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Abstract: The task of segmentation of brain regions affected by ischemic
stroke is help to tackle important challenges of modern stroke imaging anal-
ysis. Unfortunately, at the moment, the models for solving this problem using
machine learning methods are far from ideal. In this paper, we consider a
modified 3DUNet architecture to improve the quality of stroke segmentation
based on 3D computed tomography images.We use the ISLES 2018 (Ischemic
Stroke Lesion Segmentation Challenge 2018) open dataset to train and test
the proposed model. Interpretation of the obtained results, as well as the ideas
for further experiments are included in the paper. Our evaluation is performed
using the Dice or f1 score coefficient and the Jaccard index. Our architecture
may simply be extended to ischemia segmentation and computed tomography
image identification by selecting relevant hyperparameters. The Dice/f1 score
similarity coefficient of ourmodel shown58%and results close to ground truth
which is higher than the standard 3D UNet model, demonstrating that our
model can accurately segment ischemic stroke. The modified 3D UNet model
proposed by us uses an efficient averaging method inside a neural network.
Since this set of ISLES is limited in number, using the data augmentation
method and neural network regularizationmethods to prevent overfitting gave
the best result. In addition, one of the advantages is the use of the Intersection
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over Union loss function, which is based on the assessment of the coincidence
of the shapes of the recognized zones.

Keywords: Stroke; ischemic stroke; UNet; deep learning; segmentation;
ISLES 2018

1 Introduction

Ischemic stroke is a violation of the cerebral circulation with damage to the brain tissues, a
violation of its functions due to difficulty or cessation of blood flow to a particular section [1].
Strokes are one of the most common causes of death and disability [2]. In order to prevent bad
consequences, a quick and timely diagnosis of a stroke is required. One of the promising areas for
optimizing the diagnosis of brain stroke is the introduction of decision support systems (DSS),
including the use of machine learning methods, at the stage of interpretation of radiological
images [3]. The relevance of this direction is due to a number of factors. Despite the high
saturation of medical institutions with computed tomography (CT) machines, there is a shortage
of personnel. In addition, in large medical centers, where a large number of patients are examined
around the clock, there is a factor of fatigue and a weakening of concentration. In such situations,
the presence of DSS could minimize the impact of such factors on the quality of medical care.

In acute ischemic stroke, computed tomography (CT) and magnetic resonance imaging (MRI)
are the most effective methods of early imaging [4–6]. On standard CT and MRI images, in 80%
of cases in the first 24 h after clogging of the vessel, it is already possible to establish ischemic
changes [7,8]. Determining the position of the area affected by ischemic strokes is the most
important factor in assessing the severity of the injury. Of particular interest is the development
of the damaged area over time. Modern CT and MRI techniques can be used to divide the
stroke-affected area into a section with irreversible cell damage (the nucleus) and a zone of non-
functioning, partially damaged, but still viable cells surrounding the nucleus (the penumbra) [9].
Fully automatic methods for solving this problem are still too simple to fully identify all the
patterns contained in the data [10]. Therefore, today there is a need for advanced data analysis
methods that will accurately solve the segmentation problem and will help doctors determine the
type of treatment.

As mentioned earlier, to minimize the consequences of a stroke, it is necessary to make a
diagnosis as soon as possible. The most effective tool for visualizing the brain in the first hours
after a stroke is computed tomography [11]. CT is used by doctors to segment the affected
area and predict the development of the disease, but often such segmentation is performed “by
eye” [12]. Automatic segmentation of the affected areas will help to make the medical prognosis
more accurate and objective. We consider a CT scan of the brain as a multi-channel three-
dimensional image. Multichannel is provided by simultaneous analysis of images obtained in
different modalities (with different settings of the tomographic scanner) and co-registered with
each other.

In this study, we propose a modified UNet neural network architecture for brain stroke
segmentation based on CT images. Fig. 1 shows a diagram of the modelling process: the proposed
model is trained and tested on the open data from ISLES 2018, which consists of a training part
and a testing part. Next is the pre-processing part, where the data is cleaned and converted into
fragments. Since the amount of data for training is limited, the process of data augmentation
was necessary. In the main part, after feature extraction, the segmentation phase is performed. In
order to obtain the results, we set the 4 main evaluation criteria such as: IoU, dice/f1 score, recall
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or sensitivity and precision. The results show that the proposed model segments a brain stroke
with a high dice/f1 score coefficient of compared to classical UNet and other models.

