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Abstract: A machine learning-based prediction of the self-heating charac-
teristics and the negative temperature coefficient (NTC) effect detection of
nanocomposites incorporating carbon nanotube (CNT) and carbon fiber
(CF) is proposed. The CNT content was fixed at 4.0 wt.%, and CFs having
three different lengths (0.1, 3 and 6 mm) at dosage of 1.0 wt.% were added
to fabricate the specimens. The self-heating properties of the specimens were
evaluated via self-heating tests. Based on the experiment results, two types
of artificial neural network (ANN) models were constructed to predict the
surface temperature and electrical resistance, and to detect a severe NTC
effect. The present predictions were compared with experimental values to
verify the applicability of the proposed ANN models. The ANN model for
data prediction was able to predict the surface temperature and electrical
resistance closely, with corresponding R-squared value of 0.91 and 0.97,
respectively. The ANN model for data detection could detect the severe NTC
effect occurred in the nanocomposites under the self-heating condition, as
evidenced by the accuracy and sensitivity values exceeding 0.7 in all criteria.
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1 Introduction

Conductive filler-incorporated polymeric composites (CPCs) are widely used as engineering
materials owing to their good formability and useful mechanical properties as well as their improved
electrical conductivity [1–3]. These types of CPCs with a high electrical conductivity level can generate
heat by the principle of Joule heating, a mechanism that acts when current flows through the
composites, with the electron’s kinetic energy converted to thermal energy [4]. Therefore, the CPCs
have the high potential to be utilized as heating elements in wearable heating textiles, vehicle heating
systems, and deicing materials [5–7].

http://dx.doi.org/10.32604/cmc.2022.020940
mailto:byang@cbnu.ac.kr


4488 CMC, 2022, vol.71, no.3

Carbon fiber (CF) has been widely used as a conventional microscale conductive filler for the
fabrication of CPCs because it can improve the mechanical strength and elastic modulus of these
types of composites [8]. However, the improvement in the electrical conductivity of CF-incorporated
composites is limited, and the incorporation of a large amount of CF in a polymer matrix can
cause significant deterioration of the composites [9]. Therefore, considerable work has focused on
nanocomposites that incorporate CF with carbon nanotube (CNT) [9–12]. CNT is one of the
nanoscale conductive fillers consisting of CPCs. Owing to their high aspect ratio and outstanding
electrical conductivity, electrical pathways can be readily formed in a polymer matrix with only small
amounts of CNTs [13,14].

Dydek et al. [15] investigated the electrical characteristics of nanocomposites incorporating CF,
further enhanced by the additional incorporating of CNT. The fabricated composites showed increased
electrical conductivity by 20 times compared to those of composites with only CF [15]. They reported
that CNT can serve as a bridge between CFs, creating an electrically conductive network [15]. The
effect of CNT on the self-heating of CF-incorporated nanocomposites was investigated by Joo et al.
[16]. In their study, they reported that the presence of 1.0 wt.% CNT in the composites acts as an
electrical conductor between CFs, leading to an increase in the electrical conductivity [16].

The major issue when applying CPCs as a self-heating element is the negative temperature
coefficient (NTC) effect, referring to a decrease in their resistance levels with an increase in the
temperature [6,13,17]. This NTC effect can cause the conductive fillers to overheat due to the reduction
of electrical resistance, which leads to a thermal shock in the composites [11,18]. Accordingly, it is
essential in heating applications of such composites for the self-heating characteristics to be predictable
and for the severe NTC effect to be detected in advance.

However, predicting the self-heating characteristics of nanocomposites incorporating multiscale
conductive fillers remains a challenging task due to the vastly different scales and inherent properties
of electrically conductive fillers [9,19]. Recently, various researchers have proposed machine learning
techniques to predict the effective properties of multiscale conductive fillers-incorporated nanocom-
posites [20–24]. Machine learning can be well suited for the modeling of complex composite materials,
especially when the relationship between the model parameters and their behavior must be understood
[23]. Daghigh et al. [21] used machine learning to predict the thermal behavior of multiscale fillers-
incorporated composites. They found how the incorporation of different scales of fillers can affect the
effective thermal behavior of such composites by using machine learning [21].

