination
of pixels, while the range filtering selects values based on the low pass filtering. The FBF technique
requires two parameters: range parameter (σr) and spatial parameter (σs) that control the response of
filter. Therefore, it is highly necessary to select the values of the two parameters carefully to achieve
better accuracy possible. In the next step top hat transform is applied to highlight the vasculature
against the background. For segmentation of retinal blood vessel C-mean thresholding is employed.

The execution and strength of the suggested technique is verified on DRIVE retinal image
database. The results obtained in this work shows remarkable achievement, almost close to the state-
of-art approaches recently available in the literature. In comparison to other studies, the suggested
approach has numerous superiorities, such as the edges of the retinal images can be enhanced by
directly modifying the curvelet coefficients, and simultaneously edges can be preserved during the
denoising process through FBF.



CMC, 2022, vol.71, no.2 2461

Some of the relevant works related to supervised and unsupervised approaches for retinal vessel
segmentation and bilateral filtering used for various applications that have been published are
discussed below.

2 Related Work

Generally, most of the vessel segmentation approaches take up the green component of the
image, since the noise level is lower and contrast is higher in this channel. Soares et al. [2] have
recommended an approach, which grouped the pixels as vessel or non-vessel once utilizing supervised
classification. Lupascu et al. [3] have utilized AdaBoost for the construction of a classifier. Chaudhuri
et al. [4] Have proposed approaches that depends on matched filtering convolve with 2-Dimensional
(2D) templates and are configured to represent the features of the vasculature. Kovacs et al. [5] also
suggested an approach depend on matching of template and contour reconstruction. Annunziata et
al. [6] have recommended a method in which the presence of exudates in retinal images are reported.
Dashtbozorg et al. [7] have suggested a new approach to classify the blood vessels that depends
on geometrical structure of vessels. Estrada et al. [8] have proposed a graph theoretical method
by extending a global likelihood technique. Relan et al. [9] have employed least square-support
vector machine approach for the classification of veins on four-color features. Vascular tortuosity
measurement is vital for diagnosing of diabetes and several diseases related to central nervous system.
Hart et al. [10] have suggested a tortuosity measurement and classification of vessel segmentation
and networks, also summarized the previous works. Grisan et al. [11] have recommended a new
technique to evaluate the tortuosity through partitioned of every segmented vessel and afterwards
combined every evaluation. Wang et al. [12] have recommended a multiwavelet kernels and multiscale
hierarchical decomposition for vessel segmentation. Fathi et al. [13] have recommended a method to
segment the vessel and estimate the diameter of the vessel using automatic wavelet transform. Aslani
et al. [14] have suggested a supervised technique based on robust hybrid features for the segmentation
of vessel. Azzopardi et al. [15] have recommended COSFIRE filters for the segmentation of vessel.
Roychowdhury et al. [16] have recommended extraction of major vessel and classification of subimage
to segment the blood vessels. Roychowdhury et al. [17] have recommended an iterative vessel segmen-
tation. Imani et al. [18] have proposed a technique for vessel identification through morphological
component analysis. Panda et al. [19] have done the vessel segmentation through Binary Hausdorff
Symmetry measure using growing of Seeded region. Tan et al. [20] have extracted the vessel using
salient points network. Rodrigues et al. [21] have recommended segmenting the blood vessels and
optic disc utilizing wavelets, morphology, and Hessian-based multiscale filtering. Farokhian et al.
[22] have recommended segmenting of retinal vessel utilizing automatic parameters selection of gabor
filter. Jiang et al. [23] have recommended an approach of segmenting the blood vessel utilizing fully
convolutional network with transfer learning. Wang et al. [24] have proposed s cascade classification
technique to segment the blood vessel. Sazak et al. [25] have recommended a vessel enhancement and
extraction method using multiscale bowler-hat transform. Primitivo et al. [26] have suggested a hybrid
model by combining Lateral Inhibition and Differential Evolution for retinal vessel segmentation.
Shah et al. [27] have recommended a model of Gabor wavelet and line detector for vessel extraction.
Dash and Senapati have enhanced the detection of vessel using a fusion of discrete wavelet transform
(DWT) with Gamma Corrections and coye filter [28–30].