Figure 1: Diagram of the model operation process

U-Net has established itself as one of the leaders in the field of medical image segmentation.
However, using the classical model to solve segmentation problems does not produce sufficiently
good results. Therefore, the strategy of our model was to add methods to the classical U-Net
model. The insufficient amount of training data is one of the obstacles, so in this case the problem
was solved by using data augmentation. Adam learning rate = 0.0002 was chosen as the optimizer
because it provides great computational efficiency, low memory requirement was an important
issue for us, and it is invariant to diagonal scaling of gradients. As for the regularization, we used
a dropout layer with probability 50% to prevent overfitting. In particular, we wanted to prevent
co-adaptation of pixels with their neighbors across feature maps, so we used Spatial Dropout,
which excludes entire feature maps from the convolutional layer. Furthermore, l2 regularization
with a regularization factor of 0.001 was added to improve the learning ability of the model,
resulting in better segmentation. Thus, the strategy we chose provided the first excellent results
according to the criteria of IoU, dice/f1 score, recall or sensitivity and precision, in contrast to
the classical U-net model. However, this strategy and the evaluation criteria will be completed and
improved in further studies as needed.

2 Literature Review

The analysis of medical images in 1970–1990 was carried out on the basis of sequential low-
level pixel processing and mathematical modeling [13].

Image analysis has also found its place in medicine. Segmentation of organs on medical
data provides information about the shape of the object under study, its size, and its area. Each
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segmentation method is faced with the task of determining the contours/boundaries or sections
of the image under study.

Despite the fact that 3D image formats have appeared, many studies and calculations are
faster and much easier to perform with 2D formats when segmenting CT and MRI convolutional
neural networks. Ignoring the 2D CNN model for 3D information, while 3D CNN models require
powerful computing resources, it was advisable to propose an architecture called dimension-fusion-
UNet (D-UNet), which provides a combination of 2D and 3D convolution at the encoding
stage [14]. Overcoming the computational burden of processing and computing 3D medical images
requires the effective removal of false positives. In this vein, the use of a 3D fully coupled
Conditional random field has an impact on post-processing soft network segmentation. This
method, as well as the architecture, which has an 11-layer deep, three-dimensional convolutional
neural network with a double path, is designed to solve complex problems of segmentation of
brain lesions, where one of them is ischemic stroke [15].

Correctly applied machine learning methods and algorithms in medical image analysis do not
always play a key role, but the lack of sufficient labeled data limits the progress of research in this
area. The application of a data augmentation structure using a conditional generative adversarial
network (cGAN) and a convolutional neural network with segmentation control, generate brain
images from specially modified lesion masks, as well as a Similarity Module (FSM) function to
facilitate the learning process, which leads to better segmentation of the lesion [16]. An automated
method based on the Crawford-Howell t-test and comparing stroke brain images with healthy
ones, is easy to calculate and interpret, thereby ensuring speed in operation, and is also consistent
with the lesions identified by human experts. This approach does not require high computing
power and memory and can be implemented on a desktop workstation and integrated into a
routine clinical diagnostic pipeline [17].

When segmenting medical images, there are also differences between classification and seg-
mentation methods when determining accuracy. The application of a deep convolutional neural
network and a cascading structure, establishes a combined learning structure using a conditional
random field for a more efficient model with direct dependencies between spatial closure tags
used in post-segmentation processing. Thus, it ensures the accuracy of segmentation, the correct
network depth and the number of connections [18]. Segmentation of acute ischemic stroke lesions
using multimodal MRI on a U-shaped structure architecture with a built-in residual unit in the
network, while alleviating the problem associated with degradation, showed good performance in
both single-modal and multi-modal mode [19]. In general, acute ischemic lesion manifests itself
in the post-stroke state automatic segmentation of diffusion-weighted MR tomography using the
CNNs architecture, which uses in one part a pair of deconvnets of the EDD network to remove
potential false positives, and in the second part a multiscale convolutional network with label
estimates aimed at evaluating lesions, give very good results [20]. Due to its speed, availability, and
non-negative characteristics, CT perfusion was used to sort patients with ischemic stroke. Perfusion
parameters can also be calculated from CTP data. Automatic segmentation for the location of
the core of the affected area based on a generative model consisting of an extractor, a generator,
and a mentor of segments, and the use, in addition, of a new function of pixel area loss and
cross-entropy, will help to determine and improve this process [21].

