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Abstract: Diabetic Retinopathy (DR) is a common complication of diabetes
mellitus that causes lesions on the retina that affect vision. Late detection
of DR can lead to irreversible blindness. The manual diagnosis process of
DR retina fundus images by ophthalmologists is time consuming and costly.
While, Classical Transfer learning models are extensively used for computer
aided detection of DR; however, their maintenance costs limits detection
performance rate. Therefore, Quantum Transfer learning is a better option
to address this problem in an optimized manner. The significance of Hybrid
quantum transfer learning approach includes that it performs heuristically.
Thus, our proposed methodology aims to detect DR using a hybrid quantum
transfer learning approach. To build our model we extract the APTOS 2019
Blindness Detection dataset from Kaggle and used inception-V3 pre-trained
classical neural network for feature extraction and Variational Quantum
classifier for stratification and trained our model on Penny Lane default
device, IBM Qiskit BasicAer device and Google Cirq Simulator device. Both
models are built based on PyTorch machine learning library. We bring about
a contrast performance rate between classical and quantum models. Our
proposed model achieves an accuracy of 93%-96% on the quantum hybrid
model and 85% accuracy rate on the classical model. So, quantum computing
can harness quantum machine learning to do work with power and efficiency
that is not possible for classical computers.

Keywords: Diabetic Retinopathy (DR); quantum transfer learning; inception-
V3; variational quantum circuit; image classification

1 Introduction

Diabetic retinopathy (DR ) is the most common form of diabetic eye disease [1]. Diabetic retinopa-
thy usually only affects people who have chronic diabetes (diagnosed or undiagnosed). Diabetic
retinopathy causes an array of long-term systemic complications that have considerable impact on the
patients as the disease typically affect individuals in their most reproductive years. The World Health
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Organization has declared that, in 2030 diabetes will be the most serious and 7th highest death causing
disease across world. DR occurs due to the damage of tiny blood vessels in the retina due to chronic
diabetics. This may cause hemorrhages, exudates and even swelling of the retina can cause blind spots
blurry vision. Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of
people across the globe. If DR is diagnosed early, it can be managed using available treatments. Regular
eye fundus examination is necessary because DR do not present any symptoms at early stages. The
retinal abnormalities in DR also include Hemorrhages (HM), “Cotton wool” spots, Microaneurysm
(MA), Retinal neovascularization, hard exudates, which are clearly presented in Fig. 1.
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Figure 1: Normal eye and Infected eye [2]

In recent years, classical transfer learning approaches are used in the field of image classification,
segmentation, and screening for DR. However, limited detection performance rates are hinderance to
computer aided diagnostic. A breakthrough in the field of quantum computing can help in giving the
ophthalmologist a second opinion to solve this problem by using hybrid quantum transfer learning
approach. This quantum approach can result into more efficient detection of DR in patients as
compared to the classical transfer learning [3,4]. Quantum transfer learning and Principal Component
Analysis (PCA) is currently used in various medical diagnostics [2]. Zhang [5] used pathological images
for Non-Hodgkin Lymphoma analysis. Similarly, classification of Arabic sign language is done using
same hybrid approach [6]. Therefore, this work presents a hybrid approach of quantum learning model
for DR detection.

This paper presents a hybrid approach for early detection of DR. We have compared the results of
our three hybrid Quantum Transfer Learning models with one classical Transfer Learning model.
We have labeled our data set into two categories i.e., no DR or DR. To build Quantum Transfer
learning model, we have used inception-V3 [7] pre trained neural network for feature extraction
and used quantum variational circuit for classification. Further our model is trained on penny lane
default device, IBM Qiskit BasicAer device and Google Cirq Simulator device. We have built Classical
transfer model on the same parameters and learning rates as defined in Quantum transfer learning
model. Moreover, both models are based on pytorch machine learning Library. Our proposed model
achieves an accuracy of 93%-96% on hybrid models and 85% accuracy rate on classical model.
Quantum transfer learning approach has many advantages over conventional diagnostic techniques.
This approach has less probability of human error and it is found to be more efficient and rapid way
of finding the lesions in retina. Quantum computing approaches are great for solving optimization
problems as compared to classical computing approaches.

2 Literature Review

Transfer learning refers to a technique for predictive modeling on a different but somehow similar
problem that can be used partially or entirely to accelerate the training and improve the performance
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of a model. It can train deep neural network with comparatively small size of data. If a previously
trained artificial neural network is successful in solving a particular problem, it can be reused with
some additional training to solve a problem. Let’s consider a pre-trained deep neural network with the
data set used for the solution of a problem. Transfer learning can be used to accelerates the training of
neural networks as either a weight initialization scheme or feature extraction method that is retrained
to solve a different or similar problem with a new dataset.

