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Abstract: In the past few decades, climatic changes led by environmental pol-
lution, the emittance of greenhouse gases, and the emergence of brown energy
utilization have led to global warming. Global warming increases the Earth’s
temperature, thereby causing severe effects on human and environmental con-
ditions and threatening the livelihoods of millions of people. Global warming
issues are the increase in global temperatures that lead to heat strokes and
high-temperature-related diseases during the summer, causing the untimely
death of thousands of people. To forecast weather conditions, researchers
have utilized machine learning algorithms, such as autoregressive integrated
moving average, ensemble learning, and long short-term memory network.
These techniques have been widely used for the prediction of temperature.
In this paper, we present a swarm-based approach called Cauchy particle
swarm optimization (CPSO) to find the hyperparameters of the long short-
term memory (LSTM) network. The hyperparameters were determined by
minimizing theLSTMvalidationmean square error rate. The optimized hyper-
parameters of the LSTM were used to forecast the temperature of Chennai
City. The proposed CPSO-LSTM model was tested on the openly available
25-year Chennai temperature dataset. The experimental evaluation on MAT-
LABR2020aanalyzed the rootmean square error rate andmean absolute error
to evaluate the forecasted output. The proposed CPSO-LSTM outperforms
the traditional LSTM algorithm by reducing its computational time to 25
min under 200 epochs and 150 hidden neurons during training. The proposed
hyperparameter-based LSTM can predict the temperature accurately by hav-
ing a root mean square error (RMSE) value of 0.250 compared with the
traditional LSTM of 0.35 RMSE.
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1 Introduction

In today’s world, climatic change is a global issue for all countries. In India, climatic change
has a significant effect on agriculture. The term climatic change refers to the variation in seasonal
behavior of the climate. It occurs by increasing the temperature artificially by burning fuels,
oils, and gases, leading to the exhalation of greenhouse gases. The climatic change causes the
following effects, such as variation in temperature, rainfall, and ocean temperature, and storms.
It also shrinks the glaciers and changes the seasonal pattern for agriculture. Among these many
effects, the temperature variation causes vast problems to human beings and agriculture. Hence,
preventive measures and learning are required to reduce climatic change and predict climatic
changes on the basis of past data. An optimized machine learning approach is proposed in this
paper to forecast the temperature by using big data. This section discusses the techniques used
in predicting climatic change. Fuzzy logic can predict the hotness value for a short period only.
Temperature forecasting is used to predict the atmosphere in the future and has wide application
in several areas, such as gauging air flight delay, satellite dispatching, crop creation, and natural
calamities. Although neural networks are the mainstream of machine learning methods, they have
not gained prominence in the last part due to the inclination plummet issue and the capacity of
personal computers prompting extremely high learning time. With the advancement of innovation,
different strategies, such as equal handling, high-performance computing groups, and graphics
processing units, have been created. These strategies improve their presentation when applied in
neural networks.

The mean temperature and precipitation value are used to forecast the weather. On the basis
of the forecasted results, the lagged data with lesser time intervals can predict the condition
better compared with the tuned network. The performance of machine learning and traditional
approaches is equal for the smaller dataset. These approaches utilize 75-year data to predict the
15-year weather condition with a minimum error rate. The long short-term memory (LSTM)
network uses the reduced sample points in forecasting. Among the three methods, the recur-
rent neural network can predict the weather accurately due to the five-layered architecture and
linearization process of data. The combination of M-ARIMA and neural network outperforms
the k-nearest neighbor (KNN) prediction results. The results indicate that the machine learning
approaches can predict the weather accurately at 2 m humidity conditions, which is greater than
the traditional weather forecasting model by IUM. The daily data are split through Fourier
transform to analyze their features effectively. The extracted features are reduced through principal
component analysis, and Elman-based backpropagation network is used for temperature forecast-
ing. This approach aims to reduce the computation time and improve the result of root mean
square error (RMSE) and mean absolute error (MEA).