Automating the process of manually labeled masks, due to which deep learning methods
demonstrate impressive performance in segmentation tasks, using a new sequential perception
generative adversarial network (CPGAN) under control, with a similarity connection module for
capturing information about multiscale functions, and with an auxiliary network simplifies the
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expensive and time-consuming process [22]. As another example, let’s consider one of the new
MRI-based segmentation methods with inversion recovery (FLAIR) by attenuated fluid, where the
Bayesian method based on Gabor textures is used as the initial segmentation, then the Markov
random field model is used [23]. Segmentation with the expectation-maximization algorithm (EM)
and the fractional-order Darwin Particle Swarm Optimization method (FODPSO) according to
the Oxfordshire Community Stroke Project (OCSP) scheme were proposed in [24] to improve the
accuracy of detecting the affected brain area. Getting detailed information about the soft tissue
contrast in the brain organ has the advantage of diffusion-weighted imaging. Segmentation by the
DWI method, with fuzzy c-means (FCM) and active contours for the separation of cerebrospinal
fluid (CSF) with hypointensive lesion, has the potential for segmentation of DWI images of brain
lesions [25]. A solution to issues such as the lack of preparation for a large number of parameters,
when using contextual information extraction methods and for capturing long-term dependencies
was proposed in [26], a deep-shared convolution based on X-Net, designing a non-local operation
or feature similarity module (FSM), providing dense extraction of contextual information, as a
result facilitating better segmentation.

Another one of the unorthodox research methods with label annotation was proposed by the
authors in [27], using combinations of many weakly labeled and several fully labeled subjects in a
multi-feature map fusion network (MFMF) with a pair of branches, where one part was used to
train the classification branch and the other to configure the segmentation branch. The authors
in [28], propose their own method called Deep Lesion Symmetry ConvNet and MRI scans,
automatic segmentation of chronic stroke lesions. The use of symmetric voxels, in their 8-layer
3D architecture, leads to good system performance results. The use of CT scans to detect the first
signs of an ischemic stroke is not possible. Thus, in [29], a method for detecting ischemia based
on contrast enhancement of CT is proposed. This method consists of three stages: Preprocessing,
image enhancement, and classification.

3 Data

As a dataset, we use the ISLES 2018 (Ischemic Stroke Lesion Segmentation Challenge), which
consists of 3D medical CT images of the brain [30]. This ISLES 2018 database is available under
the Open Database License and any rights to individual database content are licensed under the
Database Content License [31]. The data is divided into three types, “Training”, “Validation” and
“Testing”. The training data set consists of 63 patients. The test dataset consists of 40 patients.
Some patients have two plates to cover the stroke lesion. These are non-overlapping or partially
overlapping areas of the brain. The slabs per patient are indicated by the letters “A” and “B” for
the first and second slabs, respectively (For example, 39_A = case 60; 39_B = case 61). Image
file format: .nii Format of the Uncompressed Information Technology Neuroimaging Initiative
(NIfTI). In total, the training set consists of 94 cases, where each case consists of 7 types of
CT scans of one person such as CT, 4DPWI, CBF, CBV, MTT, Tmax, and OT. The training
data set for training the model was divided into two: training and validation, thus, the model
will be trained on training data and evaluated using validation data. After the validation session,
we send the test data to get the result to the ISLES platform for verification. Fig. 2 shows an
example of the ISLES 2018 dataset (computed tomography (CT), cerebral blood flow (CBF),
cerebral blood volume (CBV), mean transit time (MTT), segmentation image (OT), tissue residue
function (Tmax).
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Figure 2: Sample of ISLES 2018 dataset (computed tomography (CT), cerebral blood flow (CBF),
cerebral blood volume (CBV), mean transit time (MTT), segmentation image (OT), tissue residue
function (Tmax)

4 Methods

The UNet architecture, developed in 2015 by Olaf Ronneberger, Philipp Fischer and Thomas
Brock for cell segmentation on microscopic images, has performed well and is widely used to
solve image segmentation problems [32,33]. This architecture consists of two parts: a narrowing
(encoder) and a widening (decoder), which form a U-shaped structure [34]. In the narrowing
(input) part of the structure, the image passes through a series of layers at the input: Con-
volutional layers with an activation function and subdiscretization (combination) layers. Fig. 3
illustrates the classical UNet architecture.

4.1 The Proposed Method
In our task, we modify the UNet architecture to achieve higher accuracy in the segmentation

of strokes on CT images. Thanks to the use of methods such as data augmentation, dropout,
Adam optimization algorithm, l2 regularization and instance normalization, we were able to
modify the classical 3D UNet model. The advantages of each method are described below:
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Figure 3: Classical UNet architecture [35]

• Data augmentation. This method allows developers to artificially increase the size of the
training set by creating data by modifying an existing dataset [36]. Since the ISLES 2018
dataset had a small amount of data, this method was used for training.

