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Abstract: In this paper, we developed a mathematical model for Strepto-
coccus suis, which is an epidemic by considering the moisture that affects
the infection. The disease is caused by Streptococcus suis infection found in
pigs which can be transmitted to humans. The patients of Streptococcus suis
were generally found in adults males and the elderly who contacted pigs or
who ate uncooked pork. In human cases, the infection can cause a severe
illness and death. This disease has an impact to the financial losses in the
swine industry. In the development of models for this disease, we have divided
the population into 7 related groups which are susceptible pig compartment,
infected pig compartment, quarantined pig compartment, recovered pig com-
partment, susceptible human compartment, infected human compartment,
and recovered human compartment. After that, we use this model and a
quarantine strategy to analyze the spread of the infection. In addition, the
basic reproduction number R0 is determined by using the next-generation
matrix which can analyze the stability of the model. The numerical simulations
of the proposed model are illustrated to confirm the results from theorems.
The results showed that there is an effect from moisture to the disease
transmission. When the moisture increases the disease infection also increases.

Keywords: Streptococcus suis; mathematical model; stability analysis;
infectious disease; reproduction number

1 Introduction

Nowadays, one of the major problems in the world is zoonotic pathogen such as Rift Valley fever,
SARS, pandemic influenza H1N1 2009, Yellow fever, Avian Influenza (H5N1) and (H7N9), West Nile
virus [1], the Middle East respiratory syndrome coronavirus (MERSCoV) [2], and novel coronavirus
(COVID-19) [3]. Streptococcus suis is an infectious agent which is widely found in pigs around the
world. This pathogen is generally found in the upper respiratory tract, genital, and alimentary tracts
of the pigs [4,5]. Streptococcus suis is a Gram-positive bacterium and a facultative anaerobic bacterium
which is a primary agent of sepsis and meningitis in pigs [6,7]. In pig farms, the disease can transmit
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from pig to pig rapidly. The reported rate of mortality in pigs from Streptococcus suis is about 20% [8].
It can classify at least 35 serotypes, for examples, serotypes 1 to 31, 33, and 1/2 [9,10]. Serotypes 1 to
9 and 14 are most commonly found in pigs around the world [11,12].

In 1968, the first human who was infected with Streptococcus suis was found in Denmark [4,5].
This situation confirms that Streptococcus suis can transmit from pig to human. Serotype 2 is reported
that it is frequently found in human infections [13,14], but in some cases, the infections are caused by
other serotypes. Kerdsin et al. reported that serotypes 2 and 14 are involved in human cases that found
in Thailand [15,16]. Dutkiewicz et al. presented that disease found in human caused by S. suis serotypes
2, 4, 5, 14, 16, 21 and 24 [12]. S. suis serotype 9 which is the most common found in pigs in Europe was
found the first case infection in human in May 2013 locating in northern of Thailand [17]. In addition,
Hatrongjit et al. reported the first case of serotype 31 in human [18] in the central region of Thailand.
The common symptoms of this disease in human are fever, headache, meningitis, septicemia, arthritis,
pneumonia, and hearing loss [19].

To prevent the spread of the disease, the mathematical models become powerful tools for
describing the dynamics of the disease. They can forecast the future behaviors of the disease with many
assumptions. The solutions of the model can be simulated satisfying the given parameters from the
hypothesis. Recently, many mathematical models have been used to describe the behavior of infectious
disease [20–24]. Rahman et al. proposed the nonlinear SEITR fractional order model of tuberculosis
disease by using Atangana-Baleanu derivative which consists of 5 population groups [25]. Arfan et al.
[26] presented the fractional order model to predict the dynamic of tumor with drug intervention. The
nonlinear fractional order mathematical model for predicting the dynamic of COVID-19 was created
by Shah et al. [27]. Almuqrin et al. proposed the fractional model for forecasting the transmission
of Ebola virus in bats population by using Atangana-Baleanu fractional derivative [28]. Srivastava et
al. improved the mathematical model for studying the dynamic of diabetes patients [29]. Alzaid et al.
[30] studied the dynamic of HIV-1 infection by using the mathematical model and showed that the
mathematical model is efficient . The fractional order model of HIV with source term was proposed
by Shah et al. to consider the behavior of CD4 + T-cells which depending on the concentration of the
viral load [31]. The symmetry and asymmetry concepts can be linked to the epidemic model [32–34].