Against this backdrop, the present study proposes a machine learning-based approach to the
prediction of the self-heating characteristics and to the detection of the NTC effect in nanocomposites
incorporating CNT and CF. The self-heating properties of film types of polydimethylsiloxane (PDMS)
composites incorporating CNT and CF were evaluated via self-heating tests. In addition, two types
of machine learning models were proposed here to predict the surface temperature and electrical
resistance, and to detect the NTC effect in the nanocomposites under the self-heating condition. Based
on the experimental dataset, artificial neural network (ANN) models were built considering the length
of the CF, the heating time and the initial resistance of the specimens. Finally, the present predictions
were compared with experimental values to verify the applicability of the proposed models.

2 Experimental Program

PDMS and its curing agent (Sylgard 184 Silicone Elastomer Kit, Dow Corning) were used to com-
pose a matrix. The multi-walled CNT (Hyosung Inc.) having length and diameter of approximately 10
μm and 12–40 nm, respectively, was utilized as a conductive filler [25,26]. In addition, polyacrylonitrile
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(PAN)-type CF (Ace C & Tech. Co., Ltd.) with a diameter of 7.2 μm and three different lengths (0.1,
3 and 6 mm) were incorporated into the composites referring to a previous study [27]. Additionally,
polysodium4-styrenesulfonate (PSS) was chosen as a dispersant to improve the dispersion of the CNT
particles into the polymeric composites [28].

Four different mix proportions were used to fabricate the specimens considering the lengths of the
utilized CF, as summarized in Tab. 1. The CNT content and CNT-to-PSS ratio (1:1) were referenced
from a previous study [28], whose test outcomes fairly guaranteed the formation of favorable electrical
conductivity values. Note that the specimen ID was designated as its length of CF used, i.e., CNT-CF3
indicates the specimens having 3 mm-CF.

Table 1: Mix proportions of the composites (wt.%)

Specimens∗ PDMS CNT PSS CF

Base Curing agent

CNT-CF0 100 10 4.0 4.0 0
CNT-CF0.1 100 10 4.0 4.0 1.0
CNT-CF3 100 10 4.0 4.0 1.0
CNT-CF6 100 10 4.0 4.0 1.0
∗Note that the digits included in the specimens’ names denote their CF length (mm).

The schematic description of the fabrication procedure is illustrated in Fig. 1. CNT and PSS were
poured into the 100 mL of isopropyl-alcohol (IPA) solvent, and they were hand-mixed for 1 min. The
mixture was sonicated using a bath type ultrasonicator (40 kHz; 200 W) for 1 h at 25◦C [29,30]. PDMS
base and CF were poured into a CNT-dispersed solution. The solution was heated to 120◦C while the
samples were mixed by means of mechanical stirring at 150 rpm using a magnetic stirrer to evaporate
the solvent completely. After evaporating the solvent, a PDMS curing agent was added to the mixture,
and this was then hand-mixed for 3 min. The mixture was subsequently poured into a mold and cured
for 2 h at 100◦C, and the CNT-CF-composites of 1 mm thick were cut into pieces 10 × 20 mm2 in size
for the self-heating tests.

Self-heating tests were conducted to evaluate the heat generation and to observe the NTC effect in
the nanocomposites, as shown in the photographs in Fig. 1. Five different input voltages (6, 9, 12, 16
and 20 V) were applied to the specimens using a DC power supply (PL-3005S) for 5 min. During the
self-heating tests, the surface temperature and current flowing through the specimens were recorded
via a K-type thermocouple and a data logger (Agilent Technologies 34972A), respectively. After the
test, the recorded current was converted to the electrical resistance (R) according to the Ohm’s law as
described in previous studies [31,32]. The normalized resistance (R/R0) is obtained by dividing R by
the initial resistance (R0), which is measured immediately after the voltage is applied [6].
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Figure 1: Schematic description of the fabrication procedure and photographs of the specimen for the
self-heating test

3 Machine Learning Method
3.1 Overview of an ANN Model

An ANN model consists of advanced regression and pattern recognition algorithms of a machine
learning technique that allows the extraction of complex relationships among nonlinear variables
[23,33,34]. The ANN can achieve better performance than conventional models for engineering
problems where there is a difficult or incomplete understanding of the problem, yet experimental
measurements exist [23]. Therefore, the ANN can be used to find any complex relationships between
the input and output values of experimental data. This section summarizes the entire process of the
present ANN models.

