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Abstract: Machine Learning has evolved with a variety of algorithms to
enable state-of-the-art computer vision applications. In particular the need for
automating the process of real-time food item identification, there is a huge
surge of research so as to make smarter refrigerators. According to a survey
by the Food and Agriculture Organization of the United Nations (FAO), it
has been found that 1.3 billion tons of food is wasted by consumers around
the world due to either food spoilage or expiry and a large amount of food
is wasted from homes and restaurants itself. Smart refrigerators have been
very successful in playing a pivotal role in mitigating this problem of food
wastage. But a major issue is the high cost of available smart refrigerators and
the lack of accurate design algorithms which can help achieve computer vision
in any ordinary refrigerator. To address these issues, this work proposes an
automated identification algorithm for computer vision in smart refrigerators
using InceptionV3 and MobileNet Convolutional Neural Network (CNN)
architectures. The designed module and algorithm have been elaborated in
detail and are considerably evaluated for its accuracy using test images on
standard fruits and vegetable datasets. A total of eight test cases are con-
sidered with accuracy and training time as the performance metric. In the
end, real-time testing results are also presented which validates the system’s
performance.

Keywords: CNN; computer vision; Internet of Things (IoT); radio frequency
identification (RFID); graphical user interface (GUI)

1 Introduction

‘Smart home’ is not a new concept now, as Internet of Things (IoT) is playing a great role in
revolutionizing the way one ever thought of living in a home filled with sensors where every electronic
appliance can talk to one another wirelessly. IoT has allowed the control and monitoring of electronic
appliances in our homes with speech, text, and many other input methods from anywhere in the
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world with the help of cloud platforms and smartphone applications. The kitchen is a standout
amongst the most essential spots for smart home as it comprises numerous appliances that give better
administration to the family. Thus incorporating IoT technology in kitchen appliances has brought
significant changes leading to a more easy and modern lifestyle and serving as an aid for the household
members [1].

As the kitchen appliances are to be used lifelong by the person and that’s the reason people are
ready to invest in these appliances without any second thought thereby creating a competition today
among manufacturers to make these kitchen appliances smarter and smarter [2]. A refrigerator is one
of those appliances used in every household to preserve perishable food items over a long period
of time. Since the modern lifestyle is driving individuals to invest less energy in preparing healthy
food at home, an enjoyable and sound way of living can be achieved with an appliance like ‘Smart
Refrigerator’. The refrigerator is one of the devices which have undergone several changes over the
last two decades. It has evolved from being a cooling device to a smart device that has computer-
like abilities incorporated in it [3]. To be able to think that a fridge could utilize Radio Frequency
Identification (RFID) labels to identify items it contains and provide an expiry check on them seemed
almost impossible a few decades back. But with technological enhancements, this scenario has been
completely changed.

One of the most crucial tasks for any smart refrigerator is food item scanning and its correct
identification [1]. It is evident from the literature that many smart refrigerators have been developed
[2–13] for this core functionality using technologies like RFID scan, Quick Response (QR) code Scan,
Image capture and processing, Fuzzy Logic, Artificial Intelligence (AI) and Computer Vision etc. The
major objective is to avoid food wastage by early identification of food items that are near expiry via
timely notification to the user via Graphical User Interface (GUI), Short Message Service (SMS) or
email etc. Hsu et al. [2] developed a 3C smart system that makes the use of image processing, speech
recognition, and speech broadcasting technique for food item identification and control respectively.
The main features included a speech control system along with an auto dial system for ordering scarce
items directly from the vendors. It also supported the wireless control of other interconnected home
appliances. Zhang et al. [10] proposed a new approach for fruit recognition based on data fusion
from multiple sources. Both weight information and data obtained from multiple CNN models were
fused for improving accuracy in the recognition of fruits. With the advent of IoT technology, several
authors have incorporated novel ways to send alerts to the user via emails and by using cloud servers
to send data to dedicated mobile applications for remote access of databases as well. A similar smart
refrigerator system was proposed by Nasir et al. [11] which focused on the expiry check using both
weight information and odour detection using sensors like MQ3 and DHT11. It also incorporated
the cloud platform Thingspeak for remote access of data along with the Pushbullet application for
notification and alerts. A summary of literature review is presented in Tab. 1 based on parameters like
scanning mechanism and whether food expiry check and cloud platform is provided or not.
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Table 1: Summary of literature review

