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Abstract: Millimeter wave communication works in the 30–300 GHz fre-
quency range, and can obtain a very high bandwidth, which greatly improves
the transmission rate of the communication system and becomes one of the
key technologies of fifth-generation (5G). The smaller wavelength of the
millimeter wave makes it possible to assemble a large number of antennas
in a small aperture. The resulting array gain can compensate for the path
loss of the millimeter wave. Utilizing this feature, the millimeter wave massive
multiple-input multiple-output (MIMO) system uses a large antenna array
at the base station. It enables the transmission of multiple data streams,
making the system have a higher data transmission rate. In the millimeter wave
massive MIMO system, the precoding technology uses the state information
of the channel to adjust the transmission strategy at the transmitting end,
and the receiving end performs equalization, so that users can better obtain
the antenna multiplexing gain and improve the system capacity. This paper
proposes an efficient algorithm based on machine learning (ML) for effective
system performance in mmwave massive MIMO systems. The main idea is to
optimize the adaptive connection structure to maximize the received signal
power of each user and correlate the RF chain and base station antenna.
Simulation results show that, the proposed algorithm effectively improved
the system performance in terms of spectral efficiency and complexity as
compared with existing algorithms.

Keywords: MIMO; phased array; precoding scheme; machine learning opti-
mization

1 Introduction

In the past ten years, the rapid development of various business systems such as the Internet of
Things (IoT) and the Internet of Vehicles (IoV), as well as the advancement of wireless equipment
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manufacturing processes, have promoted the development and deployment of 5G mobile commu-
nication systems with high-speed, large connections and low latency. In general, the improvement
of spectrum efficiency is achieved through network densification of micro-cell millimeter wave and
massive MIMO technology [1]. The current low-frequency spectrum resources can no longer meet
the people,s needs for high-rate data transmission in people,s lives. The development of wireless
communication technology has forced researchers to include the millimeter wave frequency band into
the scope of research. The millimeter wave frequency is distributed in the range of 30 to 300 GHz, and
its ample bandwidth has become a hot spot in the academic and industrial circles. However, millimeter
waves are severely absorbed by the atmosphere and rain in the process of space transmission, and the
limited number of propagation paths, resulting in their short effective propagation distance, which is
very suitable for micro-cell communication with small coverage and high data transmission rate. It
provides sufficient array gain to form a needle beam to reduce interference, which is regarded as one
of the key technologies of 5G [2]. When a large number of antennas are deployed at the millimeter
wave transmitting end, all-digital precoding needs to be equipped with a dedicated radio frequency
chain for each transmitting antenna, and a radio frequency chain with the number of antennas
(composed of digital-to-analog converters, mixers, etc.) which has high cost and unacceptable energy
consumption. Therefore, the research and design of low-dimensional baseband digital precoders and
high-dimensional radio frequency analog precoders instead of all-digital precoders has aroused great
interest. In a single-user communication system, there are ways to improve the spectrum efficiency
by minimizing the Euclidean distance between hyrbid analog and digital precoding and fully-digital
precoding [3-6], and also through a joint transmitter analog precoder and receiver analog research
on the maximized spectral efficiency of the combiner [7–9]. In multi-user communication systems,
the hybrid precoding with a fully connected structure has also been studied [10–14]. For example,
reference [15] directly uses the phase of the channel conjugate transpose as an analog precoder, and
then uses the zero forcing (ZF) technique to design the baseband digital precoder. Reference [16]
proposed a two-stage hybrid precoding and designed analog precoding in which the phases of all
digital precoding obtained by maximum ratio transmission (MRT) and ZF precoding were extracted
respectively, and then combined with channel moments. The equivalent matrix obtained by the matrix
eliminates inter-user interference through ZF to obtain the baseband digital precoding. However, these
hybrid precoding based on the fully connected structure require the use of more RF chains and high-
precision phase devices, resulting in expensive hardware costs and power consumption proportional
to accuracy, hindering the hybrid precoding structure in the base station and mobile end millimeter
wave cellular network systems with strict size and power restrictions in the deployment.