Fig. 2 shows a flow chart for predicting the self-heating temperature and electrical resistance and
for detecting the NTC effect in nanocomposites incorporating CNT and CF. To train the ANNs, raw
datasets, which are composed of the length of the CF L, the heating time t and the initial resistance R0,
were taken from the self-heating tests. It should be noted that the present model could not consider
the effect of geometry of the specimen on the self-heating characteristics. In the target datasets, the
experimental results of the surface temperature T and electrical resistance R were listed for predicting
the surface temperature and electrical resistance of the composites. Value of 0 or 1, with 1 meaning
that a severe NTC effect occurs, was utilized for detecting the NTC effect in the composites. The
representative input and target values of the present experimental results are listed in Tab. 2.

A total of 720 raw datasets were randomly split into 432 for training set, 144 for validation set, and
144 for testing set, maintaining a 6:2:2 ratio, as shown in Fig. 2. All datasets were normalized using
the mean and the standard deviation of the training sets. The normalized training sets were fed into
the ANN model for training and the trained ANN model was then validated through the validation
sets. In the training layer, the loss value of the loss function was computed, and the weight value was
adjusted by an optimizer, reducing the loss value. The details of the loss function and optimizer will be
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described in Section 3.2. When the number of epoch reaches a pre-defined maximum value, machine
learning is complete. In this case, 144 testing sets are taken and scanned by the trained ANN model to
generate a report of predicted values of the present model (i.e., the R-squared value and accuracy).

Figure 2: Flow chart for predicting the surface temperature and electrical resistance and for detecting
the NTC effect in nanocomposites incorporating CNT and CF

3.2 ANN Model

The artificial neuron, the basic unit of a neural network, consists of the weight, bias, and activation
function, as follows in Eq. (1) [33,35–37]:

zi = f

(
n∑

i=1

xiwji + bi

)
(1)
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Table 2: Representative input and target values of the present experimental results

Input features Target 1 Target 2 Target 3
CF length L
(mm)

Heating time t
(sec)

Initial
resistance
R0(�)

Surface
temperature
T(◦C)

Electrical
resistance R(�)

Severe NTC
effect ∗ (0 or 1)

0 50 402.15 27.61 391.26 0
0 100 402.15 44.20 358.82 1
0 200 402.15 49.30 348.30 1
0 300 402.15 51.95 344.08 1
0.1 50 165.13 51.30 149.68 0
0.1 100 165.13 65.40 143.18 1
0.1 200 165.13 77.53 137.13 1
0.1 300 165.13 83.99 135.54 1
3 50 53.19 74.12 48.58 0
3 100 53.19 98.55 46.26 1
3 200 53.19 107.59 44.75 0
3 300 53.19 124.11 43.54 0
6 50 33.77 97.67 32.43 0
6 100 33.77 126.91 31.95 0
6 200 33.77 147.30 31.50 0
6 300 33.77 154.94 31.31 0
∗Specific criterion assuming that the severe NTC effect occurs when both R/R0 and T are below 0.9 and 100◦C, respectively.

where zi is the output matrix, xi is the input matrix, wji is the weight matrix, bi is the bias vector
created by the layer and the f is the activation function [36,37]. An ANN model consists of several
interconnected artificial neurons, and each artificial neuron is fully connected through connection
weights receiving an input signal from a linked weight [36]. Fig. 3 presents the ANN architecture for
predicting the surface temperature and electrical resistance, and for detecting a severe NTC effect of
composites. The first layer was the input layer of a 3 × 720 matrix, where these dimensions indicate
the number of input features (L, t, and R0) and the total number of datasets, respectively. The 3 × 720
matrix was fed into the rectified linear unit (ReLU) layer, which is a nonlinear activation function
[38]. The ANN architecture consists of two densely connected hidden layers with 64 neurons and an
output layer with one neuron which returns a single output value for the data prediction of T and
R. Meanwhile, for detecting a severe NTC effect of composites, the sigmoid layer was designed as a
classifier at the last layer of the ANN architecture.