Ref. Year Scanning
mechanism

Expiry check Cloud platform Notification
to user

[2] 2010 Image processing
& speech
recognition

No No GUI

[3] 2012 RFID & barcode Yes Yes Mobile app
[4] 2013 RFID No Yes Android

app
[5] 2013 Fuzzy logic No No GUI
[6] 2015 Weight sensing No No Android

app
[7] 2017 Image sensing:

raspberryPi &
webcam

No Yes Android
app

[8] 2017 Weight sensing &
RFID scan

Yes No SMS via
GSM

[9] 2017 AI based No Yes SMS and
android app

[10] 2018 Deep learning No Yes GUI
[11] 2018 Weight and odour

(IoT)
Yes Yes SMS, email

and app
[12] 2020 QR code scan Yes Yes Android

app
[13] 2021 IoT and image

sensing
Yes Yes Android

app

The major issue associated with smart refrigerators available in market today is high cost [7] and
the availability of only brand-specific applications for remote access of database of the items kept inside
the fridge. The need of the hour is to design such algorithms for intelligent and cost effective systems
which can add smartness to existing conventional refrigerators. The review carried out in Tab. 1 talks
about various scanning techniques used by researchers so far in the design of smart refrigerators. Apart
from these techniques, many researchers have made the use of CNN for automated classification
of fruits and vegetables. Kodors et al. [14] used CNN models like MobileNet version 1 and 2 on
FRUITS360 dataset for recognition of apples and pears. Basri et al. [15] made the use of Tensor Flow
platform for detection of mango and pitaya fruits using MobileNet CNN model by testing on self-
created dataset. Huang et al. [16] carried out testing of InceptionV3 model on FRUITS360 dataset
comprising of 81 classes of fruits and vegetables using adam optimizer and achieved an accuracy of
96.5%. In the similar way, Femling et al. [17] made the use of Raspberry Pi (RPi), load cell and camera
module to perform training of Inception and MobileNet model on a self-created dataset comprising
of 400 images each of 10 classes of selected fruit items. Ashraf et al. [18] carried out testing using
InceptionV3 model and presented a detailed comparison in accuracy values obtained using different
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loss and optimization functions. The maximum accuracy obtained is 87.08% using cross entropy loss
function and adagard optimization function.

After literature review, one can easily point out the fact that no paper can be found which
talks about designing of an intelligent module which can turn any ordinary refrigerator into a smart
refrigerator. Moreover, no research article mentions about placing the weight measurement system
and cameras outside the fridge as it can help avoiding the mess of wiring inside the refrigerator. To
avoid these challenges and to fill the research gap, this paper proposes an automated identification
algorithm for Computer Vision in Smart Refrigerators using standard CNN architectures. This paper
carries forward the work done previously in the area of CNN for fruits and vegetables classification
using improved CNN models namely InceptionV3 and MobileNetV3 on standard datasets. The paper
is organized as below: Section 2 talks about the design of an intelligent module for ordinary to
smart refrigerator conversion for achieving the task of automatic recognition of fruits and vegetables.
The proposed module is portable and cost effective comprising of fruits and vegetables image
scanning and weight sensing mechanism outside the refrigerator. Section 3 and 4 talks about standard
datasets selected for training of the system using InceptionV3 and MobileNetV3 CNN models. The
experimental results have been depicted in Section 5 followed by conclusion and future scope of the
work at the end.