In order to reduce the number and precision of the hardware used, further research on hybrid
precoding of partial connection structures has been carried out [17,18]. Reference [19] first proposed
the hybrid precoding of switch and inverter based on machine learning adaptive cross entropy. The
authors in [20–22] applied machine learning adaptive cross entropy to the hybrid precoding of lens
array switch structure, and further analyzed the impact of important parameters based on the sum
rate and energy efficiency of the hybrid precoding of the switch and inverter structure. Reference
[23] proposes a precoding with an adaptive connection structure, which can better achieve beam
gain, but still requires a higher-precision phase shifter (at least 6-bit accuracy) to achieve close to
the optimal fully-digital precoding and lower precision such as 1-bit quantized adaptive connection
structure is achievable and rate performance is severely reduced. In order to solve the problem of
poor accessibility a rate performance of the 1-bit quantized phase shifter of the adaptive connection
structure, this paper proposes a 1-bit quantized phase shift based on machine learning adaptive cross-
entropy hybrid precoding. The adaptive connection structure that obtains the matching relationship
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between the RF chain and the base station antenna by maximizing the user’s received signal power
is more flexible than the fixed sub-connection. According to the probability distribution, the analog
precoder is randomly generated, and the classic ZF precoding is used to obtain the corresponding
digital precoder. The analog precoder is adaptively weighted according to the reach and rate. Then,
the probability distribution of the simulated precoding is updated by reducing the cross entropy
and adding a constant smoothing parameter, and repeating this way, a hybrid precoder with almost
optimal performance and rate is finally obtained. Numerical simulations are performed to evaluate
the effectiveness of the proposed scheme.

2 System Model

As shown in Fig. 1, consider the massive MIMO system of multi-user downlink , the base station
deploys N antennas, NRF radio frequency chains, and simultaneously serves K non-cooperative users
with a single antenna. Generally, the massive MIMO system satisfies K ≤ NRF ≤ N, and NRF = K is
set in this article. The analog precoder FRF is composed of a small number of radio frequency (RF)
chains, an adaptive connection network and a large number of antennas [24]. It is assumed that the
symbols sent to K users s = [s1, , s2 . . . , sK ]T are independently and identically distributed, and they are
all symbols that obey the zero-mean complex Gaussian distribution, satisfying E(ssH) = P/KIK where
P is the total transmitted signal power of the base station [25].
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Figure 1: Proposed system model

The signal received by K users can be expressed as

y = HTFRFFBBs + n (1)

Among them, HT = [h1, h2, . . . , hK]T ∈ C
K×N represents the downlink channel from the base

station to all users, hk ∈ C
N×1 represents the channel gain from the base station to the k th user.

FRF = [f RF
1 , f RF

2 , . . . , f RF
NRF

] ∈ C
K×NRF represents a high-dimensional constant modulus analog precoder

that can only adjust the signal phase, FBB = [f BB
1 , f BB

2 , . . . , f BB
K ] ∈ C

NRF×K stands for a low-dimensional
digital precoder that can adjust the signal amplitude and phase. n represents K × 1 dimension
vector additive white Gaussian noise AWGN, satisfying E(nnH) = σ 2IK , σ 2 represents the power
of additive white Gaussian noise [26]. In order to ensure the total transmit power constraint, after
the analog precoding matrix FRF is designed, the corresponding digital precoding matrix FBB should
meet the power constraint ‖FRFFBB‖2

F = K. For the channel gain vector, in order to better describe
the characteristics of limited space selection and limited scattering caused by the extremely high
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propagation path loss of the millimeter wave channel, and the large number of antenna arrays of
the millimeter wave transmitter leads to a large degree of antenna correlation, using the geometric
Saleh-Valenzuela channel model, assuming that the transmitting end is a uniform linear array (ULA)
antenna, the channel gain of the k-th user can be expressed as:

hk =
√

N
Lk

∑Lk

l=1
α(l)

k a(�(l)
k ) (2)

Among them, N is the number of antennas of the base station ULA antenna. Lk represents the
number of propagation paths of the k-th user, α

(l)
k and Φ

(l)
k respectively represent the complex gain and

departure azimuth angle of the l-th path of the k-th user, and a(Φ) represents the response vector of
the transmission array with a dimension of N × 1, which can be expressed for

a(Φ) = 1√
N

[
1, ej 2πd

λ
sin(Φ), ej 4πd

λ
sin(Φ),...,e

j 2πd (N−1)
λ

sin(Φ)

]T

(3)

Here, λ is the wavelength of the millimeter wave, and d is the distance between the ULA antenna
elements, usually set to half the wavelength d = λ/2 [27–28].