• Dropout was designed to solve the problem of readjusting the neural network during testing
due to a large number of parameters [37].

• The Adam optimization algorithm optimizes the speed of adaptive learning. It was specifi-
cally designed for deep neural network training [38].

• L2 regularization solves multicollinearity problems (independent variables are highly corre-
lated) by limiting the coefficient and preserving all variables [39].

• The Instance Normalization or contrast normalization prevents changes in the mean and
covariance for a given instance, thus simplifying the learning process. Intuitively, the nor-
malization process allows the removal of information about the contrast of a given instance
from the content image in a task such as image styling, which simplifies generation [40].

A diagram of the proposed UNet architecture is shown in Fig. 4. In given neural network, each
neuron is connected to all the neurons of the previous layer, and each connection has its own
weight factor. In a convolutional neural network, a small weight matrix is used in convolution
operations, which is “moved” along the entire processed layer (at the network input, directly along
with the input image). The convolution layer summarizes the results of the element-wise product
of each image fragment by the convolution core matrix. The weight coefficients of the convolution
kernel are unknown and are established in the learning process [41].

The convolution operator is calculated using the formula:

(I ∗K)xy =
h∑

i=1

w∑

j=1

Ki,j× Ix+i−1,y+j−1 (1)
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where I is a two-dimensional image of size x·y; K is a matrix of dimension h·w (the so-called
convolution kernel).

The activation operation is a nonlinear function and determines the output signal of a neuron,
while the most commonly used in modern neural networks and used in this architecture is a func-
tion called “rectifier” (by analogy with a single-half-period rectifier in electrical engineering) [42].
Neurons with this activation function are called RelU (rectified linear unit) and have the following
formula [43]:

f (x)=max(0,x) (2)

Figure 4: Proposed modified UNet architecture

This activation function significantly accelerates the learning process due to the simplicity of
calculations [44,45]. The subsampling layer reduces the image size by a factor of n on each axis
by combining adjacent pixels in areas of size n× n into a single pixel. The average value of the
combined pixels or their maximum can be used as the value of the resulting pixel. In UNet,
when performing peeling, the maximization over the area of 2× 2 pixels is applied. After passing
through several series of convolutional and sub-sampling layers, the input image is transformed
from a specific grid of high-resolution pixels to more abstract feature maps.

Unlike other architectures, in proposed modified U-Net Some convolutions were replaced with
dilated filter convolutions. This modification expands the filter’s field of the view, allowing the
model to include more background context information into the calculation. We utilize leaky ReLu
activations for all feature maps calculating convolutions across the network. To compensate for
the stochasticity caused by small batch sizes utilized owing to memory constraints, we substitute
standard batch normalisation with instance normalisation. Dropout layers with l2 regularization
were also added to minimize overfitting and as a loss function, we use intersection over union.
In this architecture, each blue square corresponds to a multi-channel property map. The number
of channels is shown at the top of the square. The x-y size is shown in the lower-left corner of
the square. The white squares represent copies of the property map. The arrows indicate various
operations. It consists of a narrowing path (left) and an expanding path (right). The narrowing
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path is a typical convolutional neural network architecture. It consists of re-applying two 3×
3× 3 convolutions, followed by ReLU initialization and a maximum join operation (2× 2 powers
of 2) to reduce the resolution. At each step of downsampling, the property channels are doubled.
Each step in the expanding path consists of an upsampling operation of the property map,
followed by: a 2× 2× 2 convolution, which reduces the number of property channels; a merge
with an appropriately trimmed property map from the shrinking path; two 3× 3× 3 convolutions,
followed by a ReLU. The last layer uses a 1× 1× 1 convolution to map each 64-component
property vector to the desired number of classes. In total, the network contains 23 convolutional
layers. The data sizes used in the model are as follows: input form = [5, 128, 128, 32], weight
decay= 0. Two comparative architectures were considered, the classic 3D UNet in 200 epochs
and the proposed 3D UNet model in 650 epochs. As a result of evaluation according to the
main criteria during training, the classic 3D UNet model received results on dice/f1 score-48%,
precision-39%, recall/sensitivity-99%, Jaccard index-35%, and the proposed model during training
received results on dice/f1 score-90%, precision-83%, recall/sensitivity-93%, Jaccard index-89%,
and the test result the classic 3D UNet model received results on dice/f1 score-36%, precision-
38%, recall/sensitivity-37%, Jaccard index-32%, and of the proposed model dice/f1 score-58%,
precision-68%, recall/sensitivity-60%, Jaccard index-66%.

