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Abstract: This paper investigates the use of multi-agent deep Q-network
(MADQN) to address the curse of dimensionality issue occurred in the
traditional multi-agent reinforcement learning (MARL) approach. The pro-
posed MADQN is applied to traffic light controllers at multiple intersections
with busy traffic and traffic disruptions, particularly rainfall. MADQN is
based on deep Q-network (DQN), which is an integration of the traditional
reinforcement learning (RL) and the newly emerging deep learning (DL)
approaches. MADQN enables traffic light controllers to learn, exchange
knowledge with neighboring agents, and select optimal joint actions in a col-
laborative manner. A case study based on a real traffic network is conducted as
part of a sustainable urban city project in the Sunway City of Kuala Lumpur
in Malaysia. Investigation is also performed using a grid traffic network
(GTN) to understand that the proposed scheme is effective in a traditional
traffic network. Our proposed scheme is evaluated using two simulation tools,
namely Matlab and Simulation of Urban Mobility (SUMO). Our proposed
scheme has shown that the cumulative delay of vehicles can be reduced by up
to 30% in the simulations.

Keywords: Artificial intelligence; traffic light control; traffic disruptions;
multi-agent deep Q-network; deep reinforcement learning

1 Introduction

Traffic congestion has become a problem in most urban areas of the world, causing enormous
economic waste, extra travel delay, and excessive vehicle emission [1]. The traffic light controllers,
which are installed to monitor and control the traffic flows at intersections in order to alleviate traffic
congestion strategically. Each traffic light controller has: a) light colors in which green color represents
“go”, amber represents “slow down”, and red represents “stop”; b) traffic phase, in which a set of green
lights are assigned to a set of lanes for safe and non-conflicting movements at the intersections; and c)
traffic phase split is the time period of a traffic phase. The traffic phase split includes a short moment

http://dx.doi.org/10.32604/cmc.2022.022952
mailto:chong@usm.my


2226 CMC, 2022, vol.71, no.2

of red lights for all lanes to provide a safe transition in between traffic phases. The time passed since
the respective lane light has changed to red is represented by red timing.

Next, we present five main fundamentals related to our investigation in the use of MADQN to
traffic light controllers for reducing the cumulative delay of vehicles. Firstly, various types of traffic
light controllers are presented to control and alleviate traffic congestion. Secondly, various artificial
intelligence approaches are presented to accomplish fully-dynamic traffic light controllers. Thirdly,
the traditional DQN approach is presented as an enhanced artificial intelligence approach applied
to traffic light controllers. Fourthly, the significance of using the cumulative delay of vehicles as the
performance measure is presented. Fifthly, traffic disruptions to traffic network are introduced using
the Burr distribution. The contributions of this paper are also presented.

1.1 Types of Traffic Light Controllers

Traditionally, traffic light controllers monitor traffic movements and determine traffic phase splits
to control and reduce congestion in traffic by using three main techniques. Firstly, a deterministic
traffic light controller is a pretimed control system that uses historical data of traffic collected at
different times and determines traffic phase splits using the Webster formula [2]. Secondly, a semi-
dynamic traffic light controller is a system based on actuated control, and it uses instantaneous or
short-term traffic condition, such as the absence and presence of vehicles, and assigns green lights
to lanes with vehicles [3]. The short-term traffic condition can be detected using an inductive loop
detector. Thirdly, a fully-dynamic traffic light controller is also a system based on actuated control;
however, it uses longer-term traffic condition, including the average queue length and waiting time of
vehicles of a lane. The longer-term traffic condition (e.g., the average queue length and the waiting
time of vehicles at a lane) can be measured by the number of vehicles using at least two inductive loop
detectors at a lane, one is installed near the intersection and another one is installed further away from
the intersection [4]. By measuring the number of vehicles, the average queue length and waiting time of
vehicles at a lane can be calculated. Video-based traffic detector (or camera sensor) can also be installed
at an intersection, and image processing can be used to calculate the number of vehicles at a lane of
an intersection [5]. Subsequently, it adjusts the traffic phase split based on the traffic condition [6].
The fully-dynamic traffic light controllers are more realistic in monitoring traffic movements because
it uses longer-term traffic conditions, and the approach has shown to alleviate traffic congestion more
effectively compared to deterministic and semi-dynamic traffic light controllers [7–9].

1.2 Common Approaches of Fully-Dynamic Traffic Light Controllers

The fully-dynamic traffic light controller has commonly been accomplished using artificial intel-
ligence approaches, particularly reinforcement learning (RL) [10,11] and multi-agent reinforcement
learning (MARL) [12]. RL can be embedded in a single agent (or a decision maker), which is the
traffic light controller, to learn, make optimal action (i.e., traffic phase split), and improve its operating
environment (i.e., the local traffic condition). In contrast, MARL can be embedded in multiple
traffic light controllers (or agents) to exchange knowledge (i.e., Q-values), learn, make optimal joint
action, and improves their operating environment (i.e., the global traffic condition) in a collaboration.
However, the curse of dimensionality has occurred in single-agent RL and MARL, in which the state
space is too large to be handled efficiently due to the complexity of the traffic congestion issue [13],
and so this paper uses multi-agent deep Q-network (MADQN) that is based on the traditional single-
agent DQN approach [14]. This paper extends our previous work [15] that mainly focuses on measuring
the performance measures, such as throughput, waiting time, and queue length, which are unable to
relate to drivers’ experience. This paper investigates the use of MADQN to traffic light controllers
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at intersections with high volume of traffic and traffic disruptions (i.e., rainfall) by measuring the
cumulative delay of vehicles as the performance measure, which relate to drivers’ experience.