A number of research studied the disease from Streptococcus suis on epidemiology and medicine.
However, a few pieces of the research proposed and studied the mathematical model for Streptococcus
suis. Shen et al. [35] proposed the SIQRW model to explore the outbreaks of S. Suis. Giang et al.
proposed the stochastic model and SEI model to predict the behavior of the disease and fitted the
model parameters with collected data [9]. The proposed models consider the transmission on pig
population only. However, to our knowledge, no research considering the disease transmission between
pigs and humans for Streptococcus suis.

In this paper, we propose a mathematical model to describe the disease transmission of Strepto-
coccus suis in humans and pigs. The novelty of this work is the improved mathematical model from
one species to two species population. We classify the population of pigs and humans into 4 classes
and 3 classes, respectively. This work contains the analysis of the model and numerical simulations to
study the dynamic behavior of the disease. We also find the basic reproduction numbers to explain the
rapid transmission and study the stability of the solution of the model.

This paper is constructed as follows; In Section 2, we present the mathematical model which
expresses the Streptococcus suis transmission. The analysis of the proposed model is shown in Section
3 which includes a basic reproduction number, equilibrium points, and their stability. The numerical
simulations are given in Section 4 and follow by a conclusion in Section 5.
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2 Model Formulation

In this section, we describe the model formulation of Streptococcus suis disease transmission in
humans and pigs. Based on the classical epidemiology model, we propose a new generalized model of
Streptococcus suis infection which is SIQR-SIR model. There are some facts about the environmental
factors such as temperature and relative humidity [36–38]. So, we consider the effect of the moisture
in the air for disease transmission in the pig farm.

The investigated population is divided into two subpopulations. These are pig population and
human population. Then, both subpopulations of pigs and human are separated into four classes and
three classes, respectively. These are a pig susceptible class (Sp), pig infectious class (Ip), pig isolated
class (Qp), pig recovery class (Rp), human susceptible class (Sh), human infectious class (Ih), and human
recovery class (Rp). We assume that the total population at time t is N(t). We have that

Sp(t) + Ip(t) + Qp(t) + Rp(t) = Np(t),

Sh(t) + Ih(t) + Rh(t) = Nh(t),

and

Sp(t) + Ip(t) + Qp(t) + Rp(t) + Sh(t) + Ih(t) + Rh(t) = Np(t) + Nh(t) = N(t),

where Np(t) is the total population of pigs, and Nh(t) is the total population of human at time t.

We can write the dynamic equations for Np(t) and Nh(t) as the following.

dNp

dt
= dSp

dt
+ dIp

dt
+ dQp

dt
+ dRp

dt
,

dNh

dt
= dSh

dt
+ dIh

dt
+ dRh

dt
.

The new infection in pigs can be described . where β1 is the transmission coefficient per unit of
time per pig in the susceptible class contact with infectious class [39]. The new infection in human can
be described by β2ShIp+β3ShIh where β2 is the transmission coefficient per unit of time per person in the
susceptible class in contact with pig infectious class, β3 is the transmission coefficient per unit of time
per person in the susceptible class contact with the infectious class. In our model, we investigate the
relative humidity for considering the infection of this disease in pigs. Then, the new infection in pigs
can be expressed by β1MSpIp instead of β1SpIp, where M is the moisture in the air (relative humidity).
In addition, we assume that the disease cannot be transmitted from human to pigs. Throughout this
paper, we assume that all parameters are positive constants.

The model of disease transmission by Streptococcus suis can be represented by the system of
differential equations as follows:

dSp

dt
= N1 − bSp − β1MSpIp, (1a)

dIp

dt
= β1MSpIp − aIp − bIp − δIp, (1b)

dQp

dt
= δIp − aQp − bQp − εQp, (1c)
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dRp

dt
= εQp − bRp, (1d)

dSh

dt
= N2 − β2ShIp − β3ShIh − μSh, (1e)

dIh

dt
= β2ShIp + β3ShIh − αIh − γ Ih − μIh, (1f)

dRh

dt
= γ Ih − μRh, (1g)

where b is the pig removal rate, a is the pig death rate induced by the disease, δ is the rate from infectious
class to isolated class in pigs, e is the transition rate from isolated class to recovery class, μ is the human
natural death rate, α is the death rate induced by disease, and γ is the transition rate from infectious
class to recovery class. The model form is valid only if a ≤ b and α ≤ μ.

