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Abstract: In the global scenario one of the important goals for sustainable
development in industrial field is innovate new technology, and invest in
building infrastructure. All the developed and developing countries focus on
building resilient infrastructure and promote sustainable developments by
fostering innovation. At this juncture the cloud computing has become an
important information and communication technologies model influencing
sustainable development of the industries in the developing countries. As
part of the innovations happening in the industrial sector, a new concept
termed as ‘smart manufacturing’ has emerged, which employs the benefits
of emerging technologies like internet of things and cloud computing. Cloud
services deliver an on-demand access to computing, storage, and infrastruc-
tural platforms for the industrial users through Internet. In the recent era of
information technology the number of business and individual users of cloud
services have been increased and larger volumes of data is being processed
and stored in it. As a consequence, the data breaches in the cloud services are
also increasing day by day. Due to various security vulnerabilities in the cloud
architecture; as a result the cloud environment has become non-resilient. To
restore the normal behavior of the cloud, detect the deviations, and achieve
higher resilience, anomaly detection becomes essential. The deep learning
architectures-based anomaly detection mechanisms uses various monitoring
metrics characterize the normal behavior of cloud services and identify the
abnormal events. This paper focuses on designing an intelligent deep learning
based approach for detecting cloud anomalies in real time to make it more
resilient. The deep learning models are trained using features extracted from
the system level and network level performance metrics observed in the
Transfer Control Protocol (TCP) traces of the simulation. The experimental
results of the proposed approach demonstrate a superior performance in terms
of higher detection rate and lower false alarm rate when compared to the
Support Vector Machine (SVM).
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1 Introduction

Cloud computing has been in the lime light for around two decades and it holds many features
for improving business efficiencies, cost-benefiting, and advantages over conventional computing
mechanisms. As per a recent survey by the international data group already 69% of the business firms
are utilizing cloud services and 18% of the remaining has plans to implement cloud services at any of
the point in their business operations in near future. At the same time a report from the Dell Inc., says
that the firms who have adapted to modern big data computing, cloud services and security are earning
53% faster revenue than their competing firms. These reports exhibits that the business firms and the
leaders are reaping the benefits of the cloud services in their business operations. They use this modern
state of art cutting edge technologies to efficiently implement their operations, provide better service to
their customers, and in parallel achieve high profit margins. Gartner predicts an exponential growth of
cloud services industry by 2022. The worldwide public cloud services market is projected to grow 17.5
percent in 2019 to total $214.3 billion, up from $182.4 billion in 2018, according to Gartner, Inc. The
world economy greatly relies on the manufacturing industries for employment and wealth creation.
The cloud computing has become the optimal solution for industry to implement their automation
processes by adapting to machine-to-machine translation. Also for storing and managing the ever
increasing production and other data, use of cloud services become essential. The various services
offered to the end users of cloud in manufacturing sector are presented in Fig. 1.

Figure 1: Cloud services for end users of manufacturing sector

The cloud computing environment faces a number of security challenges and most of them can
be fixed up to a certain extent using current anomaly based Intrusion Detection Systems (IDS) [1].
IDS in cloud networks have an important role to play in providing security against attacks from both
insiders and outsiders. The IDS must be implemented as a part of the cloud services as it is scalable,
and efficient in nature. The conventional IDS used to detect attack in internet environment don’t
have ability to adapt to cloud environment and they are not scalable in nature [2]. Also they are not
deterministic in nature and found to be not suitable for cloud environment. Hence a novel and reliable
anomaly based intrusion detection system has to be developed and evaluated [3].
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Most of the earlier approaches for anomaly detection in cloud environment utilized Machine
learning techniques. These techniques have the ability to improve their performance over time by
updating its knowledge on the pattern observed in the input data. Whenever a new pattern is observed
in the input data the machine learning model parameters are updated to detect the similar anomalies
in the future traffic flow [4]. Based on the new information extracted from the previous results the
performance of the techniques is improved by changing the execution strategy if required. The various
types of machine learning algorithms used for anomaly detection are Bayesian network [5], Genetic
algorithm, and neural network [6]. Implementing an anomaly detection mechanism in real time with
in the cloud environment involves multiple challenges with respect to performance and scalability of
the cloud services. The cloud services are on-demand in nature and hence the anomaly detection must
be performed in real-time monitoring. The real time implementation should be highly scalable and
must provide support for multiple service providers. This paper focuses on developing an anomaly
detection system which has the ability to detect the intrusion accurately, and maintain the resilience
of the cloud network. The proposed IDS can be employed to secure the sensitive files, programs, and
the ports of the virtual or physical machine in the cloud environment. The network based approach is
more efficient when compared to the host based techniques which are unable to detect the attacks in
the network and consumes majority of the host computational power and storage resources.