2 Intelligent Module Design and Working

To address the challenge of mess of wiring inside the refrigerator, the module was designed to avoid
any wiring or modification required inside any compartment of refrigerator. The block diagram of the
entire system is depicted in Fig. 1. It comprises of three major blocks i.e., Intelligent Module section,
refrigerator with attached display screen and cloud server. The role of intelligent module which is in
form of a portable trolley system is camera scanning for food item identification and noting down the
weight readings via load cell (label ‘D’) attached at the bottom of weight sensing area (label ‘F’). The
camera sensing sub module consists of RPi Camera (label ‘A’) mounted on an L shaped arm which
upon power up comes into position shown in Fig. 1 controlled via two servo motors (label ‘B and ‘E’).
The camera module clicks the images of the food item when it is placed on weight sensing area depicted
in Fig. 1. The Central Processing Unit (CPU) and weight sensing sub module consists of RPi (label
‘C’) which acts as the CPU of the system and a load cell of 200 Kg for sensing weight of item placed.
With the help of these two sub modules the name of food item recognized along with weight readings
are obtained and further sent to cloud server as well as display screen attached to the refrigerator.

The trolley system has stopper wheels (label ‘I’) and moreover its height can be easily adjusted
up and down as per user requirement using screw arrangement (label ‘G’). An Ultra Violet (UVC)
disinfection box (label ‘H’) can also be attached at the bottom of trolley system which can work in
standalone mode to disinfect food items and other daily use items like keys, wallet, mobile phones etc.
to provide safety against the spread of viruses and bacteria. The data containing the food item name
and weight information can then be passed onto cloud server i.e., Google Firebase which can be further
accessed remotely using android application developed namely ‘Fridge Assistant’ on any smartphone
as depicted in Fig. 2. The same database can also be displayed on touch screen which can be easily
attached on the front door of refrigerator and it requires only single connection with intelligent module
via touch screen connector shown in Fig. 1. The ‘Fridge Assistant’ android application as depicted in
Fig. 2b gets real time updates using IoT as the items are stored in the refrigerator. The weight reading
along with date and time stamp is also noted which provides a way to keep a check on expiry of items
and sending alerts accordingly to the user to consume the item before a fixed stipulated time. Notes
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can also be added as depicted in Fig. 2c. Moreover a shopping list is automatically created of scarce
items which get added in shopping list tab of the application.

Figure 1: Detailed block diagram of complete system

Figure 2: Fridge assistant application for remote access of database (a) home page (b) items stored
with date and timestamp (c) add notes feature

3 Selected Dataset

There are many datasets available as open source to train the module. The standard datasets
considered for this work are explained below.
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3.1 FIDS30

FIDS30 dataset [19] is a small dataset comprising of a total of 30 different classes of fruits
and 971 images in total. Each fruit class consists of 32 very diverse images in Joint Photographic
Experts Group (JPEG) format including single fruit image, multiple fruits image of same kind and
some images with noise such as leaves, plates, hands, trees and other noisy backgrounds. Certain
classes of fruits included in this dataset are apples, bananas, cherries, coconuts, grapes, lemons, guava,
oranges, kiwifruit, tomatoes, pomegranates, watermelons and strawberries etc. It is provided by Visual
Cognitive Systems Lab and is publicly available for use and download.

3.2 FRUITS360

FRUITS360 [20] is one of the popular and a very huge dataset available as open source on Kaggle
platform. It comprises of color images of size 100 × 100 pixels with a total of 67,692 training set images
and 22,688 test set images. This dataset consists of 131 different fruits and vegetable classes with a total
of 90,483 images.

4 CNN Models

CNN’s are by far the most widely used models for training such problems of food item identifica-
tion. They have been applied in providing solutions to numerous complex problems involving image
classification in medical fields, design and optimization problems related to reconfigurable Radio
Frequency circuits [21,22]. But they are now playing a major role in almost every object detection
and related computer vision tasks. In order to understand CNN in detail one must have a general idea
of a single layer CNN. A single layer CNN is explained as follows: If layer l is a convolutional layer,
then one can calculate the output size of single convolutional layer see Eq. (3) from applied filter and
input using the following Eqs. (1) and (2):

Input = height × width × no of channels = nl
h × nl

w × nl−1
c (1)

Each Filter = height of filter × width of filter × no of channels = f l × f l × nl−1
c (2)

Output = height × width × no of filters = nl
h × nl

w × nl
c (3)