Quantum machine learning extends the concept of transfer learning, widely applied in modern
machine learning algorithms, to the emerging context of hybrid neural networks composed of classical
and quantum elements. In Quantum transfer learning we focus mainly on the paradigm in which a
pre-trained classical network is modified and augmented by a final quantum layer. We can use any
pre trained classical neural network according to our problem for feature extraction. To classify these
features with the help of “dressed quantum circuit” we need to reduce output-dimensional feature
vector to final dimensions with linear transformation [8]. We commonly use variational quantum
classifier to classify output features from built-in neural network and variational quantum classifier
used in this regard as presented in Fig. 2.
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Figure 2: Variational Quantum Classifier with embedding layers U(x) and variational circuit V(6) and
final measurements in classical output f(x)ec

In Fig. 2 we have presented three basic components (embedding layers U(x), variational circuit
V(#) and final measurements) on which Variational Quantum Classifier (VQC) is built [9]. We have
adopted a different method to get data into quantum computers and we have used four major data
encoding techniques like: Basis Encoding, Amplitude Encoding, Angle Encoding and Higher order
embedding.

One of the most important components in VQC is variational circuit. Fig. 3 presents variational
circuit for one qubit operation.
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Figure 3: Simple case of one Qubit
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It’s shows that our variational circuit depend’s on the two parameters like 6, & 6,

In past, many works have been reported to solve DR problem by using classical machine learning
approaches using different datasets. Mansour [10] used a deep convolution neural network using
transfer learning for feature extraction when building a computer aided diagnosis for DR.

To avoid the time and resource consumption, Mohammadian [1 1] fine-tuned the Inception-V3 and
Xception pre-trained models to classify the DR dataset into two classes. After using data augmentation
to balance the dataset, an accuracy score of 87.12% on the Inception-V3, and 74.49% on the Xception
model is reported. Wan et al. [12] implemented transfer learning and hyper parameter tuning on the
pre-trained models AlexNet, VggNet-s, VggNet-16, VggNet-19, GoogleNet and RestNet using the
Kaggle dataset and compared their performances. The highest accuracy score was that of VggNet-s
model, which reached 95.68% when training with hyper-parameter tuning. Transfer learning was used
to work around the problem of insufficient training dataset in for retinal vessel segmentation. Dutta et
al. [13] used 2000 fundus images to train a shallow feed forward neural network, deep neural network
and VggNet-16 model. On a test dataset of 300 images, the shallow neural network scored an accuracy
of 42%, and the deep neural network scored 86.3% while the VggNet-16 scored 78.3% accuracy.

It is quite evident from the majority of the work in diabetic retinopathy detection revolves around
the use of various transfer learning models and performance comparison of these models. It is also
observed that less emphasis has been given on improvement of quality of the diabetic retinopathy
dataset which could lead to more accurate results. It is important to highlight the fact that the
reliability of results generated from the transfer learning model depends on the features of the dataset.
Google’s recent achievement of quantum supremacy marked the first glimpse of this promised power.
This is reminiscent of how machine learning evolved towards deep learning with the advent of new
computational capabilities. These new algorithms use parameterized quantum transformations called
parameterized quantum circuits (PQCs), Quantum Neural Networks (QNNs), Variational quantum
circuits and Dressed quantum circuits. In analogy with classical transfer learning, the parameters of
a variational quantum circuits are then optimized with respect to a cost function via either black-box
optimization heuristics or gradient-based methods.
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3 Limitations of Existing Works and Contributions

A tabular comparison has been outlined to discuss the limitations and contributions of the existing
works.

Table 1: Comparative analysis of existing works and their limitations and contributions

Author Adopted models Experimental out-comes

DL, Mohammadian [11] Inception-V3 and Xception Accuracy score of 87.12% and
pre-trained models 74.49% achieved

Wan et al. [12] Pre-trained models AlexNet, Highest accuracy score was that
VggNet-s, VggNet-16, of VggNet-s model, which
VggNet-19, GoogleNet and reached 95.68%
RestNet

Dutta et al. [13] Shallow feed forward neural Accuracy of 42%, and 86.3%

network, deep neural network  78.3% accuracy achieved
and VggNet-16 model.