4.2 Evaluation Method
As an assessment of the quality of the prediction, we use the Dice/f1 score similarity

coefficient, precision, recall/sensitivity, and Jaccard index. Dice/f1 score similarity coefficient is
responsible for the “similarity” of the two data sets. Let A and B be some sets of voxels
(three-dimensional pixels). Formula (3) explains the calculation of the Dice/f1 score similarity
coefficient [46].

Dice(A,B)= 2|A∩B|
|A| + |B| (3)

In our problem, |A| is the real volume of the stroke nucleus, |B| is the predicted volume of
the stroke nucleus, and |A∩B| is the volume of the intersection of A and B. We see that for the
ideal prediction, Dice(A, B) = 1, and for the worst-case prediction, Dice(A, B) = 0. Therefore,
we will try to maximize Dice/f1 score.

However, it is important to note that due to the fact that Dice/f1 score is an undifferentiated
metric, its maximization by gradient methods is not directly possible. Therefore, we will minimize
the standard cross-entropy metric (logloss), where the class label is equal to one if the voxel
belongs to the affected area and zero otherwise. The neural network gives the probability of a bill
belonging to a particular class.

To decide whether a prediction is correct with respect to an object or not, the Jaccard index
(also called intersection over union) is used. Formula (4) demonstrates the calculation of the
Jaccard index [46].

J(A,B)= |A∩B|
|A∪B| (4)

Precision effectively describes the purity of our positive detections relative to the ground truth.
How many of the objects that we predicted in a given image actually had a matching ground
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truth annotation? Formula (5) describes precision [47].

precision= TP
TP+FP

(5)

Here, TP is true positives, FP is false positives.

Recall or sensitivity effectively describes the completeness of our positive predictions relative
to the ground truth. Of all of the objections, annotated in our ground truth, how many did we
capture as positive predictions? [47]

recall= TP
TP+FN

(6)

Here, TP is true positives, FN is false negatives.

5 Experiment Results

For experimental work, we took the classic U-Net architecture with the ISLES 2018 dataset.
The practical part of the experiment was conducted in the google colab environment with the
Tensorflow library. The classical UNet model was completed after 200 epochs, as it was poorly
trained and the loss of validation did not change and was uninformative. Our modified model
was also implemented in the google colab environment, but since there was not enough memory
and platform power, our model stopped at the level of 650 epochs.

Fig. 5 shows the comparative training losses and validation losses during model training in
200 epochs of the classical 3D model UNet, where the maximum loss scale is 1.0, training losses
are 0.222, and verification losses are 0.410.

Figure 5: Training and validation loss during the model training in 200 epochs

Fig. 6 illustrates that the training for the proposed model was started in 650 epochs, compared
to the classical 3D UNet model, the loss process occurred evenly with a small fluctuation, and
the results for training loss is 0.618 and for validation, the loss is 0.620.

Fig. 7 demonstrates three examples of original segmented images and predicted images of the
proposed model. Initially, the original images were of high quality, but in order for the number
of NN parameters to be less for calculations in Google colab, the original image had to be
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compressed, therefore, since the image quality is worse, the predicted images differs from the
original one.

Figure 6: Training and validation loss during the model training in 650 epochs

Figure 7: Brain stroke segmentation results. First line images are original images; Second line
images are the images after applying segmentation)

Tab. 1 demonstrates the comparative result for the four evaluation criteria of our proposed
model and the classical UNet model. The results show that the proposed model surpasses the
classical UNet model in the stroke segmentation problem. Although training results show average
of 90%, test results demonstrate much lower performance. This result is explained by the small
amount of data since the volume of training and testing data were crucially important.
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Table 1: Training and test results

Methods Classical
3D UNet
(Training
results)

Classical
3D UNet
(Test
results)

Proposed
approach
(Training
results)

Proposed
approach
(Test
results)

Dice/f1 score 48% 36% 90% 58%
Precision 39% 38% 83% 68%
Recall/sensitivity 99% 37% 93% 60%
Jaccard index 35% 32% 89% 66%

Tab. 2 compares the proposed 3D UNet model with the other state of the art models. The
proposed architecture shown high performance in comparison the other models. Although, we
should note, that the compared models applied different datasets to train and test their architec-
tures. In spite of this, the given model demonstrates the high performance in all the evaluation
parameters including the dice/f1 score similarity coefficient, precision, and recall/sensitivity.