Cloud faces different types of security issues and challenges which affects the growth of cloud
services utilization rate. The overall aim is to develop a resilient cloud services for manufacturing
sector by implementing an intelligent anomaly detection system as an integrated service within the
cloud environment. The objectives of the proposed research work are to identify the service misuse at
the client as anomalies and classify the network traffic behavior into two categories as either Normal
or Abnormal by deep learning model using network flow data. The efficiency of the proposed method
is analyzed based on a dataset created in the cloud simulation. The dataset is comprised of a vector
of features extracted from the simulated cloud network with Virtual Machine (VM) migration. The
simulation consists of a traffic generator which synthesis both normal and network-based attacks
of different categories and intensities. The performance metrics used for studying the efficiency of the
anomaly detection in identifying network level attacks are precision, recall, accuracy, and F1-score. For
effective implementation of the anomaly detection in the cloud environment, it is designed as a service
that can be offered along with infrastructure to the clients. The elasticity of the cloud under various
simulated network level attacks and anomaly detection as a service can be evaluated by including VM
migration.

The proposed approach includes techniques for efficiently processing, analyzing, and evaluating
real time data for detecting anomaly patterns. The challenge is to develop scalable, fault-tolerant
anomaly detection method and embed it within a resilient framework for providing warnings promptly
in case of adverse conditions during the VM migration. The proposed approach utilizes deep learning
architectures to characterize the normal behavior in cloud environment and detect anomalies in the
cloud network. The focus is extended to develop methods for capturing and analyzing real time
network flow-data in the cloud environment. Further, optimal features are extracted from the captured
data and, abnormal traffic patterns are discriminated from the normal traffic patterns using trained
Auto Encoder.

2 Literature Survey

In general the architecture of IDS is complex in nature which includes a variety of concepts,
and techniques that change with respect to the environment. The working principle of IDS relies on
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two main approaches for detecting anomalies and these approaches differ by the analysis method
and processing techniques. The first approach utilizes the signature of the abnormal traffics and the
second approach tracks for a deviation in the normal traffic. The signature based detection approach
is considered to be better in terms of lower false alarm rate but they suffer due to inability in detecting
newer type of attacks. But the anomaly based detection methods are able to detect an attack for which
no signature is available. This paper focus on the anomaly based detection techniques.

The efficiency of the detection process majorly depends on the quality of the features extracted or
engineered from the session/flow in the network. Domain knowledge is essential for a better feature
engineering and the deep the learning algorithms have the ability to learn features automatically.
The algorithms work in end-to-end nature and at present gaining more importance in the IDS
research. These algorithms can analyze the raw data, learns features, and classifies normal from
abnormal traffic. Convolutional Neural Network (CNN) based detection algorithms have been
proposed in literatures which uses Network Security Laboratory (NSL)-Knowledge Discovery in
Databases (KDD) and University of South Wales (UNSW)-NB 15 datasets [7]. Initially the feature
vectors are converted in to images for further processing. Using one hot coding the nominal features
and the dimension of the features were increased. Each 8 byte of the feature vector is considered as
a pixel in image. Each feature vector is thus transformed in to an image of size 8∗8 pixels. A three
layer CNN was designed to discriminate normal from abnormal traffic. Performance of the designed
network was compared with other deep learning architectures including ResNet50 and GoogleNet.
The proposed three layer design yields an accuracy of 91.14% on the NSL-KDD data and 94.9%
accuracy on the UNSW-NB 15 dataset. In another work the features were extracted using a sparse
auto-encode model and the attacks were classified using an XGBoost model [8]. For experimental
analysis NSL-KDD dataset was used. The imbalanced dataset was balanced using synthetic minority
over-sampling technique algorithm. The minority classes were oversampled and majority classes are
further sub divided in to new classes and thus achieving perfect balancing in the dataset.