The rest of this paper is organized as follows: Section 2 discusses the literature review of
the techniques used for weather forecasting. Section 3 introduces the conventional approaches in
finding the hyperparameters of LSTM. Section 4 explains the proposed system model Cauchy
particle swarm optimization (CPSO)-LSTM briefly. Section 5 presents the experimental setup,
results, and discussions. Section 6 provides the conclusions with a summary of the CPSO-LSTM
technique in temperature forecasting using big data.

2 Literature Survey

Chen et al. [1] proposed a fuzzy-based approach to forecast the temperature in Taipei. A
sliding window approach is used to predict the hotness value for short intervals by using a smaller
dataset. An ensemble approach was used in Maqsood et al. [2] to estimate the temperature in
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Canada. This approach can process large datasets compared with fuzzy logic. Shrivastava et al. [3]
surveyed different machine learning approaches in forecasting the weather conditions in a region.
These techniques require more time for learning the data during prediction. Sawaitul et al. [4] and
Naik et al. [5] utilized a backpropagation algorithm to predict weather conditions. The learning
parameters of the traditional Levenberg–Marquardt algorithm are modified; Shereef et al. [6] used
these learning parameters to forecast the weather conditions in Chennai on the basis of 2010 data.

Papacharalampous et al. [7,8] combined different time series models on a four-year weather
data to forecast the one-month weather condition. Random walks and a naive algorithm are
utilized to split the four-year data. Trends, autoregressive integrated moving average (ARIMA),
and prophet techniques are used to forecast the weather. The seasonal trend with the prophet
technique can accurately predict the weather compared with the traditional approaches. Yahya
et al. [9] combined fuzzy clustering, ARIMA, and artificial neural network to forecast the weather
conditions for two decades in an Iraqi province.

Shivhare et al. [10] proposed a time series model called ARIMA to forecast the weather con-
ditions, such as temperature and rainfall, in Varanasi. Graf et al. [11] improved the performance
of the artificial neural network by using wavelet transform to predict the river temperature. Here,
wavelet transform is applied to decompose the averaged time-series data of water and air tem-
perature. The decomposed data are used to forecast the water temperature by using a multilayer
perceptron neural network. Singh et al. [12] investigated machine learning approaches, such as
support vector machines, artificial neural networks, and recurrent neural networks in predicting
the temperature. The time series model (ARIMA) is improved by using the map-reduce algorithm
to adjust the temperature sample points. Bendre et al. [13] trained the obtained sample points
from M-ARIMA with the KNN and neural network to predict the temperature. The Institute
of Urban Meteorology, China predicted the surface air temperature by using artificial intelligence
techniques. The study on this is presented by Lan et al. [14]. Ji et al. [15] conducted temperature
forecasting by using frequency transformation and a backpropagation network. Attoue et al. [16]
used a simple feedforward neural network approach to forecast the indoor temperature. Zhang
et al. [17] used a hybrid combination of machine learning techniques to forecast the temperature in
southern China. Ensemble empirical mode decomposition is utilized to identify the sample points
for network training by using partial autocorrelation function.

Spencer et al. [18] proposed a refinement process for tuning the lasso regression parameter
to reduce the data in forecasting the indoor temperature. Accurate prediction is achieved only
through the perfect learning of information. On the basis of this learning mechanism, Fente
et al. [19] used a deep recurrent neural network to forecast the weather by using different envi-
ronmental factors. The authors investigated the importance of machine learning’s role in weather
prediction. All categories of machine learning algorithms, such as supervised, unsupervised, and
clustering approaches, are analyzed. The literature review shows that the survey analysis conducted
by Spencer et al. and Fente et al. helps to improve the algorithms and their forecasting results,
as presented by Kunjumon et al. [20]. Similarly, Mahdavinejad et al. [21] explored the importance
machine learning in the Internet of Things (IoT) data prediction.