Multiresolution analysis has been effectively utilized in image processing particularly in segment-
ing the image. In recent times, the finite ridgelet and curvelet transforms have been presented as a
higher dimensional tool. Curvelet transform is an addition of wavelet transform that focuses to carry
out exceptional phenomena arising alongside curved edges in 2D images. The generations of curvelet
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transforms are: i) First generation curvelet transform (“Continuous Curvelet Transform”) and ii)
Second generation Fast Discrete Curvelet Transform (FDCT). The decomposition of curvelet occurs
in four steps functioning as smooth portioning, subband decomposition, analysing of Ridgelet and
renormalization [31].

Many efforts have been introduced using curvelet transform in order to segment retinal images. In
2016, Aghamohamadian-Sharbaf et al. [32] have utilized curvlet transform for automatic classifying
blood vessel tortuosity of retina. In 2011, Miri et al. [33] have recommended a new methodology of
segmenting the retinal blood vessel utilizing multistructure morphology operators. Curvelet transform
is employed for achieving multistructure morphology. Esmaeili et al. [34] have recommended a new
technique for enhancing the retinal blood vessels using curvelet transform.

Even though enhancement of retinal blood vessel is one of the vital issues in segmentation,
yet preserving of edges while denoising is also equally important matter that has to be considered
during segmentation. Bilateral filtering is an approach through which the edges can be preserved while
denoising the images. The main purpose of the bilateral filter is to replace the intensity of every pixel
of the image with a weighted average of intensity values of close by pixels. Tomasi et al. [35] have
initially suggested the edge-preserving filter named as bilateral filter. The fundamental idea of bilateral
filtering is that it creates a nonlinear combination of similar pixel values. Afterwards there are many
extensions of bilateral filter and implemented for various applications like illumination correction,
dynamic range compression, photograph enhancement, multiresolution bilateral filtering for image
denoising, fast estimation of bilateral filter utilizing signal processing method, and texture analysis
[36,37]. Few authors have proposed an improvement in structure preservation by clearly counting the
structure with a supplementary weight that depends on the local shape and orientation of the data for
medical image representation [38,39].

The arrangement of the paper is as follows: In Section 2 brief review of the preliminary concepts
are presented. In Section 3 “Proposed Methodology” the detail technique for retinal vessel extraction
is explained. The results are discussed in In Section 4 “Experimental Evaluation”. Lastly, some
conclusions are drawn in Section 5 “Conclusions”.

3 Preliminary Concepts

This section presents the significant aspects that are utilized in the proposed methodology are
revised. They comprise curvlet transform, bilateral filter, fast bilateral filter, and top-hat transform.

3.1 Curvelet Transform

Candes et al. have suggested Curvelet transform that is derived from Ridgelet transform. The
curvelet transform is appropriate for the image that is eradicated from discontinuities to the other side
of curves. Curvelet transform handles curve discontinuities in a fine manner because it is designed to
handle curves utilizing only a small number of coefficients. The multiwavelet transformation offers
better spatial and spectral localization of image when compared with other multiscale representations.
However, here the curvelets via wrapping is implemented as it is faster and have less computational
complexity. In this technique, the Fourier plane is split into different concentric circles, mentioned
as scale; individually these concentric circles are once more split into different angular divisions,
mentioned as the orientation. This fusion of the scale and the angular division is notable as parabolic
wedges. In the frequency domain the structural activity is captured by radial wedges, and high
anisotropy and directional sensitivity are the integral features of the curvelet transform. For finding
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the curvelet coefficients, inverse FFT is computed on each scale and angle. The curvelet transform
consists of four stages and implemented as given below.

Initially in the subband decomposition the image is first decomposed into log2N (N is the size of the
image) wavelet subbands and then curvelet subbands are generated by forming partial reconstruction
from these wavelet subbands at various levels. The subband decompositions denoted as

f → (P0f , �1f , �2f , . . .) (1)

where P0→ lowpass filter, Δ bandpass (highpass) filters

The image is distributed into resolution layers P0. All layers include the particulars of various
frequencies.

In the next step of smooth portioning, every subband is smoothly windowed into ‘squares’ of a
suitable measure. A grid of dyadic squares is described as:

I(s, k1,k2) =
[

k1

2s
,

k1 + 1
2s

]
×

[
k2

2s
,

k2 + 1
2s

]
∈ Is (2)

Let P be a smooth window function. For every square, PI is a displacement of P localized close to
I . By the Multiplication of �sf with PI yields a smooth dissection of the function into ‘squares’.

hI = PI�sf (3)

This stage follows the windowing partition of the subbands isolated in the former step of the
algorithm.