The sparse Auto-Encoder (AE) introduces inserts a sparsity constraint on the auto-encoder to
enhance the ability of detecting new patterns [9]. At last the data was classified by a XGBoost
regression model. The model produces an accuracy of 99.6%, 99.17%, 99.50%, 97.13%, and 89.00%,
respectively while detecting Normal, Denial of Service (DOS), Probe and Remote-to-Local (R2L)
attacks. Deep learning models have influenced a remarkable growth of Big Data Analytics and they
suffer when the data is imbalanced or small. These deep architectures have the ability to model
highly complex non-linear data distributions and their performance is better in multiple areas of
applications [10]. An important sub-field of deep learning is the generative networks that have shown
remarkable performance on capturing data distribution and synthesizing new data samples from the
same distribution. As Generative Adversarial Network (GAN) has the capacity to better capture and
represent the distribution of the data, many of the recent literatures have used the generative networks
for detecting anomalies through a variety of approaches [11].

Adversarial learning methodologies could increase the accuracy of detection in small or imbal-
anced dataset. One of the recent literatures has used GAN for data augmentation [12]. The KDD99
is considered to be one of the oldest dataset which is both unbalanced and doesn’t include new attack
patterns. When models are trained on the KDD99 dataset they lack the generalizing ability. When
the dataset is augmented with GAN model these issues can be overcome. The experiments included 8
attack categories and adversarial based augmentation increased the accuracy of the 7 attack categories.
Using deep learning approach a higher level of features is extracted from low-level ones to achieve a
powerful representation. They used recurrent architectures for learning patterns from network traffic
sequences and detect network attacks [13]. A two phase approach and improved version of CNN was
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used for anomaly detection in cloud datacenter networks. They focused on managing an optimal trade-
off between minimized error-rate and reduced feature set by using Grey Wolf Optimization (GWO)
techniques for feature selection. The anomaly in the network is classified using an improved CNN
architecture [14].

A deep learning framework was developed for anomaly detection in cloud workloads where the
usage patterns are analyzed for identifying failures in the cloud because of contention for resources.
The resource utilization and performance of the working system are reviewed at regular intervals to
model the normal and abnormal behaviors in the cloud network. A hybrid deep neural architecture is
used to forecast the near future resource utilization and performance measures of the cloud service in
the first stage. In stage two of the analysis the hybrid model is used for classifying the cloud behavior as
either normal or abnormal. The proposed anomalous detector is evaluated in the virtual environment
using docker containers. The hybrid model is constructed by combining bidirectional long short term
memory and long short term memory architectures [15].

Using the auto-scaling characteristics of the cloud an online malware detection approach was
proposed in [16]. This approach has the ability to detect the abnormality when the cloud service is
running. The performance measures in the process level are used to model a CNN for classifying
the abnormal traffic. A 2D-CNN was trained on the samples of VMs running in an auto-scaled
scenario. The samples from multiple VM have no correlations. The detection accuracy is enhanced
by considering the similarity between different VM through a sample-paring technique. Resilience
can be considered as the capacity of a system to offer services in an acceptance level under various
challenges. In the case of cloud services the resilience is a fundamental characteristics or feature by
which new VM’s can be created on an on-demand basis when the load becomes high. Majority of the
critical infrastructure services offered in the cloud network are not resilient due to issues in the network
infrastructure [17].

Automatic detection and classification of traffic pattern as anomalous is a challenging task that
was handled using different approaches and techniques proposed in various literatures. Conventional
machine learning techniques and algorithms are sub optimal and are not capable of extracting or
uncovering patterns from a high dimensional data. They cannot capture the complex patterns in a
high dimensional and voluminous data. This is the reason for engaging deep learning techniques and
algorithms to detect anomalies in the cloud network. Based on the taxonomy presented in Fig. 2 it
is clear that the deep learning techniques are used at present to classify the traffic pattern as either
normal or anomalous.