4 Material and Method
4.1 Dataset

The dataset we used in our study is a publicly available retinal fundus images database from
Kaggle (APTOS 2019 Blindness Detection) [14] consisting of 3662 images. This database is formed
by technicians as they traveled in rural areas to take images for ophthalmologist’s review regarding
diagnosis. This process is time and resource consuming. Therefore, in current study this dataset
is used to get computer aided ability to screen images without the help of ophthalmologists for
timely detection of disease. The obtained dataset was weed up and a clean dataset was created. The
resulting dataset is labeled into two categories. In order to train our model, we have used 789 non-
DR and 738 DR images. Validation of our model is carried out by using 384 images from which 198
non-DR and 186 DR images of patients. We test out model on 1738 different and random images
to evaluate performance of both types of models i.e., Classical transfer learning-based model and
Quantum transfer learning based model. Distribution of training data with labels of Non-DR and
DR is presented in Fig. 4.

Model Training DataSet
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Non DR DR

Figure 4: Distribution of training data with labels of Non-DR and DR
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4.2 Quantum Devices

The Quantum Computing device used in our study is Penny-lane default device, IBM QiskitBasi-
caer and Google Cirq Simulator device. These simulators are noiseless to avoid any error.

4.3 Image Pre-Processing

In current work, APTOS 2019 Blindness Detection dataset is taken from Kaggle and labelled
into two categories with the help of provided file in Kaggle documentation. Furthermore, resizing of
imbalance images is done to 350 by 350. These images are further processed to remove extra black
pixel part to covert image as input in our inception V3 pre-trained neural network. After this we have
converted our images into tensor vector because machine learning model always input data in the form
of vectors. We have done some normalization of parameters like ( [0.485,0.456,0.406]) to remove any
misbalancing during resizing of images [15,16].

5 Proposed Hybrid Quantum Transfer Learning Model

We have proposed hybrid Quantum transfer learning model, in which we have used inception-
v3 pre trained neural network for feature extraction. Inception-v3 is a pre-trained convolutional
neural network model that is 48 layers deep that is used to reduce images to 2048-dimensional feature
vector [1].

To classify these features with the help of 4-qubit “dressed quantum circuit” we have reduced
2048-dimensional feature vector to 4 dimensions with linear transformation [8]. Variational quantum
classifier, built for our problem is presented in Fig. 5.
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Figure 5: Variational quantum classifier of (four qubits)

Following steps are performed to build quantum classifier

1. Firstly, we have initialized 4 qubits in |0) state and then apply Hadamard (H) gate on these 4
qubits to make them in superposition state of zero and one [1].

2. Then we have applied, additional transformation to encode our classical data with unitary
circuit. To perform this operation, we encoded our 4-dimensional feature vector as a parameters or
weights into our circuit consisting of Ry(fi) gates and U («, 8, 0, y) circuit.

€ (x) = ®;_, (R, (x,/2) | 0000 >)

3. We have a sequence of trainable variational layers having an entanglement layer and a data
encoding circuit. We have 3 CNOT gates in the entanglement layer which makes all qubits, entangled

Q:L6OL50L4OL3OL20L1

Lw) :|x>—|y>=k®,_, R, (Wk)|x >
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k= (CNOT ® ||54) (Il.. ® CNOT) (||, ® CNOT ® ||,)

4. In the end we have done measurements on each 4-qubits to get the expected value along the
z-operator.

<VZRIRN Iy >
<MV ZRN®||ly >
<yINSZRIy >
<) Zy >

M(ly>)=y=

Fig. 6, clearly presents the complete flow of our proposed model from first block A (inception
V3) to its final measurement block (between Non-DR or DR (0,1)).

Inception V3 L QPU L 0 -->Non DR
A 2048 --> 4 B 4-->2 1-->DR

Figure 6: Flowchart of the proposed Quantum Transfer learning model

6 Experimental Evaluation

We have trained two models, first is classical model using classical transfer learning and second is
quantum model using quantum transfer learning with the same training data set and parameters. We
have setup learning rate 0.0004 which is same for both models and used Adam optimization algorithm
and Cross Entropy function as activation function. Online google Colab notebook is being used to run
our model.

We have evaluated our model with five basic standards: Accuracy, Precision, Recall, f1-score and
specificity with the following formulas.

T,+ T
Accurcay = pt Ty (1)
T,+ Ty +F, + Fy
T
Precision = ! )
L,+F,
T
Recall = ! (3)
T, + Fy
T
N N

Fl =2« Recall x Precz:szion 5)
Recall x Precision

Where T, = True Positive, F, = False Positive, Ty = True Negative, Fy = False Negative.