Eq. (1a) expresses the rate of change of the population of susceptible pig. The number of
susceptible pigs increases only via birth N1 described in the first term on the right-hand side. On
the other hand, the population of them decreases due to the removal rate of pig (b), transmission
of Streptococcus suis from infected pig to susceptible pig (β1) and moisture effect (M).

Eq. (1b) expresses the rate of change of the population of the infected pig. On the right-hand side,
the first term represents the number of infected pigs increases due to susceptible pig becoming infected
pig with the rate β1M followed by the negative effects of disease death rate (a), removal rate (b), and
isolated rate (δ).

Eq. (1c) expresses the rate of change of the population of the isolated pig. On the right-hand side,
the first term represents the increase in the population of isolated pig due to the isolation of infected
pig with the rate δ followed by the negative effects of disease death rate (a), removal rate (b), and
recovered rate (ε).

Eq. (1d) expresses the rate of change of the population of the recovered pig. On the right-hand
side, the first term represents the increase in the population of the recovered pig due to treatment with
the rate ε, and the last term represents the removal rate (b) of pigs.

Eq. (1e) expresses the rate of change of the population of susceptible human. The number of
susceptible pigs increases only via birth N2 described in the first term on the right-hand side. On
the other hand, the population of them decreases due to the transmission of Streptococcus suis from
infected pig to susceptible human (β2) and infected human to susceptible human (β3). The last term
represents the natural death rate (μ) of human.

Eq. (1f) expresses the rate of change of the population of the infected human. On the right-
hand side, the first term and second term represent the number of the infected human increases
due to susceptible human becoming infected human by contact with the infected pigs (β2) and the
infected human (β3), respectively. The remaining terms are the negative effects of disease death rate
(α), recovered rate (γ ), and natural death rate (μ).

Eq. (1g) expresses the rate of change of the population of recovered human. On the right-hand
side, the first term represents the increase in the population of recovered human due to treatment with
the rate (γ ), and the last term represents the natural death rate (μ) of human
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Let Sp(0) = Sp0, Ip(0) = Ip0, Qp(0) = Qp0, Rp(0) = Rp0, Sh(0) = Sh0, Ih(0) = Ih0, Rh(0) = Rh0.
A flowchart of the SIQR-SIR model of pigs and human which describe by the system (1) is shown in
Fig 1.

Figure 1: Flowchart of SIQR-SIR (Susceptible-Infectious-Isolation-Recovery-Susceptible-Infectious-
Recovery) model for human and pigs

The values of population classes Sp(t), Ip(t), Qp(t), Rp(t), Sh(t), Ih(t), Rh(t) at time t is non-
negative numbers.

Let

N(t) = Sp(t) + Ip(t) + Qp(t) + Rp(t) + Sh(t) + Ih(t) + Rh(t),

and c = min{b, μ}. Then we obtain

dN
dt

= dSp

dt
+ dIp

dt
+ dQp

dt
+ dRp

dt
+ dSh

dt
+ dIh

dt
+ dRh

dt

= N1 + N2 − a(Ip + Qp) − b(Sp + Ip + Qp + Rp) − αIh − μ(Sh + Ih + Rh)

≤ N1 + N2 − cN,

and

N(t) ≤ N1 + N2

c
+

(
N(0) − N1 + N2

c

)
e−ct. (2)

Therefore, the positive invariant of the system (1) is

� =
{
(Sp, Ip, Qp, Rp, Sh, Ih, Rh) ∈ R7

+ : N ≤ N1 + N2

c

}
. (3)
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3 Model Analysis
3.1 Equilibria

The equilibria are obtained by setting all equations of the system (1) to be zero.

N1 − bSp − β1MSpIp = 0,

β1MSpIp − aIp − bIp − δIp = 0,

δIp − aQp − bQp − εQp = 0,

εQp − bRp = 0, (4)

N2 − β2ShIp − β3ShIh − μSh = 0,

β2ShIp + β3ShIh − αIh − γ Ih − μIh = 0,

γ Ih − μRh = 0.

By solving the system (4), We get three equilibrium points:

i) Disease-free equilibrium

E1 =
(

N1

b
, 0, 0, 0,

N2

μ
, 0, 0

)
.

ii) Pig disease free equilibrium

E2 =
(

N1

b
, 0, 0, 0,

A
β3

,
β3N2 − μA

β3A
,
γ

μ

β3N2 − μA
β3A

)
,

where A ≡ α + γ + μ.