The information from the input layer was transmitted to the output layer in one direction. Then,
the learning process was conducted to minimize the deviation between the actual values and the output
values. To narrow the deviation during the learning process, an algorithm that updates the weight
values of a receptive field is necessary to obtain the expected results [37–39]. In the present study, the
stochastic gradient descent (SGD) algorithm was adopted for backpropagation. We used the SGD-
algorithm-based Adam optimizer in Keras of Python [36] with a learning rate of 0.001. The weight
values of the ANN model were adjusted by reducing the loss function of the mean square error and the
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binary cross-entropy, respectively. The configuration of the present ANN models for the predictions
is tabulated in Tab. 3. Note that the value of parameters in the present ANN model was assumed by
referring to the values reported in the previous works [20,23,36].

Figure 3: ANN architecture for the prediction of the surface temperature and electrical resistances and
for detection of the NTC effect in nanocomposites incorporating CNT and CF

4 Results and Discussion
4.1 Experimental Results

The terminal surface temperatures of the specimens with different applied input voltages are
shown in Fig. 4. As 6 V of input voltage was applied to the specimen, the CNT-CF0 and CNT-
CF0.1 specimens scarcely showed an increase in the terminal surface temperature. The terminal
temperature of the CNT-CF0 and CNT-CF0.1 specimens increased linearly with an increase in the
input voltage, reaching approximately 100 and 130◦C at 20 V, respectively. The CNT-CF3 and CNT-
CF6 specimens showed a noticeable increase in the terminal surface temperature at 6 V. The terminal
surface temperature of the CNT-CF3 and CNT-CF6 specimens increased drastically, exceeding 100◦C
at 12 V. It should be noted that both the CNT-CF3 and CNT-CF6 specimens melted at the input
voltage above 16 V. These observations reveal that high input voltage is required for noticeable heat
generation of the CNT-CF0 and CNT-CF0.1 specimens. In relation to this, the self-heating tests of
the composites over the applied time were conducted under an input voltage of 12 V to investigate the
self-heating properties of all specimens.

The surface temperatures of the specimen for a heating time of 300 s are shown in Fig. 5a. The
surface temperatures of all specimens increased rapidly to 100 s and then increased slightly afterward.
This trend was more noticeable with an increase of the CF length. The terminal surface temperatures
of the CNT-CF0, CNT-CF0.1, CNT-CF3 and CNT-CF6 specimens at 300 s were 52.2, 83.7, 141.9 and
155.2◦C, respectively. These results indicate that the incorporation of longer CF causes the generation
of more heat at an identical input voltage. The electrical resistance levels of the specimens for 300 s
heating time are shown in Fig. 5b. The initial electrical resistance outcomes of the CNT-CF0, CNT-
CF0.1, CNT-CF3 and CNT-CF6 specimens were 402.1, 165.1, 53.2 and 33.1 �, respectively. The
change in the electrical resistance of the CNT-CF3 and CNT-CF6 specimens was negligible during
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the self-heating test. However, the electrical resistance of the CNT-CF0 and CNT-CF0.1 specimens
decreased momentarily until around 50 s in both cases. These results imply that the incorporation of
longer CF leads to a decrease in the initial electrical resistance and retains the stable heat capability as
reflected by a negligible change in the electrical resistance.