3 Proposed Algorithm

The analog precoding of the traditional low-precision phase shifter partial connection structure
often fails to achieve the array gain of the millimeter wave large-dimensional antenna. Therefore,
this article simulates the precoder adaptive connection and deploy adaptive connection network
instead of fixed sub-connection switch and reverse vectorizer (equivalent to a phase shifter with 1-bit
quantization). The same as the fixed sub-connection structure, the adaptive connection only requires
N number of 1-bit quantized phase shifters, NRF number of radio frequency chains, and no adders.
Compared with fully connected N × NRF high-precision phase shifters, NRF radio frequency chains,
and N adders, it greatly reduces the hardware complexity, cost and energy consumption. The adaptive
connection network can better match the downlink to improve the user’s reach and rate. In order to
make better use of adaptive cross-entropy optimization to apply to the adaptive connection structure,
it is necessary to match the RF chain and the antenna under specific channel state information, that
is, to find the position of the non-zero element in the corresponding analog precoding matrix FRF.

FRF =

⎡
⎢⎢⎢⎣

f RF
1,1

f RF
1,2
...

f RF
1,N

f RF
2,1

f RF
2,2
...

f RF
2,N

· · ·
· · ·

...

· · ·

f RF
K,1

f RF
K,2
...

f RF
K,N

⎤
⎥⎥⎥⎦

N×K

sum by line
→

K∑
k=1

f RF
k,j

−→
f RF

x =

⎡
⎢⎢⎢⎣

f RF
x1,1

f RF
x2,2

...
f RF

xN ,N

⎤
⎥⎥⎥⎦

N×1

(4)

Due to the special structure of the adaptive connection and the normal mode constraint of the
elements in the analog precoder, the corresponding analog precoding FRF is a sparse matrix, as shown
in Eq. (4), f RF

k,j represents the element in the j th row and k th column, and the k th radio frequency
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chain is connected to the j th base station antenna, and its element f RF
k,j ∈ 1√

N
{−1, 0, 1}, 1 ≤ k ≤

K; 1 ≤ j ≤ N. Sum each row of FRF to get vector
−→
f RF

x = [f RF
x1,1, f RF

x2,2, . . . , f RF
xN ,N]T, and its j th element f RF

xj ,j ∈
1√
N
{−1, 1}. Therefore, the adaptive connection structure simulation precoding has two constraints:⎧⎪⎪⎨

⎪⎪⎩
N∑

j=1

|f RF
k,j | = M√

N
K∑

k=1

|f RF
k,j | = 1√

N

(5)

Indicates the connection relationship between all radio frequency chains and all antennas of the
base station. Assuming that N/K = M is an integer, divide the N base station antennas into K
independent sets, use Sk to represent the set of k-th radio frequency chain connected to base station
antennas, and Sk(j) to denote the k-th radio frequency chain connected to j th base station antenna,
and |Sk| = M. So Eq. (5) is also equivalent to

S = {{Sk}K
k=1|

K∪
k=1

Sk = {1, 2, . . . , N}}, Sk ∩ Sq = ψ, ∀ k 
= q (6)

The designed analog precoding FRF and digital precoding FBB should maximize the downlink
reachability and rate of the K users served⎧⎪⎪⎨
⎪⎪⎩

FRF, FBB = arg max
FRF,FBB

K∑
k=1

log(1 + SINRk)

s. t. FRF ∈ FRF

‖FRFFBB‖2
F = K

(7)

where SINRk represents the signal-to-interference and noise ratio of the k-th user, which is expressed
as

SINRk = P/K
∣∣hT

k FRFf BB
k

∣∣2

P/K
∑

k 
=i

∣∣hT
k FRFf BB

k

∣∣2 + σ 2
(8)

It can be seen that Eq. (7) is a non-convex optimization problem under the constraints of power
constraints and adaptive connection structure. To maximize the total reachability and rate, that is, to
maximize the SINR of the symbols received by each user, the k-th column f RF

k of the FRF must satisfy

f RF
k = arg max

f RF
k

{∣∣hT
k f RF

k

∣∣ : costraints (5)
}

(9)

There are only M non-zero elements in f RF
k , and the first M maximum values of the channel hk

element modulus need to be matched, one element is matched each time and the antenna position is
returned, and stored in the set Sk

Sk = arg max
1≤j≤N

{∣∣hk,j

∣∣ :
∑K

k′=1

∣∣f RF
k′ ,j

∣∣ = 0
}

(10)

The constraint
K∑

k′=1

∣∣f RF
k′ ,j

∣∣ = 0 means that the j th line of the FRF has not been evaluated or the j th

antenna has not been matched.
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Performing Eq. (10) once can match the k-th radio frequency chain with a base station antenna,
that is, get a non-zero element position in the FRF. To ensure the fairness of the radio frequency chain,
K radio frequency chains are matched in turn, and M turns are performed. The position of the N
non-zero elements of the FRF that meets the constraint (5) can be obtained, or the set of matching
relationships between the RF chain and the antenna that meets the constraint (6) {Sk}K

k=1.