Note that, E2 exists if β3N2 − μA > 0.

iii) The endemic equilibrium

E∗ = (S∗
p , I ∗

p , Q∗
p, R∗

p, S∗
h , I ∗

h , R∗
h),

where

S∗
p = B

β1M
,

I ∗
p = β1MN1 − bB

β1BM
,

Q∗
p = δI ∗

p

(a + b + ε)
,
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R∗
p = εδI ∗

p

b(a + b + ε)
,

I ∗
h = 1

2β3A

(
X +

√
X 2 + 4Aβ2β3N2I ∗

p

)
,

S∗
h = N2

β2I ∗
p + β3I ∗

h + μ
,

R∗
h = γ I ∗

h

μ
,

with X ≡ β3N2 − A(β2I ∗
p + μ) and B ≡ a + b + δ.

Note that, E∗ exists if β1MN1 − bB > 0.

3.2 Basic Reproduction Number

The basic reproduction number is the expected number of secondary cases produced by a single
infection in a completely susceptible population. To compute the basic reproduction number and to
study the local stability of the equilibrium, we use the next generation matrix method [40,41]. We define
x′ = f (x) − v(x), where x = [Ip, Qp, Ih]T where f (x) is the matrix of new infection terms, and v(x) is
the matrix of transfer terms into compartment and out of compartment as:

f =
⎡
⎣ β1MSpIp

0
β2ShIp + β3ShIh

⎤
⎦ , v =

⎡
⎣ aIp + bIp + δIp

δIp + bQp + εQp

αIh + γ Ih + μIh

⎤
⎦ .

The corresponding Jacobian matrices are

F =
⎡
⎣ β1MSp 0 0

0 0 0
β2Sh 0 β3Sh

⎤
⎦ , V =

⎡
⎣ B 0 0

−δ a + b + ε 0
0 0 A

⎤
⎦ .

Then, we obtain

FV−1 =
⎡
⎣ β1MSp

B
0 0

0 0 0
β2Sh

B
0 β3Sh

A

⎤
⎦

∣∣∣∣∣∣
E1

=
⎡
⎣

β1MN1
bB

0 0
0 0 0

β2N2
μB

0 β3N2
μA

⎤
⎦

We obtain three eigenvalues of FV−1as:

λ1 = 0, λ2 = β3N2

μA
, λ3 = β1MN1

bB
.

Hence, the spectral radii are R01 = β3N2
μA

, and R02 = β1MN1
bB

.
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3.3 The Stability of Disease-Free Equilibrium (E1)

Theorem 1. The disease-free equilibrium point (E1) is locally asymptotically stable if R01 < 1 and
R02 < 1.

Proof. The model system (1) has the Jacobian matrix at the point E1 as:

J(E1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b − β1MN1
b

0 0 0 0 0
0 β1MN1

b
− B 0 0 0 0 0

0 δ −(a + b + ε) 0 0 0 0
0 0 ε −b 0 0 0
0 − β2N2

μ
0 0 −μ − β3N2

μ
0

0 β2N2
μ

0 0 0 β3N2
μ

− A 0
0 0 0 0 0 γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding eigenvalues of J(E1) are

λ1 = λ2 = −b, λ3 = λ4 = −μ, λ5 = −(a + b + ε),

λ6 = β1MN1

bB
− B = B(R02 − 1),

λ7 = β3N2

μ
− A = A(R01 − 1).

Note that λ6 is negative if R02 < 1 and λ7 is negative if R01 < 1.

Therefore, the disease-free equilibrium (E1) of the model system (1) is locally asymptotically stable
due to all negative real part eigenvalues if R01 < 1 and R02 < 1. �

3.4 The Stability of Pig Disease Free Equilibrium (E2)

Theorem 2. The pig disease free equilibrium (E2) is locally asymptotically stable if R01 > 1 and
R02 < 1.

Proof. The pig disease-free equilibrium

E2 =
(

N1

b
, 0, 0, 0,

A
β3

,
β3N2 − μA

β3A
,
γ

μ

β3N2 − μA
β3A

)
exists and is positive if R01 > 1.

