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Abstract: The estimation of the fuzzy membership function parameters for

interval type 2 fuzzy logic system (IT2-FLS) is a challenging task in the pres-

ence of uncertainty and imprecision. Grasshopper optimization algorithm

(GOA) is a fresh population based meta-heuristic algorithm that mimics the

swarming behavior of grasshoppers in nature, which has good convergence

ability towards optima. The main objective of this paper is to apply GOA to

estimate the optimal parameters of the Gaussian membership function in an

IT2-FLS. The antecedent part parameters (Gaussian membership function

parameters) are encoded as a population of artificial swarm of grasshoppers

and optimized using its algorithm. Tuning of the consequent part parameters

are accomplished using extreme learning machine. The optimized IT2-FLS

(GOAIT2FELM) obtained the optimal premise parameters based on tuned

consequent part parameters and is then applied on the Australian national

electricity market data for the forecasting of electricity loads and prices.

The forecasting performance of the proposed model is compared with other

population-based optimized IT2-FLS including genetic algorithm and artifi-

cial bee colony optimization algorithm. Analysis of the performance, on the

same data-sets, reveals that the proposed GOAIT2FELM could be a better

approach for improving the accuracy of the IT2-FLS as compared to other

variants of the optimized IT2-FLS.

Keywords: Parameter optimization; grasshopper optimization algorithm;

interval type-2 fuzzy logic system; extreme learning machine; electricity

market forecasting

http://dx.doi.org/10.32604/cmc.2022.022018
mailto:sbelhaouari@hbku.edu.qa


3514 CMC, 2022, vol.71, no.2

1 Introduction

The ability of processing noisy and uncertain data has made the use of fuzzy sets in numerous

applications a vital option. One such application is the fuzzy logic system (FLS) that is solving

prediction, classification and control problems effectively. Initial version of the FLS, known as type-1

fuzzy logic system (T1-FLS), is based on fuzzy set that has crisp membership values. Modification

and extension to the fuzzy sets were mainly studied over the past few decades. These include interval-

valued fuzzy set [1], general Type-2 fuzzy set [2] and interval T2-fuzzy set [3]. Type-2 fuzzy logic system

(T2-FLS) with the presence of footprint-of uncertainty can model and handle the uncertainty very

well [4]. However, current research of the T2-FLS has been dominated by the research applications

of IT2-FLS, due to its simpler structure and reduced computational cost, as compared to a general

T2-FLS [4]. Fuzzy membership functions like Gaussian, triangular and trapezoidal are used to define

a fuzzy set. Every membership function has its own parameters to be selected for defining fuzzy rules.

T1-FLSs use crisp values of these parameter, however, using an exact membership value for may not

be the best way to deal with uncertainty in data. A T2-FLS with fuzzy membership functions can

handle any type of uncertainty by the concept of blurring a T1 membership function. However, this

blurring approach to form a secondary membership, the third dimension, in T2-FLS is a complex and

computationally expensive task. Instead of fuzzy or blur membership, IT2-FLS uses interval values

for membership function parameters, ignoring the third dimension of the T2-FLS, that eventually

simplifies the computation. The rules (If-then parts), shape and operators are different components

of a FLS that is described as the fuzzy system’s parameters. Learning of these parameter is needed to

be adaptively constructed in order to handle the prevailing uncertainties and imprecision of nonlinear

dynamic systems. Among various approaches to handling uncertain data, it is observed that most

studies on IT2-FLSs are confronted with determining the optimal parameters [5].

Generally, both premise part and consequent part of a FLS can be optimized, however; optimiza-

tion of the parameters of a fuzzy inference has attracted much attention of the research community

[5]. Fuzzy inference system (FIS) consists of if-then rules that represent the antecedent part (AP)

and the consequent part (CP), respectively. Artificial neural networks being the simplest method

has been utilized to determine the FIS [6], however, such neuro-fuzzy model does not guarantee the

convergence and/or effectiveness of the optimal FIS. In order to tackle this issue, optimization of

the FIS was tackled by incorporating the population information of the evolutionary algorithms

[7]. T1 and T2-FLS have a history to be optimized with various population based optimization

algorithms, for example, some of the recent work of these optimization algorithms can be found in