Apart from input and output layer, a complete CNN consists of numerous hidden layers which
further consist of convolution, softmax, pooling and fully connected layers. The most preferred CNN
models for image recognition are Inception CNN and MobileNet CNN as they both are pre-trained
networks. The detailed description about these two models is given in following subsections:

4.1 Inception CNN

GoogLeNet or InceptionV1 is a pre-trained and widely used deep convolutional neural network
for image recognition applications [23]. The heart of inception network is the inception module block
as depicted in Fig. 3. The entire InceptionV1 network comprised of nine repetitions of this inception
module along with addition of fully connected layers and soft max layers at intermediate stages. The
inception module comprises of previous activation layer which is first passed through bottleneck layer
of 1 × 1 convolutions. The major computational cost savings are achieved at this layer before passing
through expensive 3 × 3 and 5 × 5 convolutions. At the end all channels are stacked up using channel
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concatenation. InceptionV2 network further provided cost savings in computation leading to improved
accuracy using concept of factorized convolutions and by expanding the filter banks [24]. Further
upgrades were carried out resulting in a better and accurate InceptionV3 network which has been
used in this paper due to its better performance and low error rates.

Figure 3: Basic inception module-heart of inceptionV3 Network

4.2 MobileNet CNN

A lot of classic neural networks including LeNet-5 [25], Alex-Net [26], VGG-16 and even powerful
neural nets like Residual Neural Net (ResNet) [27], InceptionV3 are computationally very expensive.
Moreover in order to run the neural network model on the system proposed in this paper having a less
powerful CPU or Graphical Processing Unit (GPU), the best choice is MobileNet neural architecture.
It is the network best preferred for mobile and computer vision related applications in embedded
systems. With the development of MobileNetV1 in 2017 a new research area opened up in the use
of deep learning in machine vision i.e., to design similar models which can run even in sophisticated
embedded systems.

The computational cost is given by product of number of filter parameters, number of filter
positions and number of filters. As per the formula, one can easily compute the cost summary for
both convolution approaches i.e., normal convolution and depthwise separable convolution using
the parameter values depicted in Fig. 4. For the parameters depicted, it can easily obtained that
the cost of normal convolution is 2,160 multiplications, whereas it is only 672 (432-depthwise and
240 pointwise) in case of convolution approach supported by MobileNet architecture. Depth wise
separable convolution approach involves two main steps namely depth wise convolution and point-
wise convolution. This approach can be designed to have similar inputs and output dimensions as
normal convolution but it can be done at a much lower computational cost i.e., approximate 10 times
more savings in computations. A more improved version MobileNetV2 [28], developed in 2018 further
reduced the computational cost by adding a bottleneck block. This block comprises of a residual
connection similar to ResNet and non-residual part comprised of additional expansion layer followed
by depth wise separable convolution. The expansion layer increases the size of representation allowing
the neural net to learn more features. Further at the end since it has to be deployed to a mobile device
with memory constraints it is compressed down to smaller representation using projection or point
wise convolution operation. The latest version MobileNetV3 [29] has been used in this work which
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further improves the performance with addition of squeeze and excitation layers in basic MobileNetV2
version.

Figure 4: Comparison between normal and depthwise separable convolution operation

5 Experimental Results

The training accuracy results of previous related works using various CNN Models and datasets
is depicted in Tab. 2.

Table 2: Training accuracy results of previous related works

Ref. Dataset Model(s)
used

Classes Images Accuracy
(%)

[14] FRUITS360 MobileNetV1,V2 120 20622 99.8
[15] Self-created MobileNet 2 700 each 70.6
[16] FRUITS360 InceptionV3 81 55244 96.5
[17] Self-created Inception,

mobileNet
10 400 each 96 & 97

[18] Self-created InceptionV3-
transfer
learning

8 1868 87.08

[30] FIDS30 ResNet-50 30 971 89.16
[30] FRUITS360 ResNet-50 77 55244 99.5

A total of eight test cases were considered using InceptionV3 and MobileNetV3 CNN models
as depicted in Tab. 3. The test case ‘FIDS30-selected’ dataset comprises of only 9 most common
and easily available fruit classes like apples, bananas, lemons, mangoes, oranges, pomegranates,
strawberries, tomatoes and watermelons. Similarly, FRUITS360-selected dataset comprises of only
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35 most common fruits and vegetables classes like apples, bananas, onions, cauliflower, ginger, lemon,
mangoes, tomato, strawberry and watermelon. These test cases were selected so as to see the variations
in accuracy and training time values using only selected items out of the entire dataset. Google Colab
platform with time limited GPU support has been used to train the model running the Python script.