The model system (1) has the Jacobian matrix at the point E2 as:

J(E2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b − β1MN1
b

0 0 0 0 0
0 β1MN1

b
− B 0 0 0 0 0

0 δ −(a + b + ε) 0 0 0 0
0 0 ε −b 0 0 0
0 − β2N2

μR01
0 0 −μR01 −A 0

0 β2N2
μR01

0 0 μ(R01 − 1) 0 0
0 0 0 0 0 γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The corresponding eigenvalues of J(E2) are

λ1 = λ2 = −b, λ3 = −μ, λ4 = −(a + b + ε),

λ5 = β1MN1

b
− B = B(R02 − 1),

λ6 = −μR01 + √
μ2R2

01 − 4μA(R01 − 1)

2
,

λ7 = −μR01 − √
μ2R2

01 − 4μA(R01 − 1)

2
.

Note that λ5 is negative if R02 < 1 while λ6 and λ7 have negative real part if R01 > 1.

Therefore, the pig disease free equilibrium (E2) of the system (1) is locally asymptotically stable if
R01 > 1 and R02 < 1. �

3.5 The Stability of Endemic Equilibrium (E∗)

Theorem 3. The endemic equilibrium (E∗) is locally asymptotically stable if R01 < 1 and R02 > 1.

Proof. The endemic equilibrium

E∗ = (S∗
p , I ∗

p , Q∗
p, R∗

p, S∗
h , I ∗

h , R∗
h),

where

S∗
p = N1

bR02

I ∗
p = b(R02 − 1)

β1M

Q∗
p = δI ∗

p

(a + b + ε)

R∗
p = εδI ∗

p

b(a + b + ε)

I ∗
h = 1

2β3A

(
X +

√
X 2 + 4Aβ2β3N2I ∗

p

)

S∗
h = N2

β2I ∗
p + β3I ∗

h + μ

R∗
h = γ I ∗

h

μ

exists and is positive if R02 > 1.
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The model system (1) has the Jacobian matrix at the point E∗ as:

J(E2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−b − Ψ1 −Ψ2 0 0 0 0 0
Ψ1 Ψ2 − B 0 0 0 0 0
0 δ −(a + b + ε) 0 0 0 0
0 0 ε −b 0 0 0
0 −β2S∗

h 0 0 −Ψ3 − μ −β3S∗
h 0

0 β2S∗
h 0 0 Ψ3 β3S∗

h − A 0
0 0 0 0 0 γ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where

Ψ1 = β1MN1(R02 − 1)

BR02

, Ψ2 = Mβ1N1

bR02

, Ψ3 = −β2N1(R02 − 1)

BR02

+ β3I ∗
h .

The corresponding eigenvalues of J(E∗) are

λ1 = −b, λ2 = −μ, λ3 = −(a + b + ε),

λ4 = −[β1M(I ∗
p − S∗

p) + B + b] + Y1

2
,

λ5 = −[β1M(I ∗
p − S∗

p) + B + b] − Y1

2
,

λ6 = −[β2I ∗
p + β3(I ∗

h − S∗
h) + A + μ] + Y2

2
,

λ7 = −[β2I ∗
p + β3(I ∗

h − S∗
h) + A + μ] − Y2

2
,

where

Y1 =
√

[β1M(I ∗
p − S∗

p) + B + b]2 − 4[β1M(BI ∗
p − bS∗

p) + Bb],

and

Y2 =
√

[β2I ∗
p + β3(I ∗

h − S∗
h) + A + μ]2 − 4[β2AI ∗

p + β3AI ∗
h + μ(A − β3S∗

h)].

Next, we consider

β1M(I ∗
p − S∗

p) + B + b = β1M
(

b(R02 − 1)

β1M
− N1

bR02

)
+ B + b

= b(R02 − 1) − β1MN1

bR02

+ B + b



CMC, 2022, vol.71, no.2 2991

= bR02

> 0,

and

β1M(BI ∗
p − bS∗

p) + Bb = β1M
(

Bb(R02 − 1)

β1M
− bN1

bR02

)
+ Bb

= bB(R02 − 1) − bβ1MN1

bR02

+ Bb

= Bb(R02 − 1).

We obtain that λ4 and λ5 has negative real part if R02 > 1.