[8–10]. Likewise, appropriate parameters and structure of the IT2-FLS can also be optimized using

different optimization algorithms. A general framework for the design of IT2-Fuzzy controllers based

on various bio-inspired algorithms was presented in [11]. A concise review of bio-inspired algorithms

namely particle swarm optimization (PSO), genetic algorithm (GA) and Ant colony optimization to

tune IT2-FLS parameters for different applications can be found in [12]. Optimization of an IT2-FLS

has also been carried out using artificial bee colony (ABC) optimization [13], PSO [14], and Cuckoo

search algorithm [15]. A comparative analysis of two optimized IT2-FLS with the randomly and

manually generated parameters of IT2-FLS was presented in [16] with noise-free and noisy Mackey-

glass time series prediction. The results revealed better performance of the optimized IT2-FLS with

noisy dataset as compared to other approaches. Grasshopper optimization algorithm (GOA) is a

newly proposed [17] population based meta-heuristic algorithm that mimics the swarming behavior of

grasshoppers in nature. The main feature of GOA is the movement of swarm, which is defined based

on the position of all individual grasshoppers in the swarm. GOA for various optimization problems

has shown its efficiency as compared to existing optimization algorithms. A GOA based parameter
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optimized PI controller has proved its enhanced performance over PSO and Whale optimization

algorithmbased controller [18].Kernel function and penalty factor of a support vectormachine (SVM)

was optimized using GOA and was evaluated for a regional power load forecasting [19].

Our previous works presenting hybrid intelligent approaches to tune the parameters of IT2-FLSs

are hybrid of ABC and extreme learning machine (ELM) [13] and hybrid of GA and ELM [16].

Hybrid methods demonstrate superior performance as an intelligent optimizer is used for AP and

a computational approach is utilized to train the linear parameters. Use of hybrid methods makes

it possible to skip local minima which naturally exist when optimizing the AP. Hybrid algorithms

have already shown their superior priority over several other state-of-the-art optimization algorithms

in literature including PSO [20], discrete heuristic particle swarm ant colony optimization [21], mine

blast algorithm [22], and symbiotic organisms search [23]. The probability of this heuristic approach to

deal with local minima is investigated in different benchmark optimization problems including convex

optimization problems, non-convex optimization problems, and the ones with several local minima

[17]. The superior performance of the GOA over other optimization algorithm has motivated us to

propose a new variant of our previous work, where the Gaussian membership function parameters

are optimized using GOA for the electricity load and price forecasting.

This paper presents hybrid of GOA and ELM to tune the parameters of the IT2-FLS. The GOA

is for the first time used to optimize the APs of an IT2-FLS. Optimization of the CPs using ELM

(IT2FELM) can be seen in [24] with random generated APs. This research work is the continuation

of our previous work [13], where GA and ABC were utilized for the parameter optimization of the

IT2FELM.

The structure of the rest of this paper is as follows. The background studies of the methods

used is given in Section 2. Methodology of the proposed hybrid learning algorithm is presented in

Section 3. Data and results are discussed in Section 4. The paper is concluded with some remarks and

recommendation in Section 5.

2 Preliminaries

This section defines IT2-FLS including some relevant concepts along well defined mathematics

are provided so as to report these sets in an effectual manner. In order to begin, the taxonomy of T1

fuzzy set followed by T2 fuzzy set expressed mathematically so as to facilitate the discussion of this

article.

Definition 1. IFX 6= 0 is a collection of objects denoted generically by x, then a fuzzy set F inX is

defined as F = {(x,µF(X))|x ∈ X}. µF : X → [0, 1] is the membership function (MF) and the degree

of membership of x in F is µF(x), ∀x ∈ X [25].

Definition 2. A type-2 fuzzy set, denoted by F̃ is characterized by a type-2 membership function

µF̃(x, u), where x ∈ X and u ∈ Jx ⊂ [0, 1] , i.e.,

F̃ = ((x, u),µF̃(x, u))|∀x ∈ X ,∀u ∈ Jx ⊆ [0, 1] (1)

in which µF̃(x, u) ∈ [0, 1]. When X × Jx is continuous then F̃ can be expressed as

F̃ = ∫x∈X ∫u∈J µF̃(x, u)/(x, u) Jx ⊆ [0, 1], (2)

where ∫ ∫ denotes union over all admissible x and u.