Fig. 7 shows confusion matrix of our four models. First matrix is based on Classical Transfer
learning model and other three matrices are Quantum Transfer learning models which are Trained on
Google Cirq Simulator, IBM Qiskit BasicAer device and penny lane default device) [14].
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Google Cirq Simulator

Classical Computer

800
700

o8 700
DR 600
600
- T
% 500 8 500
° 400 g 400
£ £
300 300
| NON-DR
NON-DR 200 %06
100 100
(?‘ = QQ' 0‘2*
‘Q‘\S’ &
Predicted label Predicted label
accuracy=0.8514; misclass=0.1486 accuracy=0.9411; misclass=0.0589
(a) (b)
IBM Qiskit BasicAer pennylane default device
800 800
700 700
DR 600 DR 600
2 500 3 500
o =
o 400 g 400
= =
NON-DR NON-DR
200 +200
100 F100
& & & F
S &
® §
Predicted label Predicted label
accuracy=0.9326; misclass=0.0674 accuracy=0.9149; misclass=0.0851
() (d)

Figure 7: Confusion matrix of classical model and hybrid quantum model in (a), (b), (c), (d)

Performance of classical and hybrid quantum models on 5 epochs are presented in Figs. §
and 9. Our results presented that accuracy rate of Classical model, Pannylane default device, IBM
Qiskit BasicAer device and Google Cirq Simulator Device is found to be 85.14%, 91.48%, 93.25%
and 94.11% respectively. Therefore, it is observed that Google Cirq Simulator device presented high
accuracy rate of 94.11% as compared to other hybrid or classical models. Validation accuracy of our
models is presented in Fig. 9 [15].

Tab. 2. shows comparison based on five standard tests like Accuracy Rate, Precision Rate, Recall,
F1 Score, specificity of both classical model and hybrid quantum models train on (PannyLane,
BasicAer Qiskit and Cirq Simulator) for just 5 epochs. Tab. 2 also shows Criq Simulator device has
superior performance on the basis of all performance merits as compared to other simulators and
models including Classical computer and Pannylane.
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Figure 8: Accuracy rate of classical model and hybrid quantum model
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Figure 9: (a) Validation Accuracy with number of epochs. (b) Validation loss of different quantum
devices or classical computer with number of epochs

Table 2: Comparison based on standard test

Quantum models and Classical models
(41.69% of data used during training)

Sr  Evaluation PannyLane BasicAer Qiskit Cirq simulator  Classical computer
1 Accuracy rate  91.48% 93.25% 94.11% 85.14%
2 Precisionrate  94.74% 97.43% 95.59% 97.43%
3 Recall 87.96% 89.14% 92.10% 76.93%
4  FI1 Score 91.22% 93.09% 93.80% 85.95%
5  Specificity 88.62% 89.59% 92.81% 74.35%

In Tab. 3, we have compared the overall Model accuracy based on the labels of DR or Non-DR
and performed evaluation for PannyLane, BasicAer Qiskit, Cirq Simulator and Classical Computer.
It can be seen in Tab. 3 that overall accuracy for 0-No DR is found to be 95% and 88% for 1-DR. This
shows that our transfer learning approach is capable of DR detection with much higher accuracy and
less errors. This technique can further be linked with mobile applications to enable DR detection at
local level with the help of a specialized doctor.
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Table 3: Comparison based on standard test

Quantum models and Classical model
(41.69% of data used during training)

Sr  Evaluation PannyLane BasicAer Qiskit Cirq simulator  Classical computer
1 0-No DR 95% 96% 95% 97%
2 1-DR 88% 89% 92% 76%

7 Statistical Distribution Study for Diabetic Retinopathy (DR) Data

The probability distributions are used in Statistics to make the detection of any change in the
trend of the data. If a probability distribution is fitted accurately to the data, then it will be helpful
to detect the change in data at early stage. In this section we tried to fit five different probability
distributions such as Reflected Power function distribution, Kumarswamy Lehmann-2 Power function
distribution (KL2PFD), Beta Lehmann-2 Power function distribution (BL2PFD), Weighted Power
function distribution(WPFD) and Exponentiated Generalized Power function distribution (EGPFD)
which are generated and used in medical diagnosis in literature [17-20] to get the better probability
distribution for diabetic retinopathy diagnostic data. If we get early diagnosis of the patients that suffer
from retinopathy, it will make the medical team to treat it at early stage.