1.3 DQN as an Enhanced RL-Based Approach for Traffic Light Controllers

DQN is a combination of the new evolving deep learning technique [16] and the traditional RL
technique, conveniently called deep reinforcement learning (DRL) [17]. DQN solves the curse of
dimensionality and provides two main advantages [18]: a) reduces the learning time and computational
cost incurred to explore different pairs of state-action and identify the actions that are optimal; and
b) uses hidden layers to provide abstract and continuous representations of the complex and high-
dimensional inputs (i.e., the state space) for reducing the capacity of storage needed to store the
unlimited number of pairs of state-action (or the Q-values).

1.4 Cumulative Delay of Vehicles as the Performance Measure Used by Traffic Light Controllers

The cumulative delay of the vehicles is the average time (i.e., average travelling and waiting times
caused by congestion) taken by vehicles to travel from a source location to a destination location, which
may require crossing multiple intersections. Compared to other measures, including the average queue
length and waiting time of the vehicles of a lane, and throughput (i.e., the number of vehicles crossing
an intersection), the cumulative delay can be directly perceived by drivers, and so it relates to the drivers’
experiences. In other words, drivers perceive the difference between the actual and expected travel times
when crossing multiple intersections. The investigations with respect to the cumulative delay of vehicles
as the performance measure has gained momentum over the years with the use of DRL to traffic light
control. Specifically, the cumulative delay is the most frequently used performance measure in the
literature from January 2016 to November 2020 as compared to other performance measures in the
investigation of the use of DRL to traffic light control as shown in Fig. 1. The scientific literature
databases, including Web of Science [19], IEEE Xplore Digital Library [20], and ScienceDirect [21],
have been used to conduct this study. The cumulative delay of vehicles has gained momentum over
the years due to its better reflection of the real circumstances, particularly the drivers’ experiences.
While the cumulative delay has been used in the literature [22,23], it has not been applied to traffic
congestion at multiple intersections scenario under the presence of increased traffic volume and traffic
disruptions, and so this paper adopts this measure to calculate the average time required by vehicles
to cross multiple intersections.

1.5 Burr Distribution for Introducing Traffic Disruptions to Traffic Networks

Traffic congestion can be categorized into: a) recurrent congestion (RC) caused by the high volume
of traffic; and b) non-recurrent congestion (NRC) caused by erratic traffic disruptions, including
accidents, and rainfall [24,25]. In the literature [26], the arrival process of vehicles has been widely
modeled by the Poisson process, whereby the inter-arrival time of vehicles follows an exponential
distribution. The Poisson process incorporates RC naturally; however, it does not incorporate NRC,
and so the Burr distribution, which is the generalization of the Poisson process, has been adopted by
this work to model the vehicle’s time of inter-arrival under scenarios with a high volume of traffic (i.e.,
RC) and traffic disruptions (i.e., NRC).

1.6 Contributions of the Paper

Our contribution is to investigate the use of MADQN to traffic light controllers at intersections
with a high volume of traffic and traffic disruptions (i.e., rainfall). This work is based on simulation
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using the Burr distribution, which has been shown to model traffic disruptions in traffic networks
accurately in [27]. The performance measure is the cumulative delay of vehicles, which includes the
average waiting and travelling times caused by congestion. This performance measure is used because
the difference between the actual and expected travel times when crossing multiple intersections can
be directly perceived by drivers, and so it relates to the drivers’ experiences. In this paper, we aim to
show a performance comparison between MADQN and MARL applied to traffic light controllers at
intersections with a high volume of traffic and traffic disruptions in terms of the cumulative delay of
vehicles, which has not been investigated in the literature despite its significance.

Figure 1: The usage of three popular performance measures in the investigation of the use of DRL to
traffic light control in recent years

1.7 Organization of the Paper

The paper is structured into six sections.

• Section 1 presents the introduction of traffic light controllers and the background of common
approaches for traffic light controllers. It also presents the contributions of the paper.

• Section 2 presents the background of the Krauss vehicle-following model, DRL and MARL.
The traditional algorithms of DRL and MARL are also presented in this section.

• Section 3 presents the literature review of DQN-based traffic light controllers. There are five
main DQN approaches discussed in this section.

• Section 4 presents the proposed MADQN model for traffic light controllers. It presents the
representations of the proposed MADQN model, including the state space, action space, and
delayed reward, applied to traffic light controllers. It also presents the MADQN architecture
and algorithm.

• Section 5 presents an application for sustainable city (i.e., Sunway city), and our simulation
results and discussion.

• Section 6 concludes this paper with a discussion of potential future directions.

2 Background

This section presents the background of the Krauss vehicle-following model, DRL and MARL.
The Krauss vehicle-following model is a mathematical model of safe vehicular movement, whereby a
gap between two consecutive vehicles is maintained. The background of DRL includes the traditional
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single-agent deep Q-network (DQN) algorithm. The background of MARL includes its traditional
algorithm.

2.1 Krauss Vehicle-Following Model

In 1997, Krauss developed a vehicle-following model based on the safe speed of vehicles. The safe
speed is calculated as follows [28]:

usafe = ul (t) + g (t) − ul(t)τr

ul (t)+uf (t)

2b
+ τr

(1)

where ul (t) and uf (t) represent the speed of the leading and following vehicles at time t, respectively,
and g (t) is the gap to the leading vehicle at time t. The driver’s reaction time (e.g., one second) is
represented by τr, and b is the maximum deceleration of the vehicle.

In our study, the Krauss vehicle-following model is used to ensure the safe movement of vehicles
at intersections of the Sunway city and grid traffic networks (see Section 5).