Jx is known as the primary MF of x in F̃ . At each value of x say x = x′, the two-dimensional

plane, whose axes are u and µF̃(x
′, u), is called a vertical slice of µF̃(x, u) [26]. A secondary MF is a



3516 CMC, 2022, vol.71, no.2

vertical slice of µF̃(x, u). It is µF̃(x = x′, u) for x′ ∈ X and ∀u ∈ Jx
′ ⊆ [0, 1], i.e.,

µF̃(x = x′, u) ≡ µF̃(x
′) = ∫u∈Jx′

1/u Jx′ ⊆ [0, 1] (3)

Because ∀x′ ∈ X , the prime notation on µF̃(x
′) can be referred to µF̃(x) as a secondary set [26].

Definition 3. The Interval Type-2 (IT2) Fuzzy Sets F̃ is a special case of T2 fuzzy set. A T2 fuzzy

set with a uniform secondary MF is called an IT2 fuzzy set, i.e., µF̃(x, u) = 1 for all x ∈ X . IT2 fuzzy

set in accordance to Eq. (2) can be expressed as

F̃ = ∫x∈X ∫u∈J 1/(x, u) Jx ⊆ [0, 1] (4)

The uncertainty in the IT2 fuzzy set due to the presence of an upper MF and lower MF called

the footprints of uncertainty (FOUs) and are denoted by µ̄F̃(x) and µ
F̃
(x) (e.g., see Fig. 1b). It is the

Union of all primary MFs.

Figure 1: Illustration of fuzzymembership functions (a) Type-1 fuzzymembership function (b) interval

type-2 fuzzy membership function

2.1 Interval Type-2 Fuzzy Logic System

The idea of Fuzzy Set Theory was given by Zadeh [27] to cater the ambiguities and uncertainties

present in real world problems. Elements belong to a set based on the MF which gives real values in

interval [0,1]. Since the introduction, fuzzy sets faced criticism that MF used in traditional or T1 fuzzy

set are not fuzzy numbers so there is no uncertainty in that and thus opposing the concept of fuzzy

logic. To address the issue Zadeh [25] proposed another type of fuzzy sets which he called T2 fuzzy

set. A T2 fuzzy set handles this issue by incorporating fuzziness or uncertainty in the MF. A T2 fuzzy

set has a MF which is fuzzy and has three dimensions. Membership of each element of this fuzzy

set is itself another fuzzy set in the range [0,1]. This third dimension in T2 fuzzy set provides extra

degree of freedom to cater additional information about the value. These fuzzy sets are used when it

becomes difficult to find out exact MF of a fuzzy set. The IT2-FLS are computationally less expensive

as compared to general T2-FLS as the secondary MF of IT2 MF is equal to 1. The structure of an

IT2-FLS is given in Fig. 2.
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Figure 2: Structure of interval type-2 fuzzy logic system

The fuzzifier in an IT2-FLS maps an input vector x = [x1, x2, · · · , xd]
T into d IT2 fuzzy sets

F̃i, i = 1, 2, · · · , d. In order to choose the type of MF, Gaussian MF is preferred as it cover the entire

input domain and hence guarantee continuity during the input-output mapping. AGaussianMFwith

a fixed mean mn
i
and uncertain standard deviation [σ n1

i
, σ n2

i
is considered here [5]:

µF̃ni
(xi) = exp

[

−
1

2

(

xi −mn
i

σ n
i

)2
]

, σ n

i
∈ [σ n1

i
, σ n2

i
], (5)

where mean and spread of the Gaussian MF are represented by mn
i
, σ n

i
, respectively. µF̃ni

(xi) of Eq. (5)

has upper MF, µ̄F̃ni
(xi), and lower MF, µ

F̃ni

(xi), as follows:

µ̄F̃ni
(xi) = N(mn

i
, σ n2

i
; xi) (6)

µ
F̃ni

(xi) = N(mn

i
, σ n1

i
; xi) (7)

A TSK fuzzy rule (Rn) in the rule set with N rules of an IT2-FLS can be expressed as [25]:

Rn: IF x1 is F̃
n
1
∧ x2 is F̃

n
2
∧ · · · ∧ xd is F̃

n
d
THEN yn(x) = [yn, ȳn]