In a recent work [18] based on heterogeneous data prevailing in the cloud network a hybrid
detection model was proposed. The proposed method followed two essential steps for detecting the
abnormality; first an optimal set of features were selected from the traffic stream using GWO [19]
which is a meta-heuristic algorithm based on evolutionary approach. Then they are classified using
CNN either as benign or anomalous traffic.

To train a deep learning model a large volume of training samples are required and these data are
preprocessed to resolve the problem of high dimensionality using dimensionality reduction, clustering,
and sampling techniques. Later these data are discriminated using a deep classifier. For constructing
a deep classifier a training and test data set are essential and additionally a validation data is used
to tune the model hyper parameters. Using the training dataset the model parameters are tuned and
test data is used for evaluating the performance of the trained model [20]. The process of training and
evaluating the deep model performance is presented in Fig. 3. Deep learning algorithms are subset of
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machine learning and the performance of the deep learning models are superior to the conventional
machine learning or shallow algorithms in majority of application context.

Figure 2: Taxonomy of deep learning based anomaly detection

Figure 3: General process flow in classification of traffic patterns

In the cloud network the traffic originates from different heterogeneous sources and it varies
immediately due to the elasticity of the services offered to the clients. The large volume of normal
traffic and in contrast a low volume of abnormal traffic in the network poses certain challenges. Some
of conventional IDS follow signature based approach in detecting the abnormal attacks. In contrast to
signature based techniques, anomaly based techniques have been used in cloud computing at various
levels which are highly capable of finding new attacks.
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The inbound and outbound network traffics are continuously monitored by the IDS and upon
further analysis it raises an alarm when there is anomaly being detected. Based on the detection
approach used, the IDS can be classified as either signature based or anomaly based intrusion
detection. The predefined rules are matched against the pattern extracted from the present network
traffic data. Then they are classified as intrusion attack if they vary from the usual network traffic
pattern. This approach yield high accuracy in detecting the known category of attacks and generates
low false alarm rate. It does not have ability to detect the new category of attacks as the predefined
rules don’t match the pattern observed in the new attacks. The anomaly based intrusion detection
has the ability to detect even new category of attacks. The accuracy of the anomaly based detection
is more when compared to the signature based approach as per the theoretical proofs specified in
the literatures. The main drawback of the anomaly based detection is high false alarm rate [21]. The
main challenges faced while designing anomaly detection are selecting an optimal set of feature from
the network traffic and less volume of supervised labeled dataset. The patterns observed from the
intrusion attacks are changing from period to period and hence a common set of features chosen for
differentiating attacks from normal network traffic flow cannot be suitable in all the cases.

The analysis of network traffic provides more insights on the behavior on the performance of the
cloud environment. Due to such revenue growth of the cloud service providers it becomes essential to
develop cloud traffic monitoring and analysis methods to increase the availability, and security of the
cloud environment. Monitoring and analyzing such a huge volume of network traffic data is a more
challenging task. The traditional methods used for monitoring and analyzing network traffic will not
suit for cloud environment. The cloud network pattern differs greatly from the patterns observed in a
corporate distributed network.

3 Proposed Methodology

Different type of anomaly detection techniques have been implemented so far in various litera-
tures, but majority of them has not focused on the analysis of impact of elasticity of the cloud during
VM migration. The proposed methodology focuses on evaluating the performance of the anomaly
detection under such challenging conditions. The support for service migration and migration of VM
to other physical nodes in the cloud network exploits the elastic property of the cloud for dynamic
movement of the cloud resources. For effective management of cloud resources in online and perfect
balancing of computing load across physical nodes of the cloud; this real time migration becomes
essential. The anomaly detection module might consider the live migration as an anomaly (false
positive) or some time an anomalous event occurring during the migration the detection may be
masked (false negative).