�sf = PI�sf I ∈ Is (4)

In the next step of renormalization, every resultant square is renormalized to unit scale. For a
dyadic square Q, renormalized unit scale is given as below.

gQ = T−1
Q hQ (5)

Lastly, inverse curvelet transform is applied to achieve the curvelet enhanced image.

The digital curvelet transform applied on a 2D image f (x, y), such that 0 < x ≤ M and 0 < y ≤ N,
gives a set of curvelet coefficients C(s, θ , k1, k2) as follows.

C(s, θ , k1k2) =
0<x≤M∑
0<y≤N

f (x, y)ϕs,θ ,k1k2
(x, y) (6)

Here‘s’ represents the scale or no of decomposition level, ‘θ ’ represents orientation, ‘k1’ and ‘k2’
indicate spatial location of curvelet, ϕ and ‘f (x, y)’ indicates the image in spatial domain. Thinner and
sharper curvelets can be obtained by increasing the decomposition levels. The schematic diagram of
the general steps of the curvelet transform is given in Fig. 1.
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Figure 1: General steps of curvelet transform

3.2 Bilateral Filter and Fast Bilateral Filter

One of the vital issues of image processing is to successfully eliminate noise from an image while
preserving its features. Noise elimination is a problematic assignment because various kinds of noises
like additive, impulse or signal dependent noise may corrupt images. The solution is subjected to the
nature of noise added to the image. The bilateral filter has better effects in eliminating noise while
stabilizing edges in images. Afterwards many extensions of bilateral filter are done according to the
requirement and to achieve better performance. One of the extensions is fast bilateral filter.

A standard form of the bilateral filter is considered in which a Gaussian kernel is utilized for range
filtering, and a box or Gaussian kernel is utilized for spatial filtering. In this background, the bilateral
filtering of an image {f (1) : 1 ∈ I}, where I is some finite rectangular domain of Z2, is given as below.

fBF(1) =
∑

j∈�
w(j)gσr(f (1−j)−f (1))f (1−j)∑

j∈�
w(j)gσr(f (1−j)−f (1))

(7)

where

gσr(t) = exp
(

− t2

2σ 2
r

)
(8)

The spatial filter is a Gaussian:

w(1) = exp
(

−||1||2

2σ 2
s

)
(1 ∈ �) (9)

The fundamental background is to approximate directly the translated Gaussians appearing in
Eq. (7) instead of approximating Eq. (8) and then translating the approximation in range space.
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3.3 Top Hat Transform

In image processing, top-hat transform is a process in which minute features and particulars are
extracted from a specified image. Generally top-hat transforms are available in two different types
such as white top-hat transform and black top-hat transform. The difference between the input image
and its opening through some structuring element is known as white top-hat transform. Top-hat
transforms are utilized for different image processing assignments like image enhancement, extraction
of features, equalization of background etc. In this work white top-hat transform is utilized for retinal
blood vessel enhancement. The white top-hat transform yields an image, comprising those elements
of an input image which are brighter than its surroundings and smaller than the structuring element.
Top-hat transformed images consist only non-negative values at all pixels. Let P is the grayscale image
and s(x) be a grayscale structuring element then white Top-hat transform of P is represented as follow.

M(P)tophat = P − (Pos) (10)

4 Materials and Methods

In this section, the suggested approach that combines top-hat transform and FBF with curvelet
transform based on mean-C thresholding is suggested for vessel segmentation is explained in detail.
The entire process comprises different operations and the entire proposal is split into three computing
stages: preprocessing, processing, and post processing. Preprocessing stage consists of all the denoising
and enhancement techniques. C mean thresholding is employed for segmentation in processing stage.
Morphological cleaning is done in postprocessing stage.

The suggested approach contains of various steps. Initially, FBF is applied on retinal images.
Further the filtered images are passed through curvelet-transformed. In the next step for highlighting
the blood vessels against background top hat filter is applied. Mean-C thresholding is applied for the
extraction of retinal blood vessel. The images acquired from the above process contain of some non-
vessel that is eradicated with the help of morphological cleaning operation. A diagrammatic outline
of the suggested method is narrated in Fig. 2 accompanied by output images.

Figure 2: Schematic outline of the suggested methodology

To achieve superior performance accuracy, it is vital to work effectively on pre-processing stage.
In this stage, few processes such as image enhancement, noise removal, removal of uneven background
illumination are carried out. Thus, in retinal segmentation process pre-processing is a vital step. For the
entire process of retinal vessel extraction, the green channel of the RGB image is chosen as it exhibits
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best contrast. Fig. 3a represents the original input image and Fig. 3b represents the green channel
image. Therefore, the steps of the suggested model start with extracting the green channel from the
colour retina image. The proposed method comprises of various steps that are described as below.