Wang et al. [22] proposed a deep learning technique with a different validation parameter to
predict future weather conditions. Sun et al. [23], Jane et al. [24], and Sharma [25] investigated
the importance of machine learning in forecasting environmental conditions. All machine learning
algorithms, such as supervised, unsupervised, and clustering methods, are analyzed. Tripathy
et al. [26] examined the importance of machine learning in big data. All machine learning algo-
rithms, such as supervised, unsupervised, and clustering approaches, are analyzed. Qiu et al. [27]
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predicted the river temperature by using a long short-term neural network. The temporal effects
of the temperature in the river area are analyzed on the basis of the forecasted values by LSTM.
Lee et al. [28] explored different machine learning algorithms like, such as multilayer perceptron,
convolution neural network, and recurrent neural network, in forecasting the daily temperature.

Ozbek et al. [29] evaluated different time interval temperature variations for atmospheric air
by using a recurrent neural network. The authors in [30] used a LSTM network to predict the
indoor air temperature by using IoT data. Sorkun et al. [31] and Maktala et al. [32] introduced a
slight modification in LSTM operations to forecast the temperature variations Barzegar et al. [33]
proposed a water quality monitoring system with two quality variables, namely, dissolved oxygen
and chlorophyll-a, by using LSTM and convolutional neural network (CNN) models. They built a
coupled CNN-LSTM model, which is extremely efficient. Vallathan et al. [34] presented an IOT-
based deep learning model to predict the abnormal events occurring in daycare and crèches to
protect them from abuses. The footages of networked surveillance systems are used as input. The
main goal in the paper published by Movassagh et al. [35] is to train the neural network by using
metaheuristic approaches and to enhance the perceptron neural network precision. Ant colony
and invasive weed optimization algorithms are used for performance evaluation. Artificial neural
networks use various metaheuristic algorithms, including approximation methods, for training the
neural networks.

3 Conventional Approaches

In the existing approach, the network hyperparameters are determined through trial and
error and grid search method. These methods consume more computational time for selecting
the parameters. They are also an exhaustive search method with minimal output efficiency. An
optimized approach (CPSO) is proposed to find the LSTM network hyperparameters and to
overcome this problem. The traditional LSTM algorithm is used to forecast the temperature. The
hyperparameter tuning is performed by using grid search, as shown in Fig. 1, and the steps are
as follows.

(1) The input dataset is split into training and testing data by using a hold-out approach.
(2) The hyperparameter for the recurrent neural network is initialized.
(3) Train the network and check the RMSE value.
(4) If Val RMSE<0.4
(5) The hyperparameters are obtained.
(6) Else
(7) Change the value of the network.
(8) Repeat step 3.
(9) End if.

(10) Train and test the neural network with the tuned parameters and data.

This approach can determine the temperature effectively, but it consumes high processing
time for computing the LSTM hyperparameters. Hence, this drawback is overcome by using the
proposed optimized approach-based LSTM.
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Dataset

Split the data as training and testing

Initialize epoch and hidden neuron

LSTM

(Training & testing)

Val RMSE <0.4

Optimal epoch and neuron identified

Change 
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No

Yes

Figure 1: Temperature forecasting using grid search-based LSTM

4 System Model

This section explains the optimization of a LSTM network for temperature prediction by
using the proposed method. The proposed method is tested on the Chennai temperature dataset
with two decades of information.

4.1 Dataset
The average daily temperatures posted on this site are obtained from the Global Summary

of the Day (GSOD) dataset and are computed from 24 h temperature readings. Some previous
datasets compiled by the National Climatic Data Center, such as the local climatological data
monthly summary, contained daily minimum and maximum temperatures but did not contain the
average daily temperature computed from 24 h readings. The temperature dataset is downloaded
from the website [36] for the Chennai region. The dataset comprises four columns. The first
column is the month, the second column is the date, the third column is the year, and the last
column is the temperature readings in Fahrenheit. The data are collected from January 1995
to May 2020. Therefore, the total data comprise 9,266 temperature records. This information is
used to forecast the temperature by using the proposed CPSO-LSTM network. The average daily
temperatures posted on this site are computed from 24 h temperature readings in the GSOD data.