The network packets are used as source of data for the detection of anomalies and hence the
U2Land R2L attacks can be detected effectively. As the packet headers contain the IP addresses the
attack source can be detected precisely. Analysis of information extracted from the packets can be done
in real time. A single packet does not reveal much information about the context and hence detecting
attacks like distributed DoS become difficult. The detection process includes parsing packets, and
analysis of the packet payloads. Fig. 4 presents the schematic view of packet based real time anomaly
detection.
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Figure 4: Real time anomaly detection

3.1 Training Data

For efficient training of deep learning models a large volume of balanced anomaly dataset is
essential and it is obtained from the traces collected during the simulation of the cloud environment.
The traces of TCP streams obtained from the simulated cloud network include both genuine and
attack traffic. The effects of VM migration will also be reflected in the traces. The incoming traffic
to the physical node becomes different as the VM migrates to a different physical machine. Also the
anomalies especially volume based attacks will be best characterized by the traces of the TCP streams
as they consume more bandwidth from the normal traffic. The data for training the deep learning
model is collected at various level of the cloud including the traffic level, hypervisor and physical
machine level. A feature vector is extracted from each one second bin of the traffic traces and the
system level performance metrics such as CPU utilization rate, memory utilization, network bandwidth
consumption, number of I/O operations, and number of processes waiting for execution in the queue
were considered. The network level performance metrics included in the feature vector are number of
lost packets, volume of traffic in the network port, and overall load rate of the network.

3.2 Data Augmentation Using GAN

The acquired dataset is highly imbalanced and an efficient model cannot be build using this
dataset. Hence the dataset must be balanced before training the model. The aim is to use GAN
architectures to discover the pattern in the data that makes them more realistic as uncovering patterns
in the data is not possible using other methods. The generative networks help to balance the dataset
by synthesizing new samples for minority classes. It is proved that GAN have shown impressive results
when compared to other generative architectures including variation AE, and restricted boltzman
machines. Synthesizing new samples is a complex task when the dimensionality of the data is high [22].
From the literature review it was obvious that variation AEs [23] and GANs [24] are most successfully
used deep architectures for data augmentation. The objective functions for GANs can be chosen
among Jensen-Shannon [24] and f-divergences [25]. There are other several methods to define the
distance or divergence between the distribution of model generated and real data. The discriminator
network in the GAN output the probability that a given data is real or synthesized. The discriminator is
given a set of input that includes both real and synthesized data. It generates a probability estimate for
each input. The loss of the discriminator network can be measured by cross-entropy function. Cross
entropy based loss function is similar to the Jensen-Shannon objective function and they tend to fail
in certain cases [26]. To overcome such issues Wasserstein distance based loss function is used. The
cross entropy loss function measures the accuracy in the detection of real and synthesized data by the
discriminator network. The distribution of each vector in the real and synthesized data is estimated
and the distance between them is calculated. It gives the measure of how much mass times distance is
required to make the distribution of synthesized data similar to the distribution of real data.
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The flow of input data through layers in the GAN network is presented in Fig. 5. Mathematical
representation of the min-max loss function used in the GAN network is given in Eq. (1) where the
generator network attempts to minimize it while the discriminator network tries to maximize it.

Ex[log(D(x))] + Ez[log(1 − D(G(z)))] (1)

where D(x) is the probability that the generated data is real estimated by the discriminator; Ex is the
expected values for all the data samples; G(z) is the output of the generator network when the random
noise is given as input; D(G(z)) is the probability that the fake instance is real; Ez is the expected value
for all the fake instances G(z) synthesized by the generator. The mathematical expression is derived
from the cross entropy between the real and generated data distributions. The discriminator network
produces output for the generator to improve its performance. The generator learns nothing when the
gradient of the generator network diminishes and approaches close to zero.

− ∇θ log(1 − D(G(z))) → 0 (2)

Figure 5: Process flow in wasserstein GAN

To overcome the vanishing gradient problem the following alternate cost function can be used:

∇θ log(1 − D(G(z(i)))) (3)

In [23] the authors have illustrated that the alternate cost function has large variance of gradients
which causes the model unstable. Also they suggested that adding noise to the generator output to
stabilize the model. The schematic view of the Wasserstein GAN (WGAN) is shown in Fig. 6.

Rather than adding noise, a new cost function based on the Wasserstein distance was proposed
in [26]. Based on the Kantorovich-Rubinstein duality [27] the Wasserstein distance can be expressed
as given below.