Figure 3: (a) Original retinal image (b) image extracted from green channel (c) fast bilateral filter
transformed image (d) curvelet transform image (e) fast bilateral filter and curvelet transformed image
(f) fast bilateral filter, curvelet, and top hat transformed image

4.1 Preprocessing
4.1.1 Edge Preserving and Noise Removal by Using Fast Bilateral Filter

In general, white Gaussian noise occurs in retinal images that has to be removed carefully and
effectively without losing image information details. Thus, while filtering process retaining of the thin
retinal vessels are challenging task. For noise removal FBF is utilized in the work.

In general, the bilateral filter has numerous potentials that describe its accomplishment as
follows.

• It is simple to construct. Every pixel is substituted by a weighted average of its neighboring
pixels. This characteristic is vital as it produces an uncomplicated filter to achieve its insight
performance. Also, it helps to adjust and implement the filter according to the application-
specific requirements.

• For preservation the size and contrast of the features are the two important parameters through
which the bilateral filter is characterized

• It can be utilized in a non-iterative mode. This helps the parameters simple to fix because their
consequence is not cumulative over various repetitions.

Hence, the two parameters that control the bilateral filter are range parameter (σr) and spatial
parameter (σs). Also, the filter depends on window size. Parameters σr and σs define the amount of
filtering for the input image. Even though bilateral filter is being utilized extensively, however, there
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is no substantial theoretical basis on selecting the optimum values. These values are often chosen by
trial and error. Thus, in this work it is empirically analyzed and selected these parameters for image
denoising.

Then bilateral filter is applied on the original retinal images by selecting different values of σr and
σs. For a fixed value of σs, retinal bilateral filtered images are generated with different values of σr.
The window size of the bilateral filter is another important parameter and, in our method, we set it
to be 5 × 5. The underlying idea is that images can be processed considering various values of σs and
σr, according to which the top hat transformed are derived into set of new images. These set of new
images are further processed using curvelet transform and morphological cleaning operation, and to
observe that at which combination of σs and σr enhanced retinal images are better preserved. Fig. 3c
represents the FBF transformed image.

4.1.2 Enhancement of Vasculature by Curvelet Transform

The thicknesses of the retinal images slowly decrease when distance from optic disk is increased.
The thick vessels fragmented into several thin branches. The illumination of the non-vessel regions is
also decreased as the distance from the optic disk increased.

To overcome this challenge FBF transformed images are further processed through curvelet
transform. The purpose of choosing curvelet transform is explained below.

In the curvelet transform, the curvelets are designed to pick up curves utilizing only a small
number of coefficients. Therefore, the curve discontinuities are managed finely with curvelets. Main
advantages of curvelet transform are its sensitivity towards directional edges and contours and its
ability of representing them by less numbers of sparse nonzero coefficients. Thus, compared with
wavelet transform, curvelet transform can effectively present the edges and curves with slighter number
of coefficients. Furthermore, curvelet transforms is utilized to enhance the contrast of an image by
highlighting its edges in several scales and directions. Fig. 3d represents curvelet transformed image
and Fig. 3e illustrates the fusion of FBF and curvelet transformed image.

4.1.3 Highlighting of Vasculature by Top-Hat Filter

Generally, the blood vessels are darker than surrounding tissues. To highlight the vessels top hat
filter is employed. The above transformed images are further processed through top hat filter. The
reason for selecting the top hat filter is described below.

In mathematical morphology, top-hat transform is a process of extraction of small or narrow,
bright or dark features in an image. It is beneficial when variations in the background mean that
a simple threshold cannot achieve this. Fig. 3f represents the final output image obtained from the
fusion of FBF, curvelet transform, and top hat filter.

4.2 Processing
4.2.1 Mean-C Thresholding for Vessel Extraction

In this research mean-C thresholding method is considered. In this process based on local statistics
like mean and median of the image thresholding is computed for every pixel. The threshold is upgraded
every time. The core benefit of this approach is that it can be applied to uneven illuminated images.
The steps for the mean-C thresholding are described as follows.

i. Initially the mean filter with window size M × M is chosen.
ii. The transformed image achieved through all the processes is convolved with mean.
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iii. By taking the difference of convolved image and transformed image, a new difference image is
obtained.

iv. Considering a constant value C, the difference image is thresholded.
v. The complement of thresholded image is computed.