2.2 Deep Reinforcement Learning

DRL incorporates DNNs into RL that enables agents to learn relationships between actions
and states. DeepMind has first proposed the DQN [17], which is the DRL method, and it has been
widely adopted in traffic light control [29]. DQN consists of a DNN, which is comprised of three
main kinds of layers, namely the input layer, hidden layer(s), and output layer. In DQN, the neurons
are interconnected with each other and they can learn complex and unstructured data [30]. During
training, the data flows from the input layer to the hidden layer(s), and finally to the output layer.
DQN provides two main features, which are: a) experience replay, in which experiences are stored in
a replay memory, and then the experiences are randomly selected for training; and b) target network,
which is the main network duplicate. The main network selects actions based on observations from
the operating environment and updates its weights. The target network approximates the weights of
the main network to generate its Q-value. During training, the Q-value of the target network is used
to calculate the loss incurred by a selected action, and it has shown to stabilize training. After every
certain number of iterations, the target network is updated. The main difference between the main
and target networks is that the main network is used during observation, action selection and training
processes, while the target network is used during training process only.

Algorithm 1: The traditional single-agent DQN algorithm

1. procedure
2. for m = 1: M do
{Observation process}
3. observe current state st

4. for t = 1: T do
{Action selection process}
5. select action vt using Eq. (2)

(Continued)
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6. receive delayed reward rt+1(st+1) and next state st+1

7. store experience et = (st, vt, rt+1 (st+1) , st+1) in replay memory Dt

{Training process}
8. sample a random minibatch of experiences en from replay memory Dt

9. for j = 1: N do

10. set target yj =
{

rj+1

(
sj+1

)
, if episode terminates at sj+1

rj+1

(
sj+1

) + γmaxvQ(sj+1, v; θj), otherwise
11. compute the loss function using Eq. (3)
12. perform a gradient descent optimization on (yj − Q(sj, vj; θj))

2 with respect to θj using
Eq. (5)

13. reset θ− = θ in every C steps
14. end for
15. end for
16. end for
17. end procedure

Algorithm 1 shows the DQN algorithm. In m ∈ M, which is an episode, the current state st ∈ S (or
the decision making factors) is observed by an agent. At t ∈ T , which is a time instant, the best-known
(or greedy) action v∗

t ∈ V is selected by an agent as follows:

v∗
t = argmax

v∈V

Qt (st, vt; θt) (2)

where Qt(st, vt; θt) is the Q-value, which indicates whether the action vt is appropriate under state st,
and θt are the parameters of main network. After that, the agent receives the delayed reward rt+1(st+1)

and next state st+1, and then it stores its experience et = (st, vt, rt+1 (st+1) , st+1) in a replay memory Dt =
(e1, e2, . . . , et). After that, a minibatch of experiences en is sampled by an agent from the replay memory
Dt randomly. Suppose, the target network Q-value is Qt(st, vt; θ−

t ) and the main network Q-value is
Qt(st, vt; θt). The target Q-value is fixed for C steps to stabilize the Q-values of the main network, and
to reduce the loss between the Q-values of the target and main networks. To train the main network,
the loss function is reduced at iteration j as follows:

Lj

(
θj

) = Esj ,vj∼p(sj ,vj )[(yj − Qj(sj, vj; θj))
2] (3)

where p(sj, vj) is the state-action (sj, vj) pair probability distribution, and yj is a target, as follows:

yj = rj+1

(
sj+1

) + γ max
v

Q(sj+1, v; θj) (4)

where γ is a discount factor, in which the discounted reward γ maxv Q(sj+1, v; θj) represents the long-
term reward estimated by the maximum Q-value at iteration j + 1, and the delayed reward rj+1

(
sj+1

)
represents the short-term reward. If episode terminates at sj+1, then yj = rj+1

(
sj+1

)
. The loss function

gradient ∇θLj(θj) is given as follows:

∇θLj

(
θj

) = Esj ,vj∼p(.)[(yj − Qj(sj, vj; θj))∇θj Qj(sj, vj; θj)] (5)
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The target Q-values Qt(st, vt; θ−
t ) of the target network is updated by replacing the weights θ−

j of the
target network with the weights θj of the main network in order to provide Qj(sj, v∗

j ; θ
−
j ) ≈ Q∗(sj, vj; θj)

at every C steps (i.e., equivalent to a number of iterations [31]).

2.3 Multi-Agent Reinforcement Learning

MARL is an extended approach of the traditional RL approach that enables multiple agents to
exchange information with each other in order to achieve the optimal network-wide performance [32].
The optimization of the network-wide objective function is the main purpose, such as the global Q-
value that sums up the local Q-values of all agents in a single network, as time goes by t = 1, 2, 3 . . ..
Algorithm 2 shows the MARL algorithm. At time instant t ∈ T , an agent i observes its current local
state si

t ∈ S, sends its own Q-value Qi
t(s

i
t, vi

t) to neighboring agents Ji, receives the optimal Q-value
maxvj∈V Qj

t(s
j
t, vj) from each neighboring agent j ∈ Ji, and selects an action vi,∗

t ∈ V as follows:

vi,∗
t = argmax

v∈V

Qi
t(s

i
t, v) (6)

Agent i receives a delayed reward ri
t+1(s

i
t+1) for the state-action pair (si

t, vi
t) under the next state

si
t+1 ∈ S at time instant t + 1, and then the Q-value Qi

t(s
i
t, vi

t) for the state-action pair is updated as
follows:

Qi
t+1

(
si

t, vi
t

) ← Qi
t

(
si

t, vi
t

) + αδi
t(s

i
t, vi

t) (7)

where δi
t(s

i
t, vi

t) represents a temporal difference as follows:

δi
t

(
si

t, vi
t

) = ri
t+1

(
si

t+1

) + γ
∑

j∈Ji
ni,j max

vj∈V
Qj

t(s
j
t, vj) (8)

where ni,j represents the importance (or weight) of an agent j in the neighborhood of agent i, and∑
j∈Ji ni,j = 1.