= cn
0
+ cn

1
x1 + · · · + cn

d
xd

= c̄n
0
+ c̄n

1
x1 + · · · + c̄n

d
xd,

where yn, ȳn, cn
i
and c̄n

i
are crisp numbers. The total firing interval F n = [f

n
, f

n

] of the IT2 fuzzy set is

described as:

f
n
(x) = µ

F̃n
1

(x1) ⋆µ
F̃n
2

(x2) ⋆ · · · ⋆ µ
F̃n
d

(xd) =
∏d

i=1
µ

F̃ni

(xi) (8)

and

f
n

(x) = µ̄F̃n
1
(x1) ⋆ µ̄F̃n

2
(x2) ⋆ · · · ⋆ µ̄F̃n

d
(xd) =

∏d

i=1
µ̄F̃ni

(xi) (9)
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The output of the THEN-part (consequent part) of the nth rule is a crisp value that can be written

as:

yn = ȳn = cn
0
+ cn

1
x1 + · · · + cn

d
xd,=

∑d

i=0
cn
i
xi = yn, x0

∆
= 1. (10)

The output sets received from the rule firing intervalF n(x) and the corresponding rule consequents

Y = [yl, yr] are IT2 fuzzy sets. A Type reducer computes the IT2 fuzzy sets using

Y = [yl, yr]

= ∫y1∈[y
1
,ȳ1 ]

· · · ∫yN∈[y
1
,ȳ1 ]

∫f1∈[f
1
,f̄1 ]

· · · ∫fN∈[f
N
,f̄N ]

1
∑N
n=1

fnyn

∑N
n=1

fn

. (11)

The Karnik-Mendel (K-M) algorithm [28] as a centroid type reduction is used to obtain T1 fuzzy

sets. Finally, the crisp output for each output variable can be obtained during defuzzification as:

y =
(yl + yr)

2
. (12)

2.2 Grasshopper Optimization Algorithm (GOA)

The Grasshopper Optimization Algorithm (GOA) is a modern steepest meta-heuristic optimiza-

tion algorithm based on natural swarms of grasshoppers. The two aspects of any metaheuristic

algorithm are exploration in which the agents freely move to explore the search space and exploitation

where the neighborhood is exploited to reach optimal solution [17,29]. The basic inspiration of GOA

mimics two concepts of grasshopper swarm; the first is the slow motion of grasshopper larvae swarms

in order to find the food and exploit the region fully, the second is the adult grasshoppers which

move quickly and suddenly by individuals or swarms to explore to find new places contains food. The

principles of exploration and exploitation are thus implemented in GOA in this way. The mathematic

model ofGOA is described below: If the current position of the ith grasshopper in swarm is represented

by Xi, the social interaction of ith grasshopper as Si, the gravity force on ith grasshopper as Gi and the

wind advection as Ai than

Xi = Si + Gi + Ai (13)

The social interaction between the ith grasshopper and jth grasshopper with the Euclidian distance

dij = |xj − xi| in Eq. (13) is calculated as:

Si =
∑N

j = 1

j 6= i

s(dij)Edij i 6= j (14)

where Edij
xj−xi

dij
represents a unit vector for distance between ith and jth grasshopper. The strength of social

forces s with intensity of attraction f and attractive length scale l is calculated as a function as follows

s(r) = f e
−d
l − e−d (15)

Similarly, the gravity componentG of Eq. (13) with the gravitational constant g and a unity vector

towards the center of earth Eeg is computed as:

Gi = −gEeg (16)
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The last component wind direction Ai in Eq. (13) with a constant drift u and a unity vector in the

direction of wind Eew is calculated as follows

Ai = −uEew (17)

Substituting Eqs. (14), (16) and (17) in (13) the extended form of Xi is obtained as follows

Xi = −
∑N

j = 1

j 6= i

|xj − xi|
xj − xi

dij
− gEeg + uEew (18)

Since various grasshoppers reach the comfort zone very soon and contribute less towards opti-

mization so the Eq. (18) cannot be used directly. To solve the issue of optimization for comprehensive

convergence, i.e., the arrival of grasshopper flock to the goal and converge there in the target area, the

previous equation can be modified as

Xi = c

[

∑N

j = 1

j 6= i

c
ubd − lbd

dij
s(xj − xi)

xj − xi

dij

]

+ Td, (19)

where ubd, lbd are the upper and lower bound and Td is the target value in the dth dimension. The

parameter c is called a decreasing coefficient and it is responsible for reducing the comfort zone,

repulsion zone and the attraction zone. c it is calculated as follow

c = cmax − l
cmax − cmin

L
, (20)

where l is the current iteration, cmax, cmin are the maximum and minimum value which are assume in

the begining and the L is the maximum number of iterations. It is evident from Eq. (19) that for every

grasshopper agent the next position is determined by using the current position of agent along with

target position and other agents’ positions. Eq. (19) also shows that the first component takes into

account the position of current agent with respect to other agent. Moreover, the positions of all agents

are taken into account for defining positions of search agents around the target.