Table 3: Accuracy Results of CNN model testing used in the present work

Test case CNN model Dataset No of
classes

Total images Training
time (in
minutes)

Accuracy on
test images
(%)

Case 1 InceptionV3 FIDS30 30 971 168 89.3
Case 2 InceptionV3 FIDS30-

selected
9 331 166 92.9

Case 3 InceptionV3 FRUITS360 131 90,483 415 94.9
Case 4 InceptionV3 FRUITS360-

selected
35 16,945 187 98.4

Case 5 MobileNetV3 FIDS30 30 971 118 89.7
Case 6 MobileNetV3 FIDS30-

selected
9 331 117 96.4

Case 7 MobileNetV3 FRUITS360 131 90,483 361 99.9
Case 8 MobileNetV3 FRUITS360-

selected
35 16,945 87 99.9

In all the test cases, the ratio of the training to validation set images is kept as 80% by 20%. The loss
function, optimizer and activation function used for training of both models in the present work are
cross entropy, gradient descent and Rectified Linear Units (ReLU) respectively. The accuracy values
of each test case listed in Tab. 3 are obtained from graphs shown below. The accuracy v/s numbers of
iterations graph in Fig. 5a shows the variations of training and validation accuracy of InceptionV3
model on FIDS30 dataset. The final validation accuracy depicted by blue line as obtained from graph
is found to be 89.3%. Similarly, the loss or cross entropy depicted in Fig. 5b has a decreasing curve
which reaches near zero value with increase in number of iterations.

Figure 5: (a) Accuracy and (b) cross-entropy of inceptionV3 v/s number of iterations using FIDS30
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In the 2nd test case using FIDS-30 with selected data items, very large variations are observed in
the training and validation accuracy lines resulting in higher loss and lower accuracy value of 92.9%
as shown in Fig. 6.

Figure 6: (a) Accuracy and (b) cross-entropy of the inceptionV3 v/s number of iterations using
FIDS30-selected

The graphs in Fig. 7 show very smooth variations in both accuracy and loss value with increase
in number of iterations.

Figure 7: (a) Accuracy and (b) cross-entropy of inceptionV3 v/s number of iterations using FRUITS360

It can also be observed that both training and validation accuracy lines are very close to each
other thus resulting in high accuracy value of 94.9% using FRUITS-360 dataset. A similar graph but
with slight variations is obtained in Fig. 8 resulting in an accuracy value of 98.4% using FRUITS-360
selected dataset.

The last four test cases take into consideration the MobileNetV3 CNN model. The graphs shown
in Fig. 9 depict very large variations between validation and training accuracy, with the final validation
accuracy coming out to be 89.7%. In the test case-6 shown in Fig. 10 using FIDS-30 with selected data
items, the accuracy achieved is 96.4% which is better than obtained using Inception-V3 model.

The graphs in Fig. 11 show very smooth variations in both accuracy and loss value with increase
in number of iterations. It can also be observed that both training and validation accuracy lines are
following each other thus resulting in highest accuracy value of 99.9% using FRUITS-360 daset. A
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similar graph with similar accuracy value but with slight more variations in the initial iterations is
obtained in Fig. 12 using FRUITS360-selected dataset.