Algorithm 2: MARL algorithm embedded in agent i
1. procedure
2. observe current state si

t ∈ S
3. send Q-value Qi

t(s
i
t, vi

t) to neighboring agents Ji

4. receive max
vj∈V

Qj
t(s

j
t, vj) from agent j ∈ Ji

5. select action vi
t ∈ V using Eq. (6)

6. receive delayed reward ri
t+1(s

i
t+1)

7. update Q-value Qi
t+1

(
si

t, vi
t

)
using Eq. (7)

8. end procedure

3 Literature Review

This section presents a literature review of DQN-based traffic light controllers, which have shown
to achieve various performance measures. Five main DQN approaches have been proposed to reduce
the cumulative delay of vehicles. In general, the DQN approaches are embedded in traffic light
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controllers. The DQN model has an input layer that receives state, and an output layer that provides
Q-values for possible actions (e.g., traffic phases [33] and traffic phase splits [34]).

3.1 Traditional DNN-Based DQN

The application of the traditional DNN-based DQN approach to traffic light control is proposed
in [33,35]. In the Wan’s DNN-based DQN model [33]: a) state represents the current traffic phase,
the queue length, and the green and red timings; b) action represents a traffic phase; and c) reward
represents the waiting time of vehicles. In the Tan’s DNN-based DQN model [35]: a) state represents
the queue length of vehicles; b) action represents a traffic phase; and c) reward represents the queue
length and waiting time, as well as throughput. The proposed schemes have shown to reduce the
cumulative delay [33,35] and queue length [35] of vehicles, and improve throughput [33].

3.2 CNN-Based DQN

The convolutional neural network (CNN)-based DQN approach enables agents to analyze visual
imagery of traffic in an efficient manner. The agents process the input states, which are represented
in the form of a two-dimensional matrix (i.e., multiple rows and columns of values, such as an image)
or one-dimensional vectors (e.g., a single row or column of values, such as the queue length of a lane)
[29]. The application of the CNN-based DQN approach to traffic light control is proposed in [22],
[23,34,36]. In the Genders’ and Gao’s CNN-based DQN model [22,34]: a) state represents the current
traffic phase, as well as the position and speed of vehicles; b) action represents a traffic phase [22] and
a traffic phase split [34]; and c) reward represents the waiting time of vehicles. In the Wei’s CNN-based
DQN model [36]: a) state represents the current traffic phase, as well as the position and queue length
of vehicles; b) action represents a traffic phase; and c) reward represents the waiting time and queue
length. In the Mousavi’s CNN-based DQN model [23]: a) state represents the current traffic phase and
queue length; b) action represents a traffic phase; and c) reward represents the waiting time of vehicles.
The proposed schemes have shown to reduce the cumulative delay [22,23,34,36], waiting time [34], and
queue length [22,23,36] of vehicles, as well as improve throughput [22,36].

3.3 SAE-Based DQN

The stacked auto encoder (SAE) neural network-based DQN approach enables agents to perform
encoding and decoding functions, and store inputs efficiently. The application of the SAE neural
network-based DQN approach to traffic light control is proposed in [37]. In the Li’s SAE neural
network-based DQN model [37]: a) state represents the queue length; b) action represents a traffic
phase split; and c) reward represents the queue length and waiting time. The simulation results have
shown that the proposed scheme can reduce the cumulative delay and queue length of vehicles.

3.4 LSTM-Based DQN with A2C

The long short-term memory (LSTM) neural network-based DQN approach enables agents to
memorize previous inputs of a traffic light control using a memory cell that maintains a time window
of states. The advantage of the actor critic (A2C)-based method is that it is a combination of value-
based and policy-gradient (PG)-based DQN method. Each agent has an actor that controls how it
behaves (i.e., PG-based), and a critic that measures the suitability of the selected action (i.e., value-
based). The application of the LSTM neural network-based DQN with A2C approach to traffic light
control has been proposed in [38]. In [38]: a) state represents the queue length; b) action represents a
traffic phase; and c) reward represents the queue length and waiting time. The simulation results have
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shown that the proposed scheme can reduce the cumulative delay and queue length of vehicles, as well
as improve throughput.

3.5 MADQN

The MADQN approach allows multiple DQN agents to share knowledge (i.e., Q-values), learn,
and make optimal joint actions (i.e., traffic phase split) in a collaboration. In the Rasheed’s MADQN
model [15]: a) state represents queue length, the current traffic phase, red timing, and the rainfall
intensity; b) action represents a traffic phase split; and c) reward represents the waiting time of the
vehicles. The simulation results have shown that the proposed scheme can reduce the waiting time and
queue length at a lane, and improve throughput. In this paper, we extend the work in [15] by evaluating
the cumulative delay of vehicles incurred by MARL and MADQN at multiple intersections, while
having traffic disruptions (i.e., rainfall).

4 Our Proposed MADQN Approach for Traffic Light Controllers

In a traffic network, an intersections set I is considered in this paper, whereby i ∈ I is an
intersection in which: a) Ki is an incoming lane set, and b) Ji is a neighboring intersection set. Fig. 2
shows an abstract model of MADQN, in which the agent i and its neighboring agents j = 1 ∈ Ji

and j = 2 ∈ Ji share the same traffic environment. This research uses four traffic phases: a)
the north-east bound traffic phase; b) the east-south bound traffic phase; c) the west-north bound
traffic phase; and d) the south-west bound traffic phase. The traffic phases are activated in a round-
robin fashion by traffic light controllers at intersections, and our MADQN approach is used to
adjust the time intervals of the traffic phases (i.e., traffic phase splits). Our proposed MADQN
approach, including the MADQN model (i.e., the state, action, and delayed reward representations),
the MADQN architecture, and the MADQN algorithm with its complexity analysis are presented in
the remainder of this section.