Then, let us consider

β2I ∗
p + β3(I ∗

h − S∗
h) + A + μ

= β2I ∗
p + β3

(
I ∗

h − N2

β2I ∗
p + β3I ∗

h + μ

)
+ A + μ

= β2
3 I ∗2

h + [2β2β3I ∗
p + 2μβ3 + β3A]I ∗

h + β2
2 I ∗2

p + (A + 2μ)β2I ∗
p + μ(A + μ) − β3N2

β2I ∗
p + β3I ∗

h + μ

= [β2
3 + β3A]I ∗2

h + [2β2β3I ∗
p + β3(2μ + A − N2) + A(β2I ∗

p + μ)]I ∗
h

β2I ∗
p + β3I ∗

h + μ

+β2I ∗
p (β2I ∗

p + A + 2μ − N2) + μ(A + μ) − β3N2

β2I ∗
p + β3I ∗

h + μ
.

Since I∗
h = 1

2β3A

(
X + √

X 2 + 4Aβ2β3N2I ∗
p

)
, it follows that

β3AI ∗2
h − [β3N2 − A(β2I ∗

p + μ)]I ∗
h − β2N2I ∗

p = 0.

Then, we get

β2I ∗
p + β3(I ∗

h − S∗
h) + A + μ

= β2
3 I ∗2

h + [2β2β3I ∗
p + β3(2μ + A)]I ∗

h + β2I ∗
p (β2I ∗

p + A + 2μ) + μ2 + μA(1 − R01)

β2I ∗
p + β3I ∗

h + μ
.

If R01 < 1, I∗
p and I ∗

h are positive i.e., R02 > 1, then we obtain

β2I ∗
p + β3(I ∗

h − S∗
h) + A + μ > 0.
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Thus, the eigenvalues λ5 and λ6 have a negative real part if R01 < 1 and R02 > 1.

Therefore, the endemic equilibrium (E∗) of the model system (1) is locally asymptotically stable if
R01 < 1 and R02 > 1. �

We can draw the bifurcation diagram to describe the basic reproduction numbers and stability as
shown in Fig. 2.

Figure 2: The bifurcation region

4 Numerical Examples and Discussion

The numerical results of the system (1) are computed by using MATLAB with the given initial
values:

Sp(0) = 4057, Ip(0) = 1000, Qp(0) = 0, Rp(0) = 0, Sh(0) = 50000, Ih(0) = 1000, Rh(0) = 0.

The numerical results of the system (1) with the parameter values as shown in Tab. 1. Note that
the parameters and initial values are obtained from data in [35] and [42].

Table 1: Parameter values of the system (1)

Parameter Value Source

N1 3275 Taken from [35]
b 0.75 Taken from [35]
β1 0.000365 Taken from [35]
N2 500 Calculated
β3 0.00465 Assumed

The solution trajectories tend to the disease-free equilibrium (E1) which satisfy Theorem 1 with
the remaining parameter values μ = 0.9, α = 0.9, γ = 0.9, M = 0.9, a = 0.9, β2 = 0.1, and δ = 0.9 as
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shown in Fig. 3. The calculated reproduction numbers of this case are R01 = 0.9568 < 1 and R02 =
0.5625 < 1.

Figure 3: The simulation results of the system (1), (a) The plots of asymptotic population density of
pig susceptible population (Sp), pig infectious population (Ip), pig isolated population (Qp), and pig
recovery population (Rp) with respect to time t tends to the equilibrium (E1), and (b) The plots of
asymptotic population density of human susceptible population (Sh), human infectious population
(Ih), and human recovery population (Rh) with respect to time t tends to the equilibrium (E1)

The results showed that the number of pig infectious cases dramatically decreased in the first
quarter. After that, the decreasing of pig infectious cases slowly decreased. Then, it tended to
the equilibrium value. Fig. 3a, the number of pig susceptible population increased after infectious
cases were recovered. In addition, the isolated population increased when the number of infectious
cases increased to control the spread of the disease. Then, it decreased after the number of
infectious cases decreased. In human case (Fig. 3b), the number of infectious populations increased
in the first quarter, then the number increased and approached to the equilibrium number. Therefore,
the parameters of this case provided that the disease died out.

The solution trajectories tend to the disease-free equilibrium (E2) which satisfy Theorem 2 with
the remaining parameter values μ = 0.6, α = 0.5, γ = 0.4, M = 0.3, a = 0.7, β2 = 0.1, and δ = 0.8
as shown in Fig. 4. The calculated reproduction numbers of this case are R01 = 2.5833 > 1and R02 =
0.2125 < 1.