4.2 Preprocessing
In this part, the input data are checked to find the missing records. The unavailable data are

replaced with the average temperature of that month. The preprocessed data are split into training
and testing data by using the hold-out method. The hold out ratio is 0.7%, and 70% of data is
the training data and 30% as testing data. The hold-out approach is used to split the data due to
the abundant temperature records. The hold-out approach uses the ratio technique to divide the
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data. The data with a more significant number of records are the training data and the remaining
as testing data, as shown in Fig. 2.

Dataset

Hold-out ratio 0.7

70% of data as
training

30% of data as 
testing

Figure 2: Splitting the data as training and testing

4.3 Hyperparameter Tuning Using Particle Swarm Optimization
The training data from the preprocessed dataset are used to determine the hyperparameters

of the deep learning network (epoch and number of hidden neurons) by using CPSO. CPSO uses
a single objective function to determine the LSTM network tuning parameters. Eq. (1) shows the
objective function for CPSO.

PSOOF = (Error rateTemp). (1)

The term error rate indicates the difference between the actual and predicted temperatures by
using the LSTM network, and its formula is given in Eq. (2).

Error rate=Actual temperature−Predicted temperatureLSTM . (2)

Particle swarm optimization is inspired by the bird’s nature to find the optimal landing posi-
tion for its group (i.e., a flock of birds). Each bird moves in a random direction to determine the
safe place for landing. On the basis of this landing analysis of birds, particle swarm optimization
is proposed in [37].

Here, the landing position is considered the objective function, and the birds are considered
the particles. The proper solution is achieved by defining the search region; otherwise, the algo-
rithm performs its operation. The search space for CPSO is defined by mentioning the upper
and lower bounds of the searching variables. The particles are located randomly with different
solutions. A particle moves with a velocity within its search region and updates its position and
velocity for each iteration. In each iteration, the results are updated for each particle and its
minimum value as local best. At the end of iterations, the overall minimum value is stored as the
global best solution for the problem.

The LSTM network tuning parameters are determined by solving Eq. (1) using the N number
of particles in the CPSO algorithm. These N particles have two dimensions. One denotes the
epoch, and the other denotes the hidden neurons. The position of the particles is denoted as PN1
and PN2, where 1 and 2 indicate the dimensions and is commonly indicated as PNd . The particle
position update equation for each iteration is given in Eq. (3).

PND(I)= (Pj(I))+ (Pj(I))−Pi,j(I) , (3)

PNd(I + 1)=PNd(I)+VNd(I + 1), (4)
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where VNd is the velocity for moving a particle from one place to another. The particle’s velocity
is updated for each iteration by using Eq. (4).

VNd(I + 1)=ω ∗VNd(I)+LC1 ∗ rand1 ∗ (LNd −PNd(I))+LC2 ∗ rand2 ∗ (GNd−PNd(I)), (5)

GNd(I)=GNd(I)+CW(I) ∗R(minimum,maximum) , (6)

CW(I)=
∑N

j=1VNd [j][I ]

N
. (7)

The particle updates its velocity on the basis of its local best solution LNd and global best
solution GNd by using Cauchy weight. The other terms are constant values, as shown in Tab. 1.

Table 1: Parameters for CPSO

Parameters Values

Population (N) 50
Iterations (I) 100
Inertia weight (ω) 1.0
Learning coefficient (LC1) 1.5
Learning coefficient (LC2) 2.0
Rand 1 and Rand 2 Random value between 0 and 1
Lower bound [100–50]
Upper bound [300–250]

The pseudocode for the CPSO algorithm is designed by using Eqs. (1) to (7) and the
parameters in Tab. 1, as shown in Fig. 3.

The optimal epochs and hidden neurons for temperature forecasting are determined for each
particle. This value is used for the LSTM network. The pictorial representation of the proposed
method is shown in Fig. 4.

The steps in the Cauchy particle swarm-based long short-term neural network for temperature
forecasting are as follows.