4.1 MADQN Model

MADQN has three main advantages as compared to MARL as follows:

• MADQN uses DNNs, which provide the state space with its continuous representation.
Consequently, it represents an unlimited number of pairs of state-action.

• MADQN addresses the curse of dimensionality by providing efficient storage for complex
inputs.

• MADQN uses a target network with experience replay, and so it improves the stability of
training.

The remainder of this subsection presents the representations of the state, action, and delayed
reward of the MADQN model at an intersection i at time t.

4.1.1 State

The state si
t = (si

1,t, si
2,k,t, si

3,k,t, si
4,t, si

5,t) ∈ S represents the decision making factors as follows:

• si
1,t ∈ {0, 1, 2, 3} represents the current traffic phase, and it is a discrete state. The north-east

bound traffic phase is represented by a 0 value, the east-south is represented.
• si

2,k,t ∈ {0, 1, 2, 3} , ∀k ∈ Ki represents the queue length of the incoming lanes Ki and it is
a continuous state. No vehicle at a lane is represented by a 0 value, ≤ 25% occupancy is
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represented by 1, > 25% and ≤ 50% is represented by 2, and > 50% is represented by 3. The
occupancy can be measured using inductive loop detectors installed at intersections.

• si
3,k,t ∈ {0, 1, 2, 3} , ∀k ∈ Kj represents the queue length of the incoming lanes k ∈ Kj at

a neighboring intersection j, and it is a continuous state. Both si
2,k,t and si

3,k,t have similar
representation.

• si
4,t ∈ ti,k

red,t represents the red timing of the current traffic phase, and it is a continuous state.
• si

5,t ∈ {0, 1, 2, 3, . . . , si
5} represents the intensity of rainfall with a 0 value means no rain and si

5,
which is the maximum value, means the heaviest rain, and it is a continuous state. Simply, the
intensity of the disruption is represented by the sub-state si

5,t.

Figure 2: An abstract model of agent i and its neighboring agents j = 1 ∈ Ji and j = 2 ∈ Ji in MADQN.
The cumulative delay of vehicles increases as vehicles travel from one intersection to another

4.1.2 Action

The action vi
t ∈ V i represents a selected action, which is a traffic phase split vi

t ∈ {0, 1, 2, 3, 4}
in a fixed predetermined round-robin sequence of traffic phases, where vi

t = 0 skips a traffic phase;
for instance, due to the absence of a waiting vehicle at a lane. The north-east bound traffic phase is
represented by a 1 value, the east-south is represented by 2, the west-north is represented by 3, and the
south-west is represented by 4. Hence, agent i can select to switch to another traffic phase or to keep
the current traffic phase.

4.1.3 Delayed Reward

An agent receives delayed rewards that vary with the average waiting time of the vehicles at the
intersections. Traffic congestion can cause an increment in the average waiting time of the vehicles
at the intersections. The delayed reward ri

t+1

(
si

t+1

) = W i
t − W i

t+1is a relative value that represents the
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difference of the average total waiting time of all vehicles at an intersection i at time t and t + 1 (i.e.,
before and after taking an action vi

t), whereby W i
t > W i

t+1 gives a positive delayed reward, W i
t = W i

t+1

gives a zero delayed reward, and W i
t < W i

t+1 gives a negative delayed reward.

4.2 MADQN Architecture

Fig. 3 shows the DQN architecture. There are three main components in an agent, namely the
main network, the target network, and the replay memory. The main network consists of a DNN with
its weight θ i

t used to approximate its Q-values Qi
t(s

i
t, vi

t; θ
i
t ). The main network is used to choose an

action vi
t for a particular state si

t observed from the operating environment in order to achieve the best
possible delayed reward ri

t+1

(
si

t+1

)
and next state si

t+1 at the next time instant t + 1. The target network
is a copy (or duplicate) of the main network with its weight θ i−

t used to approximate its Q-values
Qi

t(s
i
t, vi

t; θ
i−
t ). The target network is used during training only, and the main network is used during

both action selection and training. The replay memory represents the dataset of an agent’s experiences
Di

t = (ei
1, ei

2, . . . , ei
t) gathered during the interaction between an agent and its operating environment

as time goes by. The experiences Di
t are used for training purpose.

The DNN has three kinds of layers (see Section 2). In our DQN architecture, there are 5 neurons
in the input layer, whereby each neuron represents a state. The number of fully connected (FC) hidden
layers is 5, whereby there are 400 neurons in each layer. There are 5 neurons in the output layer,
whereby a possible action is represented by each neuron. A weight is associated with each link. Each
neuron consists of a rectified linear unit (ReLU) activation function, in which the gradient descent is
performed. The 5 sub-states of state si

t = (si
1,t, si

2,k,t, si
3,k,t, si

4,t, si
5,t) are fed to the input layer by its neurons.

Subsequently, signals are forwarded to the output layer via hidden layers, which provides the Q-values
Qi

t(s
i
t, vi

t; θ
i
t ) of the possible actions vi

t at intersection i during training.

Figure 3: DQN architecture

4.3 MADQN Algorithm

In this section, the extension of the traditional DQN approach to MADQN for multiple
intersections is presented, and it has not been explored in the literature. The proposed MADQN
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algorithm is evaluated in simulation under different traffic networks (see Section 5) in the presence
of traffic disruptions.