Table 3: Configuration of the present ANN models for predictions

Parameters Present ANN models

Input feature in the input layer 3
Total dataset 720
Number of hidden layers 2
Number of neurons in each hidden layer 64
Target feature in the output layer 1
Total parameters 4481
Training data 80%
Test data 20%
Number of epochs 100
Learning rate 0.001
Optimizer Adam
Activation function ReLU and Sigmoid
Loss function Mean squared error (MSE) or

binary cross-entropy

Figure 4: Terminal surface temperatures of the specimens with different applied input voltages
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Figure 5: (a) Surface temperatures and (b) electrical resistance levels of the specimens at a heating time
of 300 s

The normalized electrical resistance levels of the specimens over the surface temperature are shown
in Fig. 6. The normalized electrical resistance decreased with an increase in the surface temperature
for all specimens. These phenomena are closely associated with the NTC effect, i.e., a decrease in the
electrical resistance of CPCs with an increase in the temperature [11,13,18,40]. Xiang et al. [18] reported
that the rearrangement of the CNT at an increased temperature exceeding the melting point of the
matrix causes the NTC effect, generating more electrical contact points in the composites. Accordingly,
the abrupt increase in the temperature of the specimen is very likely to form more connection of CNTs
in the PDMS, thus initiating the NTC effect. The NTC effects of the CNT-CF0 and CNT-CF0.1
specimens were more noticeable than those of the CNT-CF3 and CNT-CF6 specimens, decreasing to
less than 0.85 of the value of the normalized electrical resistance at less than 100◦C. These results are
in agreement with an earlier study [11], which suggests that longer CF can lead to improved stability
under self-heating condition, preventing the NTC effect.

Figure 6: Normalized electrical resistance levels of the specimens over the surface temperature
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4.2 Prediction Results and Analysis of Surface Temperature and Electrical Resistance

The surface temperature and electrical resistance were predicted, as shown in Fig. 7. After 100
epochs of the learning process, the training of the ANN model was completed, after which the
validation sets were used to examine the trained ANN model. Figs. 7a and 7b show the loss value
against the epoch for predicting the surface temperature and electrical resistance. The losses for both
the training and validation sets demonstrate a similar trend over the epoch, which drastically decreases
within 20 epochs. Figs. 7c and 7d show the prediction results of the ANN model of the surface
temperature and electrical resistance using the testing sets [36]. The R-squared values of the surface
temperature and electrical resistance were 0.91 and 0.97, respectively. In addition, the mean absolute
error (MAE) was calculated to further validate the ANN model in the testing sets. The MAE values of
the surface temperature and electrical resistance were 8.1 and 16.0, respectively. The high R-squared
value, which is close to one, and the low MAE value means a significant correlation between the input
and output values in the ANN model. Therefore, these results prove that the proposed ANN model is
suitable to predict the surface temperature and electrical resistance in nanocomposites incorporating
CNT and CF.

Figure 7: Loss value against the epoch for predicting (a) the surface temperature and (b) electrical
resistance and the prediction results of the ANN model of (c) the surface temperature and (d) electrical
resistance using the testing sets
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Fig. 8 shows the histogram of the relative prediction error on surface temperature and electrical
resistance using the testing sets. The relative prediction error was obtained by dividing the difference
between the true value and the prediction value by the prediction value, which was shown in Figs. 7c
and 7d. In the histogram of the surface temperature, a frequency within the error of 10% was
approximate 70%, and a frequency of 93.1% achieved an error of less than 20%. Meanwhile, in the
histogram of the electrical resistance, a frequency within the error of 10% was approximate 60%, and
a frequency of 72.9% achieved an error of less than 20%, which is higher than the error of the surface
temperature. It is mainly due to the characteristics of raw datasets of the electrical resistance, showing
unstable peaks in specific heating time. These results suggest that the ANN model for predicting the
surface temperature is more accurate than the model for predicting the electrical resistance.

Figure 8: Histogram of the relative prediction error on (a) surface temperature and (b) electrical
resistance using the testing sets

4.3 Detection Results and Analysis of Detecting a Severe NTC Effect

Fig. 9 shows the prediction results for detecting a severe NTC effect. Fig. 9a shows the criterion of
the severe NTC effect. Based on the experimental results in Fig. 6, we assumed that if both R/R0 and
T values decrease to less than 0.90 and 100◦C, respectively, the severe NTC effect occurs. The training
and validation losses of the binary cross-entropy decreased significantly within 10 epochs, converging
to 0.17 at 100 epochs, as shown in Fig. 9b.