2.3 Extreme Learning Machine (ELM)

ELM as a tuning-free algorithm for SLFN was proposed in [30], where the input weights and

hidden biases are chose randomly. Brief mathematics of ELM for SLFNs is described as follows.

Given an arbitrary D training samples (xi, yi)
D
i=1
, where xi = [xi1, xi2. · · · , xid] ⊂ Rd and yi =

[yi1, yi2, · · · , yim] ⊂ Rm, the output of an SLFNs with Ñ hidden nodes and G(x) activation function

is modeled as:
∑Ñ

j=1
βj,kGj(xi) =

∑Ñ

j=1
βjG(xi;wj, bj) = yi,k,

i =1, . . . ,D and k = 1, . . . ,m, (21)

where wi and bi are parameters of the activation function G(xj;wi, bi). Eq. (21) in a matrix form can be

rewritten as:

Hβ = Y (22)

where

H(x1, · · · , xD;w1, · · · ,wÑ, b1, · · · , bÑ)



3520 CMC, 2022, vol.71, no.2

=







G(x1;w1, b1) · · · G(x1;wÑ, bÑ)
...

. . .
...

G(xD;w1, b1) · · · G(xD;wÑ, bÑ)







D×Ñ

(23)

β =







βT
1

...

βT

Ñ







Ñ×m

=







β1
1

· · · βm
1

· · ·
. . . · · ·

β1

Ñ
· · · βm

Ñ







Ñ×m

(24)

and

Y =







yT
1

...

yT
D







D×m

(25)

Here H is known as the hidden layer output matrix generated randomly with parameters wi and

bi. βi is the output weight matrix, yT is the transpose of vector y. An optimal solution β̂ of βi under the

constraint of minimum least square minβ ‖ β ‖ and minβ ‖ Hβ − Y ‖ of the linear system in Eq. (22)

can be calculated as

β̂ = H†Y (26)

where H† is theMoore-Penrose generalized inverse of matrix H [31].

3 Methodology of the Hybrid Learning Algorithm (GOAIT2FELM)

The AP parameters appear nonlinearly in the output and the CP parameters appear linearly. The

problem which is addressed in this paper involves the training of IT2-FLS parameters using hybrid

of GOA and ELM. The proposed hybrid learning algorithm tune the CPs using ELM with randomly

generated APs initially. The APs are then encoded in a population of artificial swarm and optimized

using GOA in the direction of having best candidate solution. Fig. 3 shows the flowchart of the design

of IT2-FLS using hybrid learning algorithm of GOA and ELM. As can be seen from the flowchart,

the proposed estimation method is mainly an iterative approach in which the parameters which appear

non-linearly in the CP are trained using GOA and the linear parameters are trained using ELM.

3.1 Data Preprocessing and Input Selection

The data pre-processing techniques reduces the complexity in data, and will enable the Proposed

models trained with this data to exhibit better predictive performance. Data is normalized in a range

between [0,1] using the following equation

DN =
Di −Dmin

Dmax −Dmin

, (27)

where DN represents the normalized data. The data sets used are divided into two sets of training and

testing. Training data set is used during the training of proposedmodel whereas themodel performance

is evaluated with the testing data set. The proposed model utilizes multi-inputs to the system. A partial

autocorrelation analysis is utilized as input-selection method, that selects the influential inputs for a

model. The time-delays of the data set which have significant coefficients are selected as inputs to the

model.
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Figure 3: Flowchart of the proposed model

3.2 Structure of the Interval Type-2 Fuzzy Logic System

The hybrid learning algorithm is proposed for a TSK based IT2-FLS. The IT2-FLS described in

Section 2.1, also known as A2-C1, is utilized here to approximate the input-output relationship of the

problem. Here “A” and “C” are short for antecedent and consequent, respectively. This indicates that

the Aps of this IT2-FLS are T2FSs and the CP are T1FSs.