W(pr, pg) = sup
‖fL‖ ≤ 1 Ex∼pr [f (x)] − Ex∼p[f (x)] (4)

where sup represents the least upper bound and f denotes a 1-lipschitz function which obeys the
following constraint

|f (x1) − f (x2)| ≤ |x1 − x2| (5)
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Figure 6: Schematic view of training a WGAN with added noise to the generator output

When the lipschitz function is derived from K-lipschitz functions parameterized by w, {fw}w ∈
W. The discriminator network is trained to learn the lipschitz function to compute the Wasserstein
distance. When the value of loss function decreases in the training then the Wasserstein distance gets
smaller and the model of the generator becomes closer to the distribution of real data.

The loss function can be formulated as to find the Wasserstein distance between pr and pg

L(pr, pg) = W(pr, pg) = max
w ∈ W Ex∼pr [f (x)] − Ez∼pr(z)

[fw(gθ (z))] (6)

In order to maintain the K-lipschitz continuity of fwduring the training process the weights are
clamped after every gradient update to a small window such as [−0.01, 0.01]. Thus the lipschitz’s
continuity can be preserved by obtaining the lower and upper bound of fw.

3.3 Anomaly Detection

The anomalous traffic are detected based on the compact representation of the feature vectors
obtained using a deep AE. The AE learns to map the given input data to a compact representation with
two unsupervised training steps. The AE can be classified as a generative model and it has the ability to
learn and extract the similarity and correlation in the input data [28]. An efficient intrusion detection
model must be sensitive to the input, yield less reconstruction error, and it should not get overfit
for certain input data. The loss function is designed with two terms to achieve the above mentioned
constraints.

L(x, x̂) + (α ∗ regularizer) (7)

The first part of the above equation makes the model sensitive to the given input data and the
second terms prevent the model from overfitting on the training data. The trade-off between these
two different objectives can be achieved by tuning the alpha scaling parameter. Based on the nature
and characteristics of the given output the AE model can be considered as non-linear generalization
of principal component analysis and the AE model has the ability to learn non-linear relationship
between given input and expected output. The AE model helps to separate the normal data from
the anomalous data by transforming the given input data on to new axes. The AE consists of two
neural networks namely encoder and decoder. The encoder compresses the data points into a lower
dimensional representation and the decoder network attempts to reconstruct the original input points
from the latent representation generated by the encoder network. The AE parameters are tuned
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by minimizing the reconstruction error which is the difference between the input data points and
reconstructed data points. The AE is trained in an unsupervised mode with features extracted from
normal traffic data both under normal circumstances and VM migration. The AE will be capable
of reconstructing the normal traffic data points and fails to reconstruct the anomalous traffic data
points. The reconstruction error is used as anomalous score. The performance of the AE trained in an
unsupervised learning strategy is compared with a binary classifier, SVM. The SVM model is trained
with a Radial Basis Function (RBF) kernel function.

K(X, X′) = exp[−γ‖x − x′‖2] (8)

The non-linear kernel represents the similarity between two different vectors as a function of the
squared norm of their distance. That is, if the two vectors are close together then, ‖x−x′‖ will be small.
Then, so long as γ > 0, it follows that −γ‖x − x′‖2 will be larger. Thus, closer vectors have a larger
RBF kernel value than farther vectors.

4 Experiments and Results

The simulation of the cloud environment is accomplished in CloudSim 5.0 and the metricslisted in
Section 3.1 are extracted from the normal network traffic. For creating the VM migration within the
simulated cloud environment, initially the list of over utilized host is collected and the backup of over
utilized VM to be migrated is done. Then they are mapped to a new suitable host using a migration
map. The VM migration is considered to essential to test the resilience of the cloud services under
different attacks when they are exposed to a variety of attacks. The following attacks were introduced
in the simulated cloud network; Net Scan (NS), and DoS. The network traces and the metrics of the
host machine are collected under multiple time instances of the simulation. Then required features
are extracted from the traces and labeled as normal or abnormal respectively. Two set of feature set
were extracted; one under VM migration and another without migration. Both during migration and
normal period anomalous traffic were introduced in the cloud simulating the above mentioned attacks.
The model was tested to detect network level attacks as more end users will be accessing the services of
the cloud thus increasing the attack surface. More computational power will be allocated in the form of
VM in on-demand basis. The anomalous traffic is generated by injecting the attacks into the legitimate
traffic at irregular intervals. The VMs are migrated live among the nodes during the simulation may
be during normal traffic period or anomalous traffic period. The network traces collected for every 1-
second been using a packet analyzer script embedded within the simulated network. The harmonic
mean F score and geometric mean provides accurate measure of the performance of a particular
anomalous detector keeping all the outcomes to certain degree. The network traffic in the cloud
simulation is fixed constant and the cloud environment is simulated with five VMs running web servers.
There are two physical host nodes available in the simulation; one with three VMs and another host
contains two VMs. The web traffic is generated from a VM to another VM running inside another
host node using TRex, an open source traffic generator.