(1) The input dataset is preprocessed to replace the missing information with its average value.
(2) The preprocessed data are split into training and testing data by using a hold-out approach.
(3) The hyperparameter for the recurrent neural network is determined from the CPSO by

minimizing the mean square error rate.
(4) The neural network is trained and tested with the tuned parameters and data.
(5) The predicted output is evaluated in terms of the RMSE and MEA.

4.4 Temperature Forecasting Using Tuned Long Short-Term Neural Network
A long short-term neural network is a type of recurrent neural network that which repeats

the neural network in chain structure, as shown in Fig. 5.
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Input: /*preprocessed data, Table 1 parameters*/
int N, I, Rand1, Rand 2, Upper bound, Lower bound; float , LC1, LC2;
Output: hyperparameter values for LSTM
{
CPSO

For each particle N
For each particle dimension d

Initialize the position randomly
Randomly initialize the velocity

End for
End for

While iter > max_iter or (minimal OF criteria)
For each iteration I

For each particle Nd
Evaluate OF in equation 1.

If (OF value < LNd)
Set OF value as LNd

End if
End for

Set GNd value by minimal LNd value
For each particle N

For each particle dimension d
Update velocity and position using equations 3 to 7.
End for

End for
End for

GNd gives the best particle position and its OF value.
End CPSO

Figure 3: Pseudocode for the CPSO algorithm

Dataset

Pre-processing

CPSO for tuning LSTM

LSTM (Training & testing)

Evaluation

Figure 4: Temperature forecasting using CPSO-LSTM

Figure 5: LSTM network

The repeating module for LSTM differs from the traditional neural network by having
repeated neural networks (tanh and sigma) in the module. The pink circles indicate the pointwise
operations performed on the data. The split arrow lines at the end of the module represent the
data copy. The merged line at the start of the module indicates the concatenated value. The dark
line signifies the vector transfer operations as per the work presented by Sherstinsky [38]. LSTMs
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process the temperature data as cell states and runs between the two modules. A gated structure
is used; this structure can add or remove the data by using a sigmoid layer. This gated structure
allows the data if they have a value of 1. Otherwise, the data are not allowed to pass through.
Three sigmoid layers are used to protect the cell state of nature. The input for the cell state is
the current value and previous module output. This value is first fed into the first sigmoid layer.
This sigmoid layer forgets the previous state by setting its value to 0 and updates the state with
the new values shown in Fig. 6.

Figure 6: Forget operation using Sigmoid layer1

The output of the sigmoid layer is given in Eq. (8).

ft = σ ∗ (W1[ht−1,xt]+wt1) , (8)

where W and wt are the weights of the sigmoid layer. The current state is added to the network
by using the tanh function, as shown in Fig. 7.

Figure 7: Replacing data using Sigmoid layer 2

The functions for replacing the data are given in Eqs. (9) and (10). The value is adjusted by
using the tanh function to protect the cell state.

it = σ ∗ (W2[ht−1,xt]+wt2) , (9)
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Ĉt= σ ∗ (Wtan[ht−1,xt]+wttan . (10)

The previous cell state value is replaced with the current value by using Eqs. (9) and (10), as
shown in Fig. 8. The replacement of the new value within the state is given in Eq. (11), and the
current state is shown in Fig. 9.

Ct= ft ∗Ct−1+ it ∗ Ĉt. (11)

This layer controls the operation of the cell state by updating the final cell state value, as
shown in Eqs. (12) and (13).

ot= σ ∗ (W3[ht−1,xt]+wt3), (12)

ht= ot ∗ tanh tanh(Ct). (13)

The above operations are repeated for the 150 hidden neurons to forecast the temperature.
From the above process, the cell state can update its new value by using the final sigmoid layer.
The LSTM performs this operation for 200 epochs to train the data. The testing process is
conducted with the trained network. The LSTM forecasting efficiency is estimated by finding the
difference between the predicted and actual temperatures.

Figure 8: Updating the values

4.5 Evaluation
The forecasted output is evaluated by calculating the RMSE and mean absolute error (MAE)

values. The formulas for the two parameters are given in Eqs. (14) and (15). The RMSE and
MAE values should be the minimum for better forecasting results.