3.3 Antecedent Parameter Generation Using GOA

The IT2 Gaussian MF with uncertain standard deviation [σ n1
i
, σ n2

i
] and fixed mean mn

i
are the

parameters that need to be learnt using GOA. Therefore, these APs are encoded into a swarm of

artificial grasshopper and computed using Eqs. (13), (14), (16) and (17). While learning any fuzzy

system, encoding of the parameters into corresponding optimization algorithm is the main task. The

APs here are encoded as the population of grasshopper. Let Xi = [xi1, xi2, · · · , xiM ](i = 1, 2, · · · ,P),
represents the ith grasshopper in the population. Then Xi can be initialized randomly as:

Xi = rand(d ×M × 3) (28)
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where P, d and M are the population size, number of inputs and number of membership functions,

respectively. Considering the three parameters of the IT2GaussianMF, the total length of the solution

size becomes d ×M × 3. Encoding of the IT2 fuzzy APs into a population of grasshopper in a vector

form is represented in Eq. (29) and is illustrated in Fig. 4 as follows:

F = [m1

1
, · · · ,md

M
, σ11

1
, · · · , σ1d

M
, σ21

1
, · · · , σ2d

M
] (29)

Figure 4: Encoding of antecedent parameters into a swarm

3.4 Consequent Parameter Tuning Using ELM

In order to determine rule consequent in the hybrid algorithm GOA-ELM, ELM is employed as

in [24,32]. Setting and tunning of the CPs are done accordingly as our previous work [24].

3.5 Cost Function

With the aim of learning the APs of the IT2-FLS, fitness of the individual grasshopper population

is evaluated with a cost function in the hybrid learning algorithm. Lower the value of the cost function

higher will be the fitness of the candidate solution. Individual swarm of grasshopper produces a

modification on the IT2 fuzzy Aps in each iteration and evaluate it with the RMSE (Eq. (31)) as a

cost function.

3.6 Verification

In order to verify, performance of the proposed hybrid learning algorithm, test data-set is used

and evaluated with the following error-based measures.

SMAPE =
1

N

∑N

i=1

∣

∣

∣

∣

ya
i
− y

f

i

|ya
i
| + |yfi |

∣

∣

∣

∣

× 100 (30)

RMSE =

√

1

N

∑N

i=1
(ya

i
− y

f

i )
2

(31)

where N is the size of test data-set. ya
i
is the actual output and y

f

i is the forecasted output.

4 Simulation Results

The comparative study of the proposed hybrid GOAIT2FELM vs. current state-of-the-art hybrid

intelligent methods including the original version of IT2FELM for the electrical load demand

prediction and its price prediction are presented in this section. The First problem is to find an IT2-

FLS which predicts the behavior of electrical energy price at Victoria region. The dataset is collected

from the Australian National Electricity Market (NEM) which include six months of data. The data
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samples are treated as a time series whose future values are solely dependent upon its current and

past values. The total number of samples in this dataset corresponds to Jan-2019 to June-2019. The

percentage of this dataset used for training and testing are 70% and 30%, respectively. As the second

real-world prediction example, the electrical load forecasting problem for Queensland region over six

months period time is considered. The dataset in this case is available from Jan-2019 to June-2019. The

electrical power price values associated with this dataset are predicted as the third dataset. The total

number of samples in this dataset corresponds to the same dates as the previous two dataset. The split

percentage for this dataset is considered to be the same as the previous two dataset as well.

The proposed hybrid training method based on GOA is compared against other hybrid training

methods of ABCIT2FELM [13], GAIT2FELM [16] as well as original version of IT2FELM [32].

4.1 Electrical Power Price at Victoria Region

The overall number of training samples for this case study is 6081 of the whole dataset consist of

8688 samples, and 2606 number of samples are used for testing. The data sample split ratio between

train and test samples is 70/30. The data is treated as a time series whose future 30 minute value

depends on the current and three consecutive previous delayed values of data with the same sample

time of 30 minutes.

Tab. 1 presents statistical values corresponding to the dataset which shows that the electricity

power price at Victoria region covers a wide range of real values with its minimum value and its

maximum value being equal to −57 and 14500, respectively. The standard deviation value associated

with data is 568 which shows that data varies highly around its mean value.

Table 1: Statistics associated with electricity datasets

Dataset Min value Max value Mean value Standard

deviations

Electricity power

price at Victoria

region

−57 14500 131 568

Electricity load

demand for

Queensland region

4578.5 9988.1 6413.3 890.7

Electricity power

price for

Queensland region

−261.3 1223.3 80.9 34.3

Tab. 2 presents the parameter values associate with ABCIT2FELM, GOAIT2FELM and

GAIT2FELM for performing optimization. It is clear from these values that the population size and

the number of epochs are kept the same for all algorithms. This is mainly because the population

size and number of iterations in these algorithms plays an important role in the analysis. The

experiments are conducted 10 times and mean values and standard deviations are reported in Tab. 3.