4.3 Postprocessing

Once the vessel is extracted by applying thresholding, a postprocessing stage is applied for
the elimination of noise or artifacts produced throughout the thresholding procedure. In this step,
morphological cleaning operations: closing and opening are utilized to remove the non-vessel. One
more essential cause of such process is to reconstruct those elements that are taken into consideration
as a portion of vessel.

5 Results and Discussion

This section illustrates the efficiency of the recommended methodology when assessed over one
publicly available DRIVE data image. This dataset is consisting of 40 colour fundus images of sizes
565 × 584 pixels 8 bits per colour channel and are taken by Canon CR5 non mydriatic 3CCD camera
with 458 field of view. It is divided into two sets of test and train both carrying 20 images. The training
group images are physically segmented once, while the testing images are two times. Three human
observers who are trained by an ophthalmologist are segmenting manually each retinal image. The
resultant sets from manual segmentation of the test case are utilized as ground truth image for this
work.

The efficacy of the recommended method is assessed by calculating different performance metrics
like sensitivity (Sen), accuracy (Acc) and specificity (Spec) with different wavelets and different values
of range and spatial parameters. Sensitivity quantifies the techniques of ability to detect the vessel
pixel correctly while specificity is the computation of ability of the segmentation approach to mark
non-vessel pixels. Accuracy is the computation of ability to find out the degree of conformity of the
segmented image to the ground truth image.

For the computation of the performance of algorithm of the suggested approach, comparison of
output of the segmented image and ground truth image is done by calculating the four parameters like
true positive (TP), False negative (FN), true negative (TN), and false positive (FP). To analyse and
quantify the method’s efficiency the segmented result is compared with the ground truth and several
performance measures like Sen, Acc and Spec are calculated.

Accuracy = (TP + TN)/(TP + FN + TN + FP) (11)

Sensitivity = TP/(TP + FN) (12)

Specificity = TN/(TN + FN) (13)

Initially the performance metrics are evaluated for the original curvelet transform and the results
are listed in Tab. 1. The performance metrics are computed for each image using the formulas given
above and then the values are averaged in order to achieve a single performance measure. The Sen,
Spec, and Acc attained for the original curvelet transform are 0.6537, 0.9878, and 0.9588 respectively.
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Table 1: Performance evaluation of original curvelet transform

Image Sen Spec Acc

R1 0.698404 0.987735 0.96192
R2 0.67813 0.991474 0.95938
R3 0.61317 0.986996 0.94973
R4 0.623048 0.994029 0.9599
R5 0.612157 0.993951 0.958183
R6 0.591294 0.991724 0.95274
R7 0.628814 0.986418 0.95374
R8 0.611857 0.985877 0.953697
R9 0.628398 0.989931 0.960632
R10 0.621189 0.991681 0.961189
R11 0.650259 0.986402 0.95631
R12 0.655002 0.98716 0.95848
R13 0.582163 0.982489 0.952373
R14 0.707126 0.980249 0.958168
R15 0.701194 0.980372 0.960392
R16 0.669967 0.989716 0.960847
R17 0.653239 0.986442 0.958316
R18 0.685932 0.986232 0.962438
R19 0.780461 0.991064 0.973594
R20 0.682629 0.988011 0.965553
Average 0.6537 0.9878 0.9588

The next step is the suggested approach of fusion of FBF, curvelet transform, and top-hat filter
in which performance metrics are evaluated by taking various values of σr and σs. The various values
chosen for σs are 0.3, 0.4 and 0.5, similarly the values selected for σr are 5, 6, 7, 8, and 9. For a particular
fixed value of σs different values of σr are applied to the retinal images, and afterwards the performance
metrics achieved by following the steps as described in Section 4. The results obtained are tabulated
in Tabs. 2–4 respectively. Even though, it is observed that for many different combinations of σs and
σr incremented performance metrics are obtained, however, only the highest values are considered for
the averaging of each performance measure and listed in the tables. When σs = 0.3 from Tab. 2 the
corresponding average Sen, Spec, and Acc achieved are 0.6791, 0.9899, and 0.9621. When σs = 0.4
from Tab. 3 the corresponding average Sen, Spec, and Acc attained are 0.6813, 0.9900, and 0.9629.
When σs = 0.5 from Tab. 4 the corresponding average Sen, Spec, and Acc attained are 0.6907, 0.9904,
and 0.9640. Consequently, as the combination of σs at 0.5 with various values of σr delivers the best
results and that are taken as final values for comparing with other approaches.
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Table 2: Performance evaluation curvelet transform based on FBF with σ s =0.3