MADQN allows knowledge to be learned and exchanged among multiple DQN agents for
coordination. The traditional MARL approach enables an agent to choose an optimal action based
on its neighboring agents’ actions. In the moving target scenario, actions are selected independently by
agents simultaneously, and so the action selected by an agent i can affect the operating environment of
its neighboring agents Ji. Therefore, the moving target scenario has increased dynamicity of operating
environment that affects learning stability. For instance, at an upstream intersection, a traffic light
controller i’s action can have positive or negative effects on the congestion level of downstream
and neighboring intersections Ji since vehicles move from one intersection to another. Likewise, the
agent’s i action at an intersection can be affected by agents Ji actions at neighboring intersections. By
exchanging knowledge and coordinating the agents, the convergence to an optimal action in a multi-
agent system has been shown in the literature [39]. The summation of the local Q-values of the agents is
known as the global Q-value, which represents the global objective function. An optimal equilibrium
is attained when a convergence is achieved by the global Q-value. The convergence is attributed to: a)
an agent updates its Q-values by using Q-values from neighboring agents Ji; b) the availability of a
local view of neighboring agents Ji at an agent i; and c) an agent’s action being the best response to
the agents’ neighbors. MADQN addresses moving target by taking neighboring agents’ actions into
consideration, and coordinating among themselves in a collaborative manner, in order to converge to
an optimal joint action and achieve stability in a shared environment.

Algorithm 3: MADQN algorithm embedded in agent i

Complexity

Computational Message Storage

1. procedure
2. for m = 1: M do
{Observation process}
3. observe current state si

t ∈ S
{Knowledge sharing process}
4. send Q-value Qi

t(s
i
t, vi

t; θ
i
t ) to neighboring agents Ji ≤ |J|

5. receive max
vj∈V

Qj
t(s

j
t, vj; θ j

t ) from agent j ∈ Ji ≤ |J|
6. for t = 1: T do
{Action selection process}
7. select action vi

t using Eq. (9)
8. receive delayed reward ri

t+1(s
i
t+1) and next

state si
t+1

9. store experience ei
t = (si

t, vi
t, ri

t+1

(
si

t+1

)
, si

t+1) in
replay memory∼Di

t

O (|S| |A|) ≤ |S||A|

{Training process}
10. sample a random minibatch of experiences ei

n
from replay memory Di

t
11. for j = 1: N do

(Continued)
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12. set target

yi
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ri
j+1

(
si

j+1

)
, if episode terminates as si

j+1

ri
j+1

(
si

j+1

)
, otherwise

+γ maxv Qi
j+1(

si
j+1, vi; θ i

j

)
13. compute the loss function using Eq. (3) O (|S| |A|)
14. perform a gradient descent optimization on

(yi
j − Qi

j(s
i
j, vi

j; θ
i
j ))

2 with respect to θ i
j

using Eq. (5)

O (|S| |A|)

15. reset θ i− = θ i in every C steps
16. end for
17. end for
18. end for
19. end procedure

Algorithm 3 shows the algorithm for MADQN, which is an extension of Algorithm 2. In episode
m ∈ M, the DQN agent i observes the current state si

t = (si
1,t, si

2,k,t, si
3,k,t, si

4,t, si
5,t), and sends its

own Q-value Qi
t(s

i
t, vi

t; θ
i
t ) to agents in the neighborhood Ji. Next, it receives the optimal Q-value

maxvj∈V Qj
t(s

j
t, vj; θ j

t ) from each agent j in the neighborhood Ji. At time instant t, the agent i selects
an optimal action vi,∗

t = {0, 1, 2, 3, 4} as follows:

vi,∗
t = argmax

v∈V

gi
t(v

i
t) (9)

where gi
t

(
vi

t

)
represents the global payoff of an agent i as follows:

gi
t

(
vi

t

) = Qi
t

(
si

t, vi
t; θ

i
t

) +
∑
j∈Ji

ni,j max
vj∈V

Qj
t

(
sj

t, vj; θ j
t

)
(10)

where ni,j represents the weight (or importance) of neighboring agent j at agent i, and
∑

j∈Ji ni,j = 1.

The proposed MADQN algorithm allows an agent to receive Q-values from neighboring agents
and use them to select the optimal action.

4.4 Complexity Analysis

This section presents an analysis of the computational, message, and storage complexities of the
proposed MADQN algorithm (i.e., Algorithm 3) applied to traffic light controllers. In this paper, the
complexity analysis has two levels: a) step-wise that considers a single execution or iteration of the
MADQN algorithm; and b) agent-wise that considers all the state-action pairs of an agent. Note that,
only exploitation actions are considered while analyzing the algorithm.

Computational complexity estimates the maximum number of iterations, episodes, and so on,
executed to calculate Q-values under all possible states. The step-wise computational complexity is
considered under a particular state. An agent i stores its experience ei

t = (si
t, vi

t, ri
t+1

(
si

t+1

)
, si

t+1) upon
receiving a delayed reward and the next state, so the step-wise computational complexity is calculated
as O(|A|) (Step 9) since there are |A| possible actions for each state. The agent-wise complexity is
calculated as O(|S| |A|) since there are |S| possible states.
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Message complexity is the number of messages exchanged between the agents in order to calculate
the Q-values. An agent i exchanges its knowledge (i.e., Q-values) with its neighboring agents J (Steps
4-5), so the step-wise message complexity is given by ≤ |J| since there are |J| neighboring agents. The
agent-wise complexity is calculated as ≤ |J|.

Storage complexity is the amount of memory needed to store knowledge (i.e., Q-values) and the
experiences of agents. An agent i stores its experience ei

t = (si
t, vi

t, ri
t+1

(
si

t+1

)
, si

t+1) (Step 9), so the step-
wise storage complexity has a value of 1, and the agent-wise complexity is calculated as ≤ |S||A|.