In the ACN-MLACE algorithm, since the phase shifter is quantized by 1 bit, the non-convex
optimization problem of Eq. (7) has been transformed into a combinatorial optimization problem.
How to obtain the FRF and FBB with the largest reach and rate? It is necessary to search exhaustively
to find N determinations. The 2N combinations of non-zero element values in the position involve
extremely high computational complexity. For millimeter-wave massive MIMO systems, N is often
large, such as N = 56, and an exhaustive search is required for 256 ≈ 7.2 × 1016. Take another
path, deploy ML adaptive algorithm based on cross-entropy optimization to intelligently look for
the best adaptive connection precoding. In each iteration, Z · N × 1 dimensional vectors are generated
according to a probability distribution. These vectors can be set according to the matching relationship
between each radio frequency chain and the base station antenna {Sk}K

k=1 to obtain Z candidates
analog precoding matrices FRF, each candidate analog precoding matrix FRF has a corresponding
reach and rate. Select the Zelite · FRF with the best performance and rate, and update the probability
distribution by minimizing cross entropy and adding smoothing parameters. In this way, it will be
generated with probability 1 and close to the optimal candidate simulates the probability distribution

of non-zero elements in the precoding matrix. The vector
−→
f RF

x = [f RF
x1,1, f RF

x2,2, . . . , f RF
xN ,N]T composed of non-

zero elements in each row of the analog precoder is reconstructed according to the found matching
relationship, and p = [p1, p2, . . . , pN]T is used to represent the probability of the corresponding element

in
−→
f RF

x , and the j-th element f RF
xj ,j = 1/

√
N is Bernoulli random variables, that is, the probability of

f RF
xj ,j = 1/

√
N is pj, and the probability of f RF

xj ,j = −1/
√

N is 1 − pj.

By initializing the probability distribution parameter p(0) to p(0) = 1/2 × IN×1, (I is a vector of all 1

s), according to the probability distribution ξ(
−→
f RF

x , p(i)), generate Z candidate vectors {−−→f RF,z
x }Z

z=1 samples,
the matching relationship is reconstructed to generate Z candidate analog precoding {f z

RF}Z
z=1 samples,

and then according to the equivalent channel H z
eq = HHFz

RF, 1 ≤ z ≤ Z, the corresponding Z digital
precoding {Fz

BB}Z
z=1. In this article, the classic digital ZF precoding is used to eliminate the inter-user

interference to obtain the corresponding z-th digital precoding matrix

F temp, z
BB = (H z

eq)
H((H z

eq)(H
z
eq))

−1 (11)

Put power constraints on it: Fz
BB = √

K/‖Fz
RFF temp,z

BB ‖FF temp,z
BB .

After that, the achievable sum rate R(Fz
BB) is obtained by substituting Fz

RF and Fz
BB into Eqs. (7) and

(8), and sort Z and {R(f z
RF)}Z

z=1 in descending order. In order to adaptively update the next probability
p(i+1), it is necessary to obtain the first Zelite and {R(f z

RF)}Zelite
z=1 with the best achievable rate, and define

the best analog precoding achievable rate average value is T which is expressed as⎧⎪⎨
⎪⎩

T = 1
Zelite

∑Zelite
z=1 R(Fz

RF)

T = 1
Zelite

∑Zelite
z=1 R(

−−→
f RF,z

x )

(12)
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Here, the z-th analog precoding matrix Fz
RF is the first vector

−−→
f RF,z

x obtained according to the
matching relationship between the radio frequency chain and the base station antenna, so R(Fz

RF) =
R(

−−→
f RF,z

x ). The weight of the achievable rate corresponding to the z-th analog precoding matrix is
wz = R(Fz

RF)/T . Update the probability of the next time adaptively according to the current probability
distribution and weight

p(i+1) = max
p(i)

1
Z

∑Zelite

z=1
wz ln ξ(

−−→
f RF,z

x , p(i)) (13)