Table 2: Comparison of the proposed model test set with the state-of-the-art models

Methods Dice/f1 score Precision Recall/sensitivity

Proposed model 0.58 0.68 0.60
D-UNET [14] 0.53 0.63 0.52
X-NET [26] 0.48 0.60 0.47
U-NET CNN [32] 0.46 0.34 0.44
SegNet [34] 0.27 0.19 0.25
PSPNet [45] 0.35 0.25 0.33
V-NET [48] 0.43 0.50 0.49
DeepLab v3+ [49] 0.46 0.34 0.44
ResUNET [50] 0.47 0.35 0.45
2D Dense-UNET [51] 0.47 0.35 0.48

6 Discussion

The introduction of a decision support system into clinical practice that will significantly
accelerate and increase the effectiveness of medical care for brain stroke is an important task.
Automatic analysis of neuroimaging data will allow for early differential diagnosis in the shortest
possible time, predict the possible outcome of the disease and provide recommendations for the
most effective treatment method individually for each patient. The presence of a representative
sample consisting of a large number of structured and reliable data is the basis for the implemen-
tation of various methods of analyzing medical images, including using machine learning. The
effectiveness and accuracy of the models also directly depend on the quality of the initial data
(training sample) and require their careful pre-processing [52].
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When conducting research, there is a need to search for cases that meet the selected criteria
in the local repositories of a single medical institution, followed by a time-consuming process of
marking the images by experts manually. It is for this reason that the samples used in training
systems most often contain less than 100 diagnostic series [53].

Despite the urgency of automating the process of diagnosing ischemic stroke, the availability
of appropriate collections of images in the open access in the world is not numerous, and in
many countries, such projects are completely absent, which inevitably leads to a loss of accuracy
of models obtained on open population data. The most common purpose of organizing publicly
available datasets is mainly to assist teams in creating and improving algorithms for automatic
segmentation of the lesion volume, and often collections are presented with diagnostic data for
ischemic and hemorrhagic stroke [53–55] or images with already developed large areas of ischemia
(do not include cases in the acute period), and practically do not contain clinical information
about the patient. Some datasets do not include the marking of lesions or are marked up using
automatic segmentation algorithms without the participation of experts, which makes their use
as a training sample impossible without pre-processing. Undoubtedly, systems for emergency and
early diagnosis of patients with AI are most relevant, but at the moment it is difficult to find data
for their development. Moreover, such large projects dedicated to ischemic lesions as ENIGMA
Stroke Recovery [56], ATLAS [57], as well as the ISLES competition [30], held in 2016–2018,
focus exclusively on the collection of magnetic resonance imaging data and certain types of
functional brain studies. Images of these modalities are undoubtedly very informative for making
clinical decisions, but they are not widely used methods for diagnosing stroke. Another common
disadvantage of publicly available image sets is their placement in compressed form or pre-
conversion to formats with loss of quality and metadata, which significantly restricts researchers
in the choice of analysis methods.

7 Data Availability

For this study, we use ISLES 2018 open dataset provided by a medical image seg-
mentation challenge [58] at the International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI) 2018 [59]. The dataset is available by the address
http://www.isles-challenge.org/.

8 Conclusion

Segmentation of brain images is still not a completely solved problem in the field of deep
learning. The amount of available materials in the study, including training and testing data, also
plays a key role in image segmentation. In this article, we proposed a modified UNet architecture
for segmentation of acute ischemic stroke foci. In turn, the UNet model is one of the best
methods of segmentation of medical images applied to small amounts of data. In addition, the
improved model proposed by us helps to increase the accuracy of segmentation of CT images,
which leads to better results. Specifically, the proposed model achieved a 58% similarity coefficient
of cubes, 60% recall/sensitivity, which proves the correctness of the technologies used such as:
data augmentation to increase training data, dropout to prevent coadaptation of pixels with their
neighbors on object maps, removing all object maps from the convolutional layer, an effective
Adam optimizer, l2 regulation for multicollinearity problems. As a future work, we consider
the improvement of the proposed model by applying fine-tuning, extracting functions. It is also
designed to create our own weights in the ISLES 2017 dataset, which will improve our model by
adjusting the layers that have the most abstract representations, and for more efficient models in

http://www.isles-challenge.org/
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the future, object extraction will be applied, which is one of the main key points. Thus, we believe
that the use of these methods will increase the accuracy and accuracy of the evaluation criteria
and bring the segmentation process closer to high accuracy.
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