The results showed that the number of pig infectious cases dramatically decreased in the first
quarter. After that, the decreasing of pig infectious cases slowly decreased. Then, it tended to the
equilibrium value. The number of pig susceptible population increased after infectious cases decreased.
In human case (Fig. 4b), the number of infectious populations dramatically increased in the first
quarter, then it decreased and approached to the equilibrium number. Therefore, the result of this
case indicated that the disease in pig died out while it still appeared in human.
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Figure 4: The simulation results of the system (1), (a) The plots of asymptotic population density of
pig susceptible population (Sp),pig infectious population (Ip), pig isolated population (Qp), and pig
recovery population (Rp)with respect to time t tends to the equilibrium (E2), and (b) The plots of
asymptotic population density of human susceptible population (Sh), human infectious population
(Ih), and human recovery population (Rh) with respect to time t tends to the equilibrium (E2)

The numerical results of the system (1) with the remaining parameter values μ = 0.5, α = 0.6, γ =
0.1, M = 0.9, a = 0.3, β2 = 0.01,and δ = 0.1 with R01 = 0.9568 < 1 and R02 = 1.2473 > 1.
The solution trajectories tend to the endemic equilibrium (E∗) which satisfy Theorem 3 as shown
in Fig. 5. The number of pig susceptible population decreased in the first five quarters then it
increased and approached to the equilibrium. The number of pig infectious population increase in
the first quarter then it tends to equilibrium after five quarters. In human case, the number of human
infectious population increased sharply in the first two quarters. After that, it decreased and tend to
equilibrium value. The number of recovery population increased in the first quarter then it decreased
and approached to equilibrium value. The result of this case showed that the disease still appeared in
both human and pigs.

To consider the effect of moisture, the numerical results of the system (1) with the remaining
parameter values μ = 0.5, α = 0.6, γ = 0.1, a = 0.01, β2 = 0.01, and δ = 0.01. The solutions
trajectories are computed with various values of relative humidity M as 0.1, 0.3, 0.5, 0.7, and 0.9 is
shown in Fig. 6.

In Fig. 6, the result indicates that when the relative humidity (M) increases the pig infectious
population density also increases. Particularly, the trajectories of pig infectious population decrease
and approach to constant values when M = 0.1, 0.3, and 0.5. On the other hand, the number of pig
infectious population increase and go to equilibrium value when M = 0.7 and 0.9. Moreover, when
M = 0.1 and 0.3 the trajectories approach zero. This means that the disease will die out when there is
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less moisture in the air. Therefore, the result confirms that there is an effect of the moisture in the air
to the infection of Streptococcus suis as mentioned in the literature.

Figure 5: The simulation results of the system (1), (a) The plots of asymptotic population density of
pig susceptible population (Sp), pig infectious population (Ip), pig isolated population (Qp), and pig
recovery population (Rp) with respect to time t tends to the equilibrium (E∗), and (b) The plots of
asymptotic population density of human susceptible population (Sh), human infectious population
(Ih), and human recovery population (Rh) with respect to time t tends to the equilibrium (E∗)

Figure 6: The simulation results of the pig infectious population (Ip) for various values of relative
humidity M with respect to time t
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5 Conclusions

We have proposed the mathematical model for predicting the disease transmission of Streptococ-
cus suis between pigs and humans, which is developed from the SIQR model that considered only in
the pig population. The pigs-human epidemiology model of Streptococcus suis transmission which is
SIQR-SIR model is investigated. The model combined with susceptible (Sp), infection (Ip), isolation
(Qp), and recovery (Rp) for pig population and susceptible (Sh), infectious (Ih), and recovery (Rh) for
human population. Moreover, we studied the effect of moisture in the air on disease transmission.
The equilibria of the model were analyzed. Then, the next-generation matrix was used to find the
basic reproduction numbers R01, and R02. We obtained the conditions of the equilibrium points E1, E2,
and E∗ which are locally asymptotically stable in Theorem 1, Theorem 2, and Theorem 3, respectively.
The results show that if R01 < 1 and R02 < 1, the equilibrium points E1 is locally asymptotically stable
while E2 is locally asymptotically stable if R01 > 1 and R02 < 1. Finally, the endemic equilibrium (E∗)
is locally asymptotically stable if R01 < 1 and R02 > 1. The bifurcation diagram is also presented. The
numerical examples confirmed the results of Theorems. The results indicated that moisture affects
disease transmission. When the air has higher moisture the transmission of the pathogen is also high.
Moreover, the model can be improved by considering infection of newborn pigs from infectious adult
female pigs.
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