There is also ξ(
−−→
f RF,z

x , p(i)) = ξ(Fz
RF, p(i)), where

−−→
f RF,z

x =
N∏

j=1

(p(i)
j )

1
2

(
1+√

Nf RF,z
xj ,j

)
(1 − p(i)

j )
1
2

(
1−√

Nf RF,z
xj ,j

)
(14)

Substituting Eq. (14) into Eq. (13), and then Eq. (13) finds the first derivative of its j-th probability
element p(i)

j to obtain

1
Z

∑Zelite

z=1
wz

(
1 + √

Nf RF,z
xj ,j

2p(i)
j

− 1
2

1 − √
Nf RF,z

xj ,j

2(1 − p(i)
j )

)
(15)

Setting Eq. (15) equal to zero, the j-th element of the next probability distribution can be obtained

p(i+1)

j =
∑Zelite

z=1 wz

(
1 + √

Nf RF,z
xj ,j

)
2

∑Zelite
z=1 wz

(16)

In order to ensure that the adaptive cross entropy optimization converges to the optimal solution
to avoid local convergence, a constant smoothing parameter 	̈ can be further added between the
current probability distribution and the next probability distribution.

p(i+!) = θ̈p(i+!) + (1 − θ̈)p(i) (17)

Here 0 < θ̈ ≤ 1, until the end of the l iteration is reached, the probability distribution p(l) for
generating the optimal analog precoding will be obtained, and the optimal analog precoding F l

RF and
the optimal number in the l generation sample will be selected precoding F l

BB, which is the almost
optimal adaptive connection hybrid precoding under the corresponding channel state information.
The specific algorithm is as follows in Algorithm 1.

Algorithm 1: Proposed algorithm

Input: Channel matrix HT, number of iterations I , number of candidates Z, Optimal number of
candidates Zelite, smoothing parameter 	̈,
Initialization: BS antenna set S = {1, 2, . . . , N}, matching relation Sk = ψ , 1 ≤ k ≤ K , i = 0, p(0) =
1
2
× 1N×1.

1: for m = 1 to M
2: for k = 1 to K

(Continued)
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Algorithm 1: Continued
3: jopt = arg max

j∈S {|hk,j|}
4: Sk = jopt

5: S = S − jopt

6: end for
7: end for
8: for i = 1 to I
9: Randomly generate Z candidate vectors { −−→

f RF,z
x }Z

z=1 according to ξ(
−−→
f RF,z

x , p(i))

10: According to the matching relationship set {Sk}K
k=1 and { −−→

f RF,z
x }Z

z=1, reconstruct Z{ Fz
RF}Z

z=1, namely:

Fz
RF(S1, S2, . . . , SK) = −−→

f RF,z
x

11: Calculate digital precoding { Fz
BB}Z

z=1 according to Eq. (11)
12: Calculate the achievable rate {R(F z

RF)}Z
z=1 using Eqs. (7) and (8)

13: Arrange achievable in descending order R(F 1
RF) ≥ R(F 2

RF), . . . , ≥ R(FZ
RF)

14: Choose the first ZeliteR(F1
RF), R(F2

RF), . . . , R(FZelite
RF ) to get { Fz

RF}Zelite
z=1 .

15: Determine the Zelite weighting coefficients wz

16: Update p(i+1) using Eqs. (16) and (17)
17: End for
18: Output: F1

RF, F1
BB

4 Simulation Results

This section provides the simulation results and analysis. The proposed machine learning based
precoding algorithm is compared with fully digital precoding, hybrid precoding of adaptive connection
structure, and the conventional OMP precoding of structure. The combined precoding has the same
lower hardware complexity and eliminates the NNRF phase shifters and N adders required by the fully
connected hybrid structure. Therefore, the sum rate and complexity are used here as a comparison
of the performance of different precoding schemes. The simulation parameters are set as follows in
Tab. 1.

Table 1: Simulation parameters

Parameter Value

Distance between ULA d 0.5
Number of beam paths Lk 3
Number of transmitter antennas Nt 1024
Number of receiver antennas Nr 64
SNR 25 dB
Number of RF chains 16
Number of data streams N8 8
Number of phase shifter Nc 40
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4.1 Achievable Sum Rate Comparison with Different Number of RF Chains and Data Streams with
Fixed Antennas

Fig. 2 compares the achievable sum rate of the proposed algorithm, fully digital, and other
algorithms vs. SNR for system configuration when the number of RF chains Nt

RF = Nr
RF = 4 and

number of data streams Ns = 4. As can be seen from Fig. 2 that, the achievable sum rates of all
algorithms increase with increasing SNR. Moreover, the proposed algorithm gives close performance
with optimal fully digital scheme which indicates its effectiveness over the existing algorithms.