As described earlier the data augmentation task is implemented using WGAN to balance the
volume of normal and anomalous traffic. The threshold value c, considered as one of the important
hyperparameter is fixed based on Bayesian optimization technique. The RMSProp optimization
algorithm is utilized instead of momentum based optimization algorithm like Adam. The Adam
algorithm causes instability of the model during the training process. The performance of the WGAN
model is sensitive to the clipping hyper parameter. The graph shown in Fig. 6 shows the explosion
gradient when the value of c is varied from 0.001 to 0.1.
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The weight clipping method acts as a weight regulator and it reduces the performance of the
model thereby limiting the capacity of the model to learn complex function. Hence instead of gradient
clipping, Gradient penalty technique was adopted in the experiments. The plot in Fig. 7 illustrates
the advantage of using gradient penalty over gradient clipping. When the value of weight clipping
threshold c is fixed either low or high values then the gradient either explodes or vanishes. Batch
normalization is included in the discriminator network as it creates correlation between samples in
the same batch. The experimental evaluations showed that it impacts the effectiveness of the gradient
penalty.

Figure 7: Plot of gradient norm in log scale

Gradient penalty was calculated based on the following procedure;

1. Estimate the gradient values with respect to the input data.
a) Create a combined data by weighing the synthetic and real data using epsilon and fusing

them together.
b) Compute the discriminator’s output for the fused data.

2. Calculate the gradient penalty for the estimated gradient.
a. Consider the magnitude the gradient
b. Find the penalty

The performance of the AE and SVM based classification was analyzed using Receiver operating
Characteristics (RoC) curves shown in Figs. 8 and 9. Based on the experimental results under VM
migration the performance of the anomaly detection under both volume based attack (DoS) and non-
volume based attack (NS) using SVM is degraded. From the RoC curves presented in Figs. 8a and
8b, it is evident that the SVM classifier is sensitive to the type and volume of the anomalous traffic.
At few instances the performance of the SVM classifier degraded when VM migration occurs. In case
of volume based attack, DOS the SVM performs for both low and high intensity attacks but under
influence of VM migration its performance decrease. The True Positive Rate (TPR) is decreased by
32% during VM migration even for low density NS attack. Fig. 8b presents the influence of migration
for DoS attack detection; also it is observed that more than 85% of the TPR is achieved during with
and without migration. The False Positive Rate (FPR) is increased by 5% when the migration starts.
In parallel from Fig. 9a it can be observed that almost more than 85% of the anomalous traffic was
detected under high anomalous (NS) traffic scenario for both with and without migration. Even for
the same attack types under low anomalous traffic the model was able to yield an average of 80%
of TPR with less false positive rate. For DoS attack the AE based anomaly detection is capable of
identifying anomalous traffic for both attack types and it is not affected under migration. The FPR
rate is less than 15% and it is acceptable under migration of VM. From the analysis of the results
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it is inferred that the virtual migration has no impact on the performance of the AE in detecting the
anomalies. More traces are samples from the same scenario in order make the detection more efficient.

Figure 8: (a) RoC for NS using SVM (b) RoC for DoS using SVM

Figure 9: (a) RoC for NS using AE (b) RoC for DoS using AE

The results presented in Tab. 1 show the efficiency of the anomaly detection for network based
and volume based attacks. The virtual migration has affected the performance of the detector only
low density anomalous traffic in the simulation as the False Positive Rate was observed to be high
during this period. The detector classifies the migration traffic also as anomalous. The increase in
the FPR is also only 5% to 10% which does not impact the overall performance of the classifier. The
feature set used for detection can be further expanded by including few statistical features derived
from them. These additional features can be useful while detecting certain other complex attacks.
Fig. 10 presents the plot of the training loss curve, for both discriminator and generator network over
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generator iterations for the following models; WGAN with weight clipping and RMSProp and WGAN
with gradient penalty with ADAM.