Fig. 9c shows a confusion matrix of the ANN model for data detection using the testing sets.
A confusion matrix is a table used to describe the performance of a classification model of datasets
for which the true values are known [41–44]. We selected 144 testing sets randomly and created a
confusion matrix. There are two possible predicted classes: “NTC (Yes)” and “NTC (No).” “NTC
(Yes)” in the predicted class means that the specimen showed a severe NTC effect in the prediction
result, while “NTC (No)” in the predicted class means that the specimen did not show a severe NTC
effect. Accordingly, the number of true positives (TP) and true negatives (TN) implies that we detected
the occurrence of the NTC effect correctly. As shown in Fig. 9c, there were fewer cases of misdetection
than 20 cases which is the total of false positive (FP) and false negative (FN). These results indicate
that the present ANN model can feasibly detect the severe NTC effect within the assumed criterion.
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Figure 9: (a) Criterion of the severe NTC effect, (b) the loss value against the epochs for detecting the
severe NTC effect and (c) a confusion matrix of the ANN model for data detection using the testing
sets

The accuracy and sensitivity of the present ANN model to detect severe NTC effect for
different criteria are summarized in Tab. 4. As the measuring criteria [41,45–47], the accuracy
((TP + TN)/(TP + FN + FP + TN)) and sensitivity (TP/(TP + FN)) were calculated for evaluating
the present ANN model. This table illustrates that the present ANN model exhibited high accuracy
and sensitivity exceeding 70% for all criteria. It can be seen that the accuracy rates slightly decreased
as the R/R0 value increases. This decrease in the accuracy could result from those raw datasets were
not enough for the detection within assumed criteria. Nevertheless, the present ANN model showed
high detection performance under the self-heating condition, showing the potential of the proposed
ANN model for detection of the severe NTC effect in nanocomposites incorporating CNT and CF.
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Table 4: Accuracy and sensitivity of the present ANN model to detect severe NTC effect for different
criteria (%)

R/R0 Surface temperature (◦C)

60 80 100 120 140

Accuracy 0.95 91.0 88.2 89.6 86.8 90.3
0.90 88.9 87.5 88.2 83.3 89.6
0.85 77.1 71.5 73.6 71.5 70.4

Sensitivity 0.95 96.3 95.1 92.2 71.9 80.8
0.90 97.7 95.5 93.1 75.6 89.7
0.85 94.6 93.8 93.3 93.2 91.7

5 Concluding Remarks

The present study proposed a machine learning approach to the prediction of the self-heating
characteristics and the detection of the NTC effect of nanocomposites incorporating CNT and CF.
Self-heating tests of nanocomposites incorporating CNT and CF were conducted, and the self-heating
properties of the composites were discussed in parallel with changes in the electrical resistance with
the increase of the surface temperature. Based on the experimental results, three input features were
considered, and ANN models were constructed to predict the surface temperature and electrical
resistance, and to detect the NTC effect. The key findings of the study are summarized below.

• The fabricated specimens showed a reduction in electrical resistance levels for self-heating,
indicating the occurrence of the NTC effect. The incorporation of longer CF was found to
lead to improved heat capabilities, which prevented the NTC effect.

• The predicted surface temperature and electrical resistance were in good agreement with the
experimental results. The trained ANN model for predicting the surface temperature and
electrical resistance of the composites recorded a corresponding R-squared value of 0.91 and
0.97, respectively, in the testing sets.

• The proposed ANN model for data detection can detect the NTC effect in composites with all
criteria with R-squared value exceeding 0.7. The proposed model can be expected to be able to
evaluate the heating stability of nanocomposites incorporating CNT and CF.

The present study used a machine learning approach to investigate the self-heating properties of
nanocomposites under a monotonic self-heating condition. However, experimental and theoretical
verifications under a cyclic heating condition are also essential to examine the stability of repetitive
self-heating of these types of composites. Accordingly, our future work will investigate the cyclic self-
heating effects on the composites using a recurrent neural network model. Moreover, it should be noted
that relevant experimental schemes capable of considering other physical properties of materials (i.e.,
the material’s microstructure, the geometry of the specimen, and coefficient of thermal expansion) in
the present model are needed for more accurate and realistic predictions.
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