Figure 8: (a) Accuracy and (b) cross-entropy of inceptionV3 v/s number of iterations using
FRUITS360-selected

Figure 9: (a) Accuracy and (b) cross-entropy of mobileNetV3 v/s number of iterations using FIDS 30

Figure 10: (a) Accuracy and (b) cross-entropy of mobileNetV3 v/s number of iterations using
FIDS30-selected
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Figure 11: (a) Accuracy and (b) cross-entropy of mobileNetV3 v/s number of iterations on FRUITS360

Figure 12: (a) Accuracy and (b) cross-entropy of mobileNetV3 v/s number of iterations using
FRUITS360-selected

The graphical representation of the entire data tabulated in Tab. 3 is presented in Fig. 13. All the
test cases considered are labeled on the x-axis and Fig. 13a represents the training time variation (in
minutes) with respect to number of classes and total images in each test case. On other hand Fig. 13b
represents the accuracy comparison (in %) among all test cases.

One can clearly observe from the graph that MobileNet model gives better results in all its four
test cases in terms of shorter training times and better accuracy values. A comparison is also drawn
in Tab. 4 between the accuracy results obtained of present and previous related works. One can easily
conclude that the accuracy obtained using the approach and models in the present work are clearly
higher than that obtained in previous related works. Both InceptionV3 and MobileNetV3 clearly
outperform the other CNN models used in previous works like ResNet, MobileNetV1, V2 etc. Even
in case of self-created datasets the accuracy obtained as listed in Tab. 2 of previous works is still lower
than results obtained in the current work. Although the FRUITS360 dataset used in the current work
is more diverse but still maximum accuracy of 99.9% is obtained using MobileNetV3, which clearly
indicates that performance of the current work is far better than previous similar studies.

Several test images from the datasets were considered for the evaluation of the two trained CNN
models. The test image considered, identification result containing top five results with accuracy values
are depicted in Tab. 5. It also depicts the item identified along with accuracy value in %.
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Figure 13: Comparison between (a) training Time (b) accuracy of eight test cases

Table 4: Comparison between accuracy results of previous and present work

Dataset Previous work
CNN model

Present work
CNN model

Previous work
accuracy (%)

Present work
accuracy (%)

FIDS30 ResNet-50 InceptionV3 89.16 89.30
FRUITS360-
selected

InceptionV3 InceptionV3 96.5 98.4

FRUITS360 ResNet-50 MobileNetV3 99.5 99.9
FRUITS360 MobileNetV1,V2 MobileNetV3 99.8 99.9

The real time testing for fruits and vegetables classification from images is carried out on the
proposed intelligent module containing RPi as the CPU. The results obtained are tabulated in Tab. 6
which depicts the real time image captured using 5 Megapixel resolution RPi camera module. It
also shows the snapshots of identification result obtained on RPi Console followed by name of the
identified food item. One can easily observe that all the items are correctly identified with the designed
algorithm.
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Table 5: Results of food item identification using sample test images

Test image Identification result Item identified Accuracy (in%)

Apple

Apple

Bananas

Bananas

Lemons

Lemon

Mangoes

Onionred

Tomatoes

Tomatoes

95.4

73.12

99.85

99.75

96.14

99.13

95.3

92.7

97.02 

99.01 
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Table 6: Results of food item identification using real images

Real image captured using 
5MP RPi camera 

Identification result 
Item 
identified 

Lemons 

Onion red 
peeled 

Mangoes 

Tomatoes 
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6 Conclusion

The design of an intelligent module for automated identification of food items in particular fruits
and vegetables for achieving the task of computer vision in smart refrigerators are proposed. The
designed module and algorithm has been considerably evaluated for its accuracy by using pre-trained
InceptionV3 and MobileNetV3 CNN models on standard fruits and vegetables dataset. Out of the two
CNN models considered, it is evident from the results that MobileNetV3 CNN clearly outperformed
the InceptionV3 model in terms of training time as well as the accuracy obtained with test images. A
huge amount of training time approximately 45 min on an average is saved with the usage of a very light
CNN network like MobileNetV3. Moreover a very high accuracy value of about 99.9% is achieved and
that too on a bigger dataset like FRUITS360. Finally the results obtained from real time testing with
fruits and vegetables clearly validate the performance of the system proposed. The proposed design
algorithm mentions about the touch screen display for giving updates to the user about the data items
stored. In future, it can be implemented with real system along with addition of more test cases to
further validate the systems performance by enhancing the dataset.
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