Table 1: Performance of AE in anomaly detection

Anomalous
traffic
density

VM
migration

Recall Precision Accuracy F-score G-mean

High Yes 0.9248 0.8795 1.00 0.9365 0.9378
No 0.9895 0.9912 1.00 0.9923 0.9934

Low Yes 0.8806 0.8216 0.9856 0.8950 0.8978
No 0.9694 0.9585 0.9842 0.9612 0.9742
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Figure 10: Training loss analysis

For analyzing the performance of the VMs deployed with certain workloads memory, CPU
utilization, and cap values are tabulated in Tab. 2. Each VM hosts a selected workload by allocating one
or more CPU cores, RAM from 512MB (shown in Fig. 11) – 2048MB. Simultaneously the CAP value
is varied between the range 25% and 200% of the CPU utilization and the estimated the corresponding
CPU utilization rate.

The proposed hybrid approach does include a deep architecture for synthetic generation of
samples and a conventional machine learning algorithm, SVM for detecting anomalies. The selection
of important hyper-parameters and architecture of the deep network introduces certain computational
complexity as more layers are used to construct the deep model. In general the linear SVM detects
the anomaly with a complexity of O(d) where d is the dimension of the input data. The experiments
adopted an RBF kernel which has a complexity of O(d2) whereas the polynomial kernel will have a
complexity of O(n × d) where n denotes the number of supper vectors. During experiments it was
observed that the complexity of the deep network increases as the depth of the network is increased.
It was also observed that when optimal values of hyper parameters are configured for the network
the synthetic samples were more similar to the original input data which shows that the depth of the
network decides the performance of the network.
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Table 2: CPU utilization in %

Cap T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 AVG

25 6.25 6.22 6.22 6.22 6.22 6.3 6.28 6.2 6.22 6.22 6.235
50 12.5 12.55 12.57 12.35 12.57 12.47 12.43 12.6 12.45 12.53 12.502
75 18.55 18.85 18.77 18.65 18.85 18.57 18.85 18.65 18.8 18.85 18.739
100 24.82 24.82 24.82 24.85 24.55 24.85 24.85 24.85 24.82 24.82 24.805
125 24.85 24.82 24.82 24.85 24.85 24.82 24.85 24.85 2.485 24.82 24.838
150 24.85 24.85 24.85 24.85 24.85 24.85 24.85 25.82 24.85 25.82 24.85
175 25.82 25.82 24.85 24.85 24.85 24.85 24.85 25.82 24.85 25.82 25.238
200 24.82 24.85 24.85 24.82 24.85 24.85 24.852 24.85 24.85 25.82 24.941

Figure 11: Analysis of CPU utilization (allocated RAM = 512 MB)

5 Conclusions

This paper explored the effect of VM migration on the performance of the anomaly detection and
proposed features and robust classification approach to manage the resilience of the cloud service to
overcome security issues. Experiments were conducted by simulating the VM migration and varying
the density of the anomalous traffic in the network. The deep learning based detection mechanism and
the features extracted from the network traces helped to retain the resilience of the cloud environment.
The reconstruction error of the AE model is used as the anomalous score to detect deviation in the
network traffic patterns. This anomaly detection is tested in a simulation environment wherein the
anomaly detection was executed in parallel with other events of the simulation. This work focused on
detecting two attacks namely NS and DoS. Future work will focus on detecting more number of attacks
by enhancing the features set used in this work with more optimal features. The results are found to
be satisfactory in resolving the security concerns in cloud services for its application in manufacturing
sector.

As a benchmarked dataset is not available to test the resilience of the cloud infrastructure, data
samples from the simulated network have been generated, balanced using GAN network and classified
as either anomalous or normal using an AE model. The trained model is able to detect anomalous
traffic only in similar cloud environment simulated in the experiments. To overcome this limitation
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and develop a generic deep learning based anomaly detection system further data samples must be
collected from a real time network, benchmarked and must be used for training the deep learning
model.
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