Retinal images
with various σ r

Sen Spec Acc

R1, σr = 7 0.716912 0.988968 0.967783
R2, σr = 6 0.696388 0.993966 0.963492
R3, σr = 6 0.659465 0.989909 0.958576
R4, σr = 9 0.673177 0.996073 0.966977
R5, σr = 7 0.689076 0.99562 0.959749
R6, σr = 6 0.639327 0.991367 0.954403
R7, σr = 5 0.651864 0.988272 0.961079
R8, σr = 5 0.629395 0.986187 0.956973
R9, σr = 8 0.63771 0.98996 0.965207
R10, σr = 8 0.636397 0.990937 0.964922
R11, σr = 7 0.669352 0.988397 0.959282
R12, σr = 6 0.668059 0.989518 0.959828
R13, σr = 9 0.601104 0.990329 0.958276
R14, σr = 7 0.725306 0.983678 0.962252
R15, σr = 8 0.720124 0.982177 0.964852
R16, σr = 6 0.691954 0.990924 0.96302
R17, σr = 8 0.653526 0.988721 0.953849
R18, σr = 8 0.705421 0.988836 0.963347
R19σr = 5 0.806949 0.993701 0.974357
R20, σr = 8 0.712122 0.992293 0.964468

Table 3: Performance evaluation curvelet transform based on FBF with σs = 0.4

Retinal images
with various σ r

Sen Spec Acc

R1, σr = 6 0.716644 0.987845 0.962826
R2, σr = 8 0.692956 0.993783 0.960489
R3, σr = 7 0.661046 0.988893 0.960718
R4, σr = 8 0.684198 0.995003 0.969807
R5, σr = 5 0.679723 0.994774 0.959949
R6, σr = 8 0.643873 0.992102 0.958606
R7, σr = 5 0.654295 0.991542 0.964364
R8, σr = 7 0.622706 0.98758 0.959703
R9, σr = 6 0.639206 0.990062 0.966871
R10, σr = 8 0.638607 0.994013 0.962994
R11, σr = 8 0.671756 0.988144 0.960267

(Continued)
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Table 3: Continued
Retinal images
with various σ r

Sen Spec Acc

R12, σr = 8 0.671183 0.988806 0.959913
R13, σr = 9 0.614265 0.990889 0.956188
R14, σr = 8 0.72898 0.984971 0.959082
R15, σr = 6 0.728775 0.983772 0.961595
R16, σr = 6 0.698196 0.99062 0.962038
R17, σr = 7 0.659721 0.986287 0.959722
R18, σr = 9 0.708751 0.987595 0.964501
R19, σr = 5 0.807607 0.993444 0.976361
R20, σr = 6 0.703524 0.989211 0.966496

Table 4: Performance evaluation curvelet transform based on FBF with σs = 0.5

Retinal images
with various σr

Sen Spec Acc

R1, σr = 7 0.724334 0.989294 0.963029
R2, σr = 6 0.709494 0.992209 0.965516
R3, σr = 6 0.667262 0.989913 0.950857
R4, σr = 6 0.688433 0.992837 0.968235
R5, σr = 8 0.689011 0.991747 0.962765
R6, σr = 8 0.657901 0.995639 0.958191
R7, σr = 7 0.657731 0.982292 0.958085
R8, σr = 9 0.638911 0.988344 0.958591
R9, σr = 9 0.65061 0.99197 0.965386
R10, σr = 5 0.65587 0.993571 0.968826
R11, σr = 8 0.685371 0.988059 0.962798
R12, σr = 7 0.683411 0.989383 0.963446
R13, σr = 5 0.625879 0.990498 0.959234
R14, σr = 9 0.735154 0.988864 0.96108
R15, σr = 8 0.731945 0.98817 0.968904
R16, σr = 8 0.699109 0.990747 0.968326
R17, σr = 9 0.667461 0.98986 0.963646
R18, σr = 9 0.714989 0.989803 0.968695
R19, σr = 5 0.814793 0.995815 0.977467
R20, σr = 6 0.713079 0.99077 0.968202

Note: In all the tables R represents retina.