The comparisons are made in terms of RMSE and SMAPE obtained for all algorithms. The results

obtained in Tab. 3 for the proposed algorithm outperforms other investigated algorithms including

IT2FELM, GAIT2FELM, and ABCIT2FELM in terms of the mean value of the results as well as

the consistency of the results which is demonstrated by the standard deviation of the results. The
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performance of the proposed predictor is demonstrated in Fig. 5. It can be seen that the results

of IT2FELM are the furthest signal from the original data. This is mainly because this algorithm

does not provide any tool to estimate the APs. This is the main motivation for the use of nonlinear

optimization techniques for these parameters. However, among the three approaches used to optimize

the APs including ABC, GA and GOA, the results obtained by GOA are the closest to the target

electrical power prices. The histogram of error associated with the proposed algorithm is presented in

Fig. 6 which shows that error values follow a Gaussian histogram. This type of histogram is desirable

and validates the results obtained using the proposed algorithm.

Table 2: Parameter values associated with the optimization algorithms

Optimization

Algorithm

Parameter Value

GA Crossover fraction

Generation number

Selection function

Population size

0.6

16

Tournament

16

ABC Number of colony size

number of food sources equals

abandon food source

Maximum foraging cycle

16

8

4

16

GOA population size

cMax

cMin

16

2

0.00004

Table 3: Forecasting performance over test dataset for electricity power price at Victoria region

Dataset GOAIT2FELM ABCIT2FELM

[13]

GAIT2FELM

[16]

IT2FELM [32]

RMSE Mean 24.0917 25.1741 25.8852 47.7857

Std 0.7641 1.5045 1.6934 12.4552

SMAPE Mean 7.9056 8.5090 8.6901 19.8136

Std 0.5327 0.9616 0.7315 6.7530
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Figure 5: Identification performance of the algorithms for forecasting of electrical power prices at

Victoria region

Figure 6:Histogram of error associated with GOAIT2FELM for forecasting of electrical power prices

at Victoria region

4.2 Electrical Power Load Demand at Queensland Region

As the second dataset, electrical power load demand at Queensland region is predicted using the

proposed approach. The overall number of samples for this case study is 8688 which split into train and

test data samples with ratio of 70/30 for train and test data samples. Similar to the previous case, data

is treated as a time series whose future 30 minute values depend on the current and three consecutive

previous time delayed values of data.

The statistics associated with this dataset are presented in Tab. 1. The minimum value associated

with this electricity load demand is 4578.5 and its maximum is 9988.1. The mean value and the

standard deviation of this load demand are 6413.3 and 890.7, respectively. Hence similar to the

previous case, this dataset is a highly varying dataset.

Tab. 4 presents the comparison result between the proposed algorithm and ABCIT2FELM,

GAIT2FELM, and IT2FELM. The proposed algorithm outperforms the other mentioned algorithm

(reported in Tab. 4.) except GAIT2FELM both in terms of mean values and standard deviations of

RMSE as well as SMAPE. This means that not only the proposed approach acts better than the

two other methods but also it is more consistent. Forecast performance of the proposed algorithm

vs. ABCIT2FELM, GAIT2FELM and IT2FELM are presented in Fig. 7. Forecasting with good

performance can be seen in Fig. 7.
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Table 4: Forecasting performance over test dataset for electricity load demand at Queensland region

Dataset GOAIT2FELM ABCIT2FELM

[13]

GAIT2FELM

[16]

IT2FELM [32]

RMSE Mean 67.4780 70.4751 67.0701 91.3469

Std 0.9598 1.1267 0.2794 28.4646

SMAPE Mean 0.4217 0.4366 0.4186 0.5188

Std 0.0061 0.0074 0.0021 0.1078

Figure 7: Identification performance of four algorithms for power load demand at Queensland region

Fig. 8 demonstrates the probability distribution function of the error associated with the proposed

GOAIT2FELM. As can be seen from the figure that the probability distribution function of error is

close to a Gaussian function which is highly desirable.