Figure 2: Comparison of achievable sum rate of algorithms vs. SNR when Nt
RF = Nr

RF = Ns = 4

Figure 3: Comparison of achievable sum rate of algorithms vs. SNR when Nt
RF = Nr

RF = 8, Ns = 4

Fig. 3 illustrates the achievable sum rate of the proposed algorithm, fully digital, and other
algorithms vs. SNR for system configuration when the number of RF chains Nt

RF = Nr
RF = 8

and number of data streams Ns = 4. As can be seen from Fig. 3, the achievable sum rates of all
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algorithms increases with increasing SNR. Moreover, the proposed algorithm gives close performance
with optimal fully-digital scheme which indicates its effectiveness over the existing algorithms. Here,
the results are closed for all algorithms because the number of RF chains are increased. But the energy
consumption drastically increases in the existing algorithms in contrast, which makes them unsuitable
for deployment. Also, increasing the number of RF chains increases the computational complexity
and hardware structure.

4.2 Achievable Sum Rate Comparison with Different Number of Antennas with Fixed Number of RF
Chains and Data Streams

Fig. 4 compares the achievable sum rate of the algorithms versus SNR when the number of
transmitter antennas Nt = 256, the number of receiver antennas Nr = 16 and number of RF chains
and data streams is Nt

RF = Nr
RF = Ns = 4. As can be seen from Fig. 4, the achievable rate of all

algorithms increases with SNR. Moreover, the proposed algorithm gives better performance and
shows close sum rate with optimal fully digital precoding. It is also clear from Fig. 4 that, due to
increasing number of antennas, the sum rate is about 72 bps/Hz for SNR = 25 dB, whereas the sum
rate is 63 bps/Hz for SNR = 25 dB in Figs. 3 and 4, respectively. This proves that the sum rate increases
with increasing the number of antennas, which is one of the main features of massive MIMO. Fig. 5
compares the achievable sum rate of the algorithms versus SNR when the number of transmitter
antennas Nt = 1024, the number of receiver antennas Nr = 64 and number of RF chains and data
streams is Nt

RF = Nr
RF = Ns = 4. As can be seen from Fig. 5, the achievable rate of all algorithms

increases with SNR. Moreover, the proposed algorithm gives better performance and shows close sum
rate with optimal fully digital precoding. It is also clear from Fig. 5 that, due to increasing number
of antennas, the sum rate is about 87 bps/Hz for SNR = 25 dB, whereas the sum rate is 63 bps/Hz
for SNR = 25 dB in Figs. 3 and 4, respectively. This further proves that the sum rate increases with
increasing the number of antennas, which is one of the main features of massive MIMO.

Figure 4: Comparison of achievable sum rate of algorithms vs. SNR when Nt
RF = Nr

RF = Ns = 4,
Nt = 256, Nr = 16
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Figure 5: Comparison of achievable sum rate of algorithms vs. SNR when Nt
RF = Nr

RF = Ns = 4,
Nt = 1024, Nr = 64

4.3 Complexity Analysis

Fig. 6 compares complexity of the algorithms with increasing number of antennas at the trans-
mitters and Nt

RF = Nr
RF = Ns = 4, and Nr = 64. As can be seen from Fig. 6, the complexities of all

algorithms increase with increasing the number of antennas at the BS. Moreover, the complexity of the
proposed algorithm is lower than the complexities of existing algorithms and also closed to the optimal
fully digital precoding. This means that the proposed algorithm requires less number of iterations to
achieve the same performance as compared with existing algorithms.

Figure 6: Complexity comparison of the algorithms vs. number of antennas
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5 Conclusions

This paper proposes an adaptive connection network hybrid precoding with 1-bit quantization,
and applies the adaptive algorithm based on machine learning to the adaptive connection structure
hybrid precoding, which improves the 1-bit quantization phase shift of the adaptive connection
structure. Under the same low hardware complexity, the proposed solution has a higher computational
complexity than the switch and inverter hybrid precoding based on the fixed sub-connection of
machine learning and the hybrid precoding based on the adaptive connection structure and achievable
rate performance. Recently, highly efficient deep learning methods have been applied to hybrid
precoding, and precoding with lower computational complexity and better spectral efficiency is worthy
of further research.
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