Several methodologies are suggested in the literature that comprise both supervised and unsu-
pervised segmentation methods. Few of the state-of-the-art algorithms are considered to compare
with the suggested technique. The execution of the recommended method on DRIVE dataset is
compared with other methods correspondence to Sen, Spec, and Acc. Tab. 5 demonstrates the
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accomplishment of the recommended methodology with different supervised and unsupervised meth-
ods stated by Wang et al. [12], Fathi et al. [13], Azzopardi et al. [15], Roychowdhury et al. [16],
Roychowdhury et al. [17], Imani et al. [18], Aslani et al. [14], Panda et al. [19], Tan et al. [20],
Rodrigues et al. [21], Farokhian et al. [22], Jiang et al. [23], Sazak et al. [25], Primitivo et al. [26],
Shah et al. [27], and Dash et al. [28] on DRIVE database.

Table 5: Performance measures comparison for various algorithms

Year Method Sen Spec Acc

2013 Wang et al. [12] N.A N.A 0.9461
2013 Fathi et al. [13] 0.7768 0.9759 0.9581
2015 Azzopardi et al. [15] 0.765 0.97 0.944
2015 Roychowdhury et al. [16] 0.725 0.983 0.952
2015 Roychowdhury et al. [17] 0.739 0.978 0.949
2015 Imani et al. [18] 0.7524 0.9753 0.9523
2016 Aslani et al. [14] 0.7545 0.9801 0.9513
2016 Panda et al. [19] 0.733 0.975 0.953
2016 Tan et al. [20] N.A N.A 0.93
2017 Rodrigues et al. [21] 0.7223 0.9636 0.9472
2017 Farokhian et al. [22] 0.693 0.979 0.939
2018 Jiang et al. [23] 0.7121 0.9832 0.9593
2019 Sazak et al. [25] 0.718 0.981 0.959
2019 Primitivo et al. [26] 0.8464 0.9701 0.9619
2019 Shah et al. [27] 0.7421 NA 0.947
2020 Dash et al. [28] 0.7403 0.9905 0.9661
– Traditional curvelet

transform
0.6537 0.9878 0.9588

– Proposed method
(FBF + curvelet + top hat)

0.6907 0.9904 0.964

Note: N.A: not available.

Fig. 4 demonstrates the comparison bar graph of the recommended approach with original
curvelet transform and other few suggested approaches with three performance measures such as
sensitivity, specificity, and accuracy. In Fig. 4, OC represents original curvelet and PM represents
proposed method and the number represents the reference number of the other suggested approaches.

The vessel extraction results by the suggested approach of three retinal images like retina 1, 2, and
4 for DRIVE database are presented in Fig. 4. The first column of Fig. 4 illustrates the original images.
The second column denotes the ground truth images. The third column represents the vessel extraction
results using curvelet transform approach. The fourth column shows the vessel extraction results using
the suggested approach. Comparing the results presented in 3rd column with ground truth images, it is
noticed that the original curvelet transform approach is unsuccessful for extraction of few tiny vessels
and contain false elements as element of vessel. Fig. 5 displays the output segmented images obtained
from the recommended approach on DRIVE dataset.
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Figure 4: Comparison of proposed method with original curvelet and other approaches

Figure 5: (a) Original retinal image (b) ground truth images (c) vessel extracted from median filter and
curvelet transform (d) vessel extracted from fusion model of FBF, top hat and curvelet transform

The suggested approach, under the alike circumstances, outperforms in identifying the tiny vessels.
It might have important to state that the suggested approaches are based on unsupervised technique
that generally considers the training dataset.

6 Conclusion

In this work, a fusion model of FBF, curvelet transform, and top-hat filter techniques is presented.
Vessels are extracted utilizing C mean thresholding. The important contribution of the paper is to
enhance the performance of the original curvelet transform further by combining with different
techniques for the analysis of retinal blood vessel. The recommended approach is assessed using
DRIVE database. In order to signify the accomplishment of the recommended approach extensive
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simulation results of DRIVE dataset are presented and compared with different other approaches.
The suggested approach achieves accuracy of 0.9640 that is higher than the original curvelet transform.
The recommended method is highly effectual in identifying both the large and tiny vessels with high
values of sensitivity and specificity 0.6907 and 0.9904 respectively. The constraint of the recommended
approach is that in some retinal images it is incapable to retain the connection that can give on to
imprecise segmentation outcomes.
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