Figure 8:Histogram of error associated with the proposed GOAIT2FELM for power load demand at

Queensland region

The evolution of RMSEduring the optimization using the proposedGOAIT2FELM vs. other two

algorithms of ABCIT2FELM and GAIT2FELM is depicted in Fig. 9. The evolution of the proposed

approach is faster that the other two optimization algorithms.
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Figure 9: Evolution of RMSE during optimization using the three optimization algorithms

4.3 Electricity Power Price at Queensland Region

As the third dataset, electricity power price at Queensland region is predicted using the proposed

approach. Similar to the previous two cases, the total number of samples in this case is equal to 8688

which split between train and test data samples of 70/30. The inputs taken for the predictor are similar

to the previous case, i.e., taking the future 30 min values to be dependent upon the current and three

consecutive previous time delayed values of data with the sample time of 30 minutes.

The statistics specification of electricity power price in Queensland region are presented in Tab. 1.

These statistics show that this dataset is a highly varying dataset with its minimum value equal to

−261.3 and its maximum being equal to 1223.3. The mean value and the standard deviation of this

electricity price dataset are 80.9 and 34.3, respectively.

Tab. 5 illustrates the comparison result between the proposed algorithm and ABCIT2FELM,

GAIT2FELM, and IT2FELM in terms of RMSE and SMAPE. Tab. 5 reports that using

GOAIT2FELM, it is possible to forecast data with higher performance in terms of mean values

and standard deviations over 10 times of run of programs. It is further noticed during simulation that

IT2FELM failed to perform the optimization in one run over 10 times run of programs which resulted

in a very large RMSE.Overall Tab. 5 shows that the proposed approach acts better than the three other

methods and it is a more consistent algorithm. Hence, it is expected that the proposed approach result

in a superior performance than the other two approaches in every single run of program with a high

probability. Forecast performance of all algorithms are presented in Fig. 10. It can be seen that the

proposed model’s prediction is achieved with high performance . Moreover, it can be inferred from

Fig. 10 that the results obtained by IT2FELM are the furthest from the electrical power demand at

Queensland area. This result is what we expect from this training algorithm as it does not provide any

means to estimate the AP parameters.

Probability distribution function associated with the proposed GOAIT2FELM is presented in

Fig. 11 which demonstrates the probability distribution function of the error associated with the

proposed GOAIT2FELM has the properties of a Gaussian function which basically having a very

large value close to its mean value and gradually decreases to a very small value.

The general trend of RMSE during the optimization using the proposed GOAIT2FELM vs.

other two algorithms of ABCIT2FELM and GAIT2FELM is depicted in Fig. 12. This shows that

the proposed approach is faster that the other two optimization algorithms as well.
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Table 5: Prediction performance over test dataset for electricity prices at Queensland region

Dataset GOAIT2FELM ABCIT2FELM

[13]

GAIT2FELM

[16]

IT2FELM [32]

RMSE Mean 33.9157 36.0304 49.5481 –

Std 2.8502 1.9817 4.8404 –

SMAPE Mean 0.4217 0.4366 0.4186 7.0344

Std 0.0061 0.0074 0.0021 0.0976

Figure 10: Forecasts for electricity power price for Queensland region using all four algorithms

Figure 11: Histogram of error associated with electricity power price for Queensland region using

GOAIT2FELM
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Figure 12: Evolution of RMSE during optimization for electricity power price for Queensland region

5 Conclusions

A hybrid parameter estimation method is proposed for IT2-FLSs which is a modified version of

IT2FELM. IT2FELM is a two stage parameter estimation algorithm for the parameters of IT2-FLSs.

However, IT2FELM does not include any means to estimate the AP parameters of IT2FELM. In this

paper, GOA which is a recent optimization algorithm is used for the AP parameters and IT2FELM

is used for the CP parameters. Simulation results demonstrate that using GOA for the AP parameters

improves the the overall prediction performance using IT2-FLSs. The proposed hybrid algorithm is

called GOAIT2FELM and is compared with ABCIT2FELM, GAIT2FELM and IT2FELM. The

proposed algorithm is used for the prediction problem of electricity power price of Victoria region

in Australia, electricity load demand for Queensland region and electricity power price of the same

region. The simulation results demonstrated the superior performance of the proposed approach

over ABCIT2FELM, GAIT2FELM and IT2FELM on these applications in terms of RMSE and

SMAPE. Not only the results obtained using the proposed approach are better than that of the three

other algorithms, they are more consistence which means that in future trials, it is expected to gain

superior performance in a single run of the algorithm. The evolution of the proposed GOAIT2FELM

is compared against the two estimation algorithms namely ABCIT2FELM and GAIT2FELM which

shows that the speed of the convergence of the proposed algorithm is higher than the two other

investigated algorithms namely ABCIT2FELM and GAIT2FELM.
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