RMSE=
√√√√ N∑

i=1

(Tempactual(i) −Temppredict(i))

total records (N)
, (14)

MAE=
N∑
i=1

(Tempactual(i) −Temppredict(i))

total records (N)
. (15)
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Figure 9: Cell state update

5 Experiments and Discussions

The proposed CPSO-LSTM for temperature forecasting is implemented on MATLAB R2020b
version under Windows 10 environment. The sample data for the forecast process are given in
Fig. 10.

Figure 10: Sample screenshot of data

The CPSO algorithm utilizes the preprocessed data to find the LSTM network tuning param-
eters. The CPSO algorithm determines the optimal parameter after 30 iterations. Fig. 11 shows
the convergence curve for evaluating the fitness function.

Figure 11: CPSO-LSTM results
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The optimal epoch for the LSTM network is 200, and the optimal hidden neuron number is
150 for forecasting the temperature. With this optimal parameter, the LSTM network is trained
and tested by using the preprocessed data. The estimated temperature is used to evaluate the
evaluation metrics. The values are tabulated in Tab. 2.

Table 2: CPSO-LSTM evaluation

Parameters Values

MAE 0.0625
RMSE 0.250

The hyperparameter comparison between the optimized and grid-search method LSTM
network is tabulated in Tab. 3.

Table 3: CPSO-LSTM vs. LSTM evaluation

Parameters Grid search-LSTM CPSO-LSTM

Epoch 250 200
Hidden neuron 200 150
Computational time (min) 30 15

The proposed particle swarm optimization reduces the computational time for calculating
the network hyperparameter. This condition is achieved by using more search agents to find
the optimal solution. In grid search, the values are initialized randomly by the user, leading
to a high processing time and a higher number of hyperparameter values. Tab. 4 shows that
CPSO can reduce computational time by finding optimal network hyperparameters. The proposed
method performance is compared with the traditional LSTM in terms of RMSE, MAE, and
computational time.

Table 4: CPSO-LSTM vs. LSTM evaluation

Parameters LSTM CPSO-LSTM

MAE 0.1225 0.0625
RMSE 0.35 0.250
Computational time (min) 45 25

The comparisons in Tab. 4 depict that the proposed method requires less time compared
with the traditional LSTM. This condition is achieved by finding the optimal parameter using
CPSO. CPSO reduces the computation time and improves the prediction accuracy. Therefore,
the proposed CPSO-LSTM is suitable for temperature forecasting. Although CPSO-LSTM utilizes
the sample reduction technique, it requires high processing time for selecting the samples. Some
of the environmental factors are temperature, humidity, precipitation, and dew visibility. Weather
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forecasting is performed by using this parameter and the LSTM network to predict the future val-
ues. This approach can predict accurate results only by proper neural network tuning; otherwise,
the prediction results may vary.

6 Conclusion

The particle swarm optimization-based long short-term memory network is proposed to fore-
cast the temperature and heat wave by using big data. The proposed CPSO-LSTM outperforms
the traditional LSTM algorithm by reducing its computational time. This hyperparameter-based
LSTM can predict the temperature accurately by having a 0.250 RMSE value compared with
a traditional LSTM value of 0.35. The proposed CPSO-LSTM is advantageous over LSTM.
It reduces the computational time for tuning the LSTM hyperparameters (epoch and hidden
neuron). The optimal parameter is identified by minimizing the RMSE of LSTM. With these
tuned parameters, the CPSO-LSTM can reduce its MAE and RMSE values compared with the
LSTM prediction. The results show that the proposed CPSO-LSTM can forecast the temperature
accurately. A proper selection of hyperparameters helps to improve the result and reduce com-
putational time. Therefore, the proposed CPSO-LSTM is suitable for forecasting operations on
big data. The modifications in LSTM layer operations can improve the prediction accuracy in
the future. In the future, we intend to extend this work by analyzing the natural calamity-based
methodologies.
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