5 Application for Sustainable City and Simulation Results

An investigation of the proposed scheme has been conducted in a case study based on a real
traffic network, which is part of a sustainable urban city project in the Sunway City of Kuala Lumpur
in Malaysia. Investigation is also performed using a grid traffic network (GTN) to understand the
performance of the proposed scheme in a complex traffic network. Hence, our investigation covers
both real-world and complex traffic networks, which are based on simulation. In this paper, the traffic
networks with a left-hand traffic is considered, in which the traffic movement for the left turn is either
protected or does not conflict with other traffic movements. This section also presents simulation
results and discussion for our simulation in both RC and NRC environments.

5.1 Sunway City in Kuala Lumpur

Sunway city is one of the sustainable and smart cities in Malaysia [40]. It has busy commercial
areas, residential areas with high density (i.e., LaCosta and Sunway Monash Residence), higher
educational institutions (i.e., Monash University Malaysia campus and Sunway University), health
centre (i.e., Sunway Medical Centre), amusement park (i.e., Sunway Lagoon), hotel (i.e., Sunway
Resort Hotel & Spa), and so on, as shown in Fig. 4. In Fig. 4, the Sunway city traffic network (SCTN)
has seven intersections, whereby every intersection has a traffic light controller. Fig. 5 shows the traffic
phases, and Tab. 1 shows the traffic phase splits of existing (i.e., deterministic) traffic light controllers
at all intersections in SCTN. The traffic phase splits were observed during the evening busy hours (i.e.,
5–7 pm) of a working day, and they were measured using a stopwatch.

Malaysia ranks third and fifth worldwide in the number of lightning strikes (i.e., around 240
thunderstorm days/year [41]) and rainfall (i.e., around 1000 mm/year [42]), respectively. So, traffic
congestion caused by traffic disruptions (i.e., rainfall) during the peak hours is a serious problem.

In this paper, we apply our proposed algorithm to the traffic network of Sunway city. Investigation
is conducted in the traffic simulator SUMO [43].

5.2 Grid Traffic Network

A GTN, which is a complex traffic network, has been widely adopted in the literature [15,44–47]
to conduct similar investigations, and so it is selected for investigation in this paper to show that the
proposed scheme is effective. This paper uses a 3 × 3 GTN with nine intersections, whereby a traffic
light controller is installed at each intersection, which has 4 legs in four different directions (i.e., north
bound, south bound, east bound, and west bound). Each leg has two lanes so that a vehicle can either
enter or leave the leg of an intersection.
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Figure 4: A SCTN and the locations of its traffic light controllers

Figure 5: Seven intersections of the SCTN shown in Fig. 4. (a) Intersection 1 (b) Intersection 2 (c)
Intersection 3 (d) Intersection 4 (e) Intersection 5 (f) Intersection 6 (g) Intersection 7

5.3 Simulation Settings

This subsection provides the specification of simulation setup. Two different traffic networks are
investigated: a) SCTN with seven intersections (see Fig. 4), and b) a 3×3 GTN with nine intersections.
While SCTN is based on a real-world traffic network, GTN is a complex traffic network traditionally
used in traffic light control investigations [15,44–47]. So, these traffic networks are chosen for the
investigation of the effectiveness of the proposed scheme in both real-world and complex traffic
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networks. The simulations are conducted using Matlab [48] and traffic simulator SUMO [43]. The
traffic control interface protocol of SUMO (i.e., TraCI4Matlab [49]) is used to interconnect Matlab
and SUMO. Both SCTN and GTN are designed using NetEdit, which is the traffic network editor of
SUMO. The resource files in XML provide the details of the speed limits and arrival rates of vehicles,
which define the RC and NRC traffic congestion levels and their effects to the traffic networks. The
total duration of the simulations is up to the 100 episodes. The steps of each episode are provided in
the Steps 2 to 18 of Algorithm 3.

Table 1: Traffic phase splits for existing traffic light controllers in SCTN

Intersection Traffic phase split (seconds)

1 2 3 4

1 15 10 40 –
2 25 25 15 –
3 30 10 30 –
4 20 20 20 –
5 30 30 30 –
6 40 25 40 25
7 20 60 20 10

5.4 Parameters of Simulation and Performance Measure

The parameters of simulation, which allow the best possible results for a DQN agent are presented
in Tab. 2. Up to 50,000 experiences can be stored in a replay memory, and up to 100 experiences can
be sampled randomly to form a minibatch. The values of parameters, which are presented in Tab. 2,
have shown to provide the best possible performance in the literature [44].

Tab. 3 presents the parameters of simulation for the Burr type XII distribution model, which
has various intensities of rainfall, including no rain (NR), light rain (LR), moderate rain (MR), and
heavy rain (HR) scenarios [27]. The lower and higher scale parameter β value shrinks and stretches
the distribution, respectively. The shape parameters k and c are reciprocals of the scale parameter
β. The shape parameters k and c, as well as the scale parameter β, increase with the intensity of
rainfall [27].

Table 2: Parameters of simulation for the DQN agent

Parameters Values

Size of replay memory 50000
Size of a minibatch 100
Learning rate α 0.00025
Discount factor γ 0.75
Sampling of experiences random
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The performance measure used in this paper is the cumulative delay of the vehicles. Our proposed
scheme aims to reduce the cumulative delay required by vehicles to cross multiple intersections. The
cumulative delay also includes the average travelling and waiting times during congestion caused by
RC and NRC. The total number of vehicles is 1000 per episode.