The probability density function (pdf) of the proposed Reflected Power function distribution
(RPDF) for the diabetic retinopathy are given as

f(x):y(o;—yx)y_,é—ﬁ<x<0,and,3,8,y>O. (6)

The probability density function (pdf) of Kumarswamy Lehmann-2 Power function distribution
(KL2PFD) are given as

xyga—l xV071 xyeaw—l
o101 1)1 -6
p B B
yx!
B’
Where “y” and "B" are the shape and scale parameters. Also, the parameters “60” and “¢”are the

tuning shape parameters.

The probability density function (pdf) of Beta Lehmann-2 Power function distribution (BL2PFD)
are given as

(== (= ()) ()

where “y” and "B" are the shape and scale parameters. Also, the parameters “o” and “b” are the tuning
shape parameters.

O<x<B,a>08>0,y>0 (7

f(x = ,0<x<B,8>0 ®)
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The probability density function (pdf) Weighted Power function distribution (WPFD) is given as

f(x):zy%::_l,0<x<,8,ﬂ>0. )

where “y” and "B" are the shape and scale parameters.

The probability density function (pdf) Exponentiated Generalized Power function distribution
(EGPFD) is given as

yya—1 yyaqB-1 y—1
f(x):aﬁ{l—(f)} [1—{1—(2)}} rx O<x<g,a>08>0y>0. (10)
% % 24

where “y” and "¢" are the shape and scale parameters. Also, the parameters “a” and “B” are the tuning
shape parameters.

In this section, we have analyzed diabetic retinopathy data using statistical modeling. We have
derived the estimates and their standard errors of the parameters of distributions using modified
maximum likelihood method. The results are presented in Tab. 4. We have compared the proposed
probability distributions using Goodness of fit measures such as Akaike information criteria (AIC),
corrected Akaike information criteria (CAIC), Baysian information criteria (BIC), Hannan-Quinn
information criteria (HQIC) and log likelihood criteria (LogL).

Table 4: The estimates for parameters of distribution and their standard errors (in parentheses)

Distribution Estimates
y B o 0

RPFD 8.271522 - - -
(0.7339789)

KL2PFD 0.3475206 2.4412303 4.2730098 2.1817279
(0.1753739) (0.9420926) (3.0516881) (1.1363113)

BL2PFD 0.3678653, 5.0156976 1.7911449 2.8191529
(0.3853524) (6.1546671) (5.5816309) (7.4576940)

WPFD 0.1895936 - - —
(0.01682325)

EGPFD 0.4088129 4.9477360 4.6112238 -
(0.2152832) (4.5178964) (1.2363104)

The TTT-plot is presented in Fig. 10, which shows that the HRF has a first concave downward
and then concave upward for upside-down bathtub-shaped failure rate. So, we can easily fit above
mentioned probability distributions on the diabetic retinopathy data.

In Tabs. 4and 5 and Fig. 11, we have compared the performances of the proposed distributions for
the diabetic retinopathy diagnostic data and we see that Reflected Power function distribution (RPFD)
best described the diabetic retinopathy data and can be used for further statistical approach. We have
proposed an efficient hybrid quantum learning (Section 6) reflected power function distribution in
statistical terms to get early detection of any future patient to get a chance of suffering from diabetic
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retinopathy disease. So, we have presented hybrid quantum learning along with probability distribution

CMC, 2022, vol.71, no.2

for the detection of diabetic patients, suffering from retinopathy disease.
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Figure 10: TTT plot and Boxplot for DR data
Table S5: Goodness of fit measures for Diabetic Retinopathy diagnostic data
Distribution AIC CAIC BIC HQIC -logL
RPFD 798.6368 798.6688 801.481 799.7923 398.3184
EGPFD 808.0444 808.2395 816.577 811.5111 400.0222
KL2PFD 810.2859 810.6137 821.6626 814.9081 400.6429
BL2PFD 810.5365 810.8644 821.9133 815.1588 401.2683
WPFD 942.4546 942.4866 945.2988 943.6102 470.2273
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8 Conclusion

A hybrid quantum transfer learning approach is adopted to model early DR detection. From our
results we clearly see that Google Cirq simulator shows higher efficiency in terms of model accuracy.
Moreover, already used Classical training model have presented large gap in accuracy rate. We report
superiority of Quantum models in terms of performance and speed. During training of our models, we
see Pannylane default device takes very less time as compared to other models. Overall performance
of Pannylane default device is very good in term of time. This work suggests that there might be
some variation in performance of these quantum devices but these show high performance rate when
compared with classical model and is verified by statistical methods as well. This performance analysis
shows that computer aided technique can be used in mobile applications for timely detection of DR
in rural areas.
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