5.5 Results and Discussion

This section compares the performance measures achieved by our proposed MADQN, MARL
and the baseline approaches, under RC and NRC traffic congestions. Fig. 6 presents a MADQN model
loss during the training process under RC and NRC traffic congestions in SCTN and GTN. The lower
model loss enhances the performances of both SCTN and GTN under both traffic congestions (i.e.,
RC and NRC).

Table 3: Parameters of simulation for the Burr distribution model

Parameters Disruption condition

NR LR MR HR

Shape parameter c 4.74 4.75 4.88 5.00
Shape parameter k 0.18 0.21 0.22 0.27
Scale parameter β 0.94 1.03 1.07 1.33

Figure 6: The MADQN model loss under RC and NRC traffic congestions in SCTN and GTN reduces
with episode

5.5.1 Accumulated Delayed Reward

The accumulated delayed reward for MARL and MADQN under RC and NRC traffic con-
gestions increases with episode in SCTN, as well as in GTN as shown in Fig. 7. The accumulated
delayed reward for both MARL and MADQN approaches becomes steady after 50 episodes. As
compared to MARL, the accumulated delayed reward achieved by MADQN is higher in both types of
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traffic congestions (i.e., RC and NRC) and traffic networks (i.e., SCTN and GTN). Overall, MADQN
increases accumulated delayed reward by up to 10% and 12.5% under RC and NRC traffic congestions
in the SCTN, and up to 8.3% and 7.2% under RC and NRC traffic congestions in the GTN, respectively.

Figure 7: Accumulated delayed reward under RC and NRC traffic congestions in SCTN and GTN
increases with episode. The accumulated delayed reward of MADQN is higher than that of MARL,
which enhances the performances of both SCTN and GTN. (a) RC at SCTN (b) RC at GTN (c) NRC
at SCTN (d) NRC at GTN

5.5.2 Cumulative Delay of the Vehicles

The cumulative delay of the vehicles for MADQN, MARL and the baseline approaches, under RC
and NRC traffic congestions reduces with episode in SCTN as shown in Fig. 8. For both RC and NRC
traffic congestions, MADQN outperforms MARL and the baseline approaches, in which MADQN
achieves a lower cumulative delay compared to MARL and the baseline approaches under increased
traffic volume. Similar trend is observed in GTN under RC and NRC traffic congestions as shown
in Fig. 8. Overall, MADQN reduces cumulative delay of vehicles by up to 27.7% and 27.9% under
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RC and NRC traffic congestions in SCTN, and up to 28.5% and 27.8% under RC and NRC traffic
congestions in GTN, respectively.

Figure 8: Cumulative delay of the vehicles under RC and NRC traffic congestions in SCTN and GTN
reduces with episode. The cumulative delay of the baseline approach is fixed, and for the MARL and
MADQN approaches, they reduce with episodes. MADQN has a lower cumulative delay than that of
MARL and baseline approaches, which enhances the performances of both SCTN and GTN. (a) RC
at SCTN (b) RC at GTN (c) NRC at SCTN (d) NRC at GTN

Fig. 9 presents a performance comparison between MARL and MADQN traffic light controllers
in SCTN and GTN, in terms of cumulative delay of vehicles. MADQN achieves lower values compared
to MARL in both SCTN and GTN under both RC and NRC traffic congestions. Overall, MADQN
has similar results in RC and NRC traffic congestions because of its two main features, particularly
target network and experience replay, which have shown outperforming results as compared to MARL
in both complex GTN and real-world SCTN.
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Figure 9: Performance comparison between MARL and MADQN traffic light controllers applied
in SCTN and GTN under RC and NRC traffic congestions. MADQN achieves a lower cumulative
delay compared to MARL under increased traffic volume. Lower cumulative delay enhances the
performance of the traffic networks

6 Conclusions and Future Directions

This paper investigates the application of multi-agent deep Q-network (MADQN) to traffic light
controllers at multiple intersections in order to address two types of traffic congestions: a) recurrent
congestion (RC) caused by high volume of traffic; and b) non-recurrent congestion (NRC) caused by
traffic disruptions, particularly bad weather conditions. From the traffic light controller perspective,
MADQN adjusts traffic phase split according to traffic demand in order to minimize the number
of waiting vehicles at different lanes of an intersection. From the MADQN perspective, it enables
traffic light controllers to use deep neural networks (DNNs) to store and represent complex and
continuous states, exchange knowledge (or Q-values), learn, and achieve optimal joint actions while
addressing the curse of dimensionality in a multi-agent environment. There are two main features in
MADQN, namely target network and experience replay, which provide training with stability in the
presence of multiple traffic light controllers. MADQN is investigated in a traditional GTN and a real
traffic network based on the Sunway city. Our simulation in Matlab and SUMO shows that MADQN
outperforms MARL by reducing the cumulative delay of vehicles by up to 27.7% and 27.9% under
RC and NRC traffic congestions in the SCTN, and up to 28.5% and 27.8% under RC and NRC traffic
congestions in the GTN, respectively.

There are six future works that could be pursued to improve MADQN. Firstly, relaxing the
assumption in which the left-turning (or right-turning) traffic movement is not protected or can
conflict with other traffic movements in a left-hand (or right-hand) traffic network. Secondly,
prioritizing the experiences during experience replay for faster learning in a multi-agent environment
with multiple intersections. Thirdly, addressing the effects of dynamicity to MADQN, including the
dynamic movement of vehicles. Fourthly, providing fairness and prioritized access among traffic flows
at intersections. Fifthly, other kinds of disruptions of traffic, including crashes, could be considered
into the state space as they tend to cause serious traffic congestion. Lastly, real field experiment can
be conducted to train and validate the proposed scheme using real-world feedback. The real field data
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can be collected so that the traffic network and the system performance achieved in the simulation can
be calibrated.
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