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Abstract: Diabetic retinopathy (DR) diagnosis through digital fundus images
requires clinical experts to recognize the presence and importance of many
intricate features. This task is very difficult for ophthalmologists and time-
consuming. Therefore, many computer-aided diagnosis (CAD) systems were
developed to automate this screening process of DR. In this paper, a CAD-DR
system is proposed based on preprocessing and a pre-train transfer learning-
based convolutional neural network (PCNN) to recognize the five stages
of DR through retinal fundus images. To develop this CAD-DR system,
a preprocessing step is performed in a perceptual-oriented color space to
enhance the DR-related lesions and then a standard pre-train PCNN model
is improved to get high classification results. The architecture of the PCNN
model is based on three main phases. Firstly, the training process of the
proposed PCNN is accomplished by using the expected gradient length
(EGL) to decrease the image labeling efforts during the training of the CNN
model. Secondly, the most informative patches and images were automatically
selected using a few pieces of training labeled samples. Thirdly, the PCNN
method generated useful masks for prognostication and identified regions of
interest. Fourthly, the DR-related lesions involved in the classification task
such as micro-aneurysms, hemorrhages, and exudates were detected and then
used for recognition of DR. The PCNN model is pre-trained using a high-end
graphical processor unit (GPU) on the publicly available Kaggle benchmark.
The obtained results demonstrate that the CAD-DR system outperforms
compared to other state-of-the-art in terms of sensitivity (SE), specificity (SP),
and accuracy (ACC). On the test set of 30,000 images, the CAD-DR system
achieved an average SE of 93.20%, SP of 96.10%, and ACC of 98%. This result
indicates that the proposed CAD-DR system is appropriate for the screening
of the severity-level of DR.
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1 Introduction

One of the major causes of severe vision-loss among patients of diabetes is diabetic retinopathy
(DR). DR is an asymptomatic disease, and it has no prior symptoms. However, many patients
are suffered vision-loss without any proper diagnosis and treatment [1]. According to the statistics
of [2], 285 million population have diabetes, and one-third have signs of DR. In daily practice,
ophthalmologists use non-mydriatic fundus images and Computer-aided diagnosis (CAD) programs
for the early assessment/grade severity level of DR. The detection of lesions caused by DR is the basis
of these earliest detection of DR. Those DR-related lesions in the fundus image are unhealthy objects
appear on the retinal surface such as micro-aneurysms (MA’s), exudates (EX’s), hemorrhages (HEM’s)
and cotton wool spots (CWS). The visual example of such DR-related lesions along with severity-
level is shown in Fig. 1. Proliferative (PDR) and nonproliferative (NPDR) are two main types of DR,
where PDR is advanced form of eye disease, and NPDR is an early sign of DR stage. As shown in this
figure, there are five grades of severity-level of DR such as (severity 0: normal, severity 1: mild NPDR,
severity 2: moderate NPDR, severity 3: severe NPDR and severity 4: PDR). Manual segmentation
and count of DR-related lesions by clinicians is a difficult and repetitive task. Moreover, the manual
grading of DR requires extensive domain-expert knowledge and reader inter-/intra-class variability
experience [3–5].

(a) (b) (c) (d) (e)

(f)

Figure 1: A visual example of five severity stages of DR and two main categories Proliferative (PDR)
and nonproliferative (NPDR), where (a) Shows the (severity 0: normal), (b) Severity 1: mild NPDR,
(c) Severity 2: moderate NPDR, (d) Severity 3: severe NPDR, and (e) Severity 4: PDR along with
sample of DR-based lesions (f)

Previously, several CAD systems have been developed to recognize grades of DR in the clinical
setting by digital retinograph images. However, those CAD systems assist ophthalmologists to better
screening of patients. As a result, the CAD systems helps clinical experts to identify the early signs
of eye-related abnormality, which is difficult to identify by human naked eyes. It noticed that the
DR is easily detected by a CAD system to grade the severity-level by using image processing and
machine-learning techniques [6] on retinograph images. Nowadays, the CAD systems for recognition
of grades of DR are affected by various factors such as (1) it is very much difficult to identify DR-
related lesions and anatomical structure of retinograph, (2) it is also difficult to detect accurate and
early stage of retinal structure because it changes during the time, and (3) there is a dire need to develop
the effective and automatic CAD system to accurate screening of DR-related diseases. Currently, many
deep learning (DL) models especially deep convolution neural networks (CNN) have demonstrated
outperform performance in the grading of DR severity-levels. Thus, we have used also deep transfer
learning (TL) technique to recognize stages of DR with a pre-processing step to solve the above-
mentioned problems. In addition, the proposed system is capable to work on much larger datasets
and to reduce the inter-reader variability.
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1.1 Research Highlights

The main contribution of proposed CAD-DR classification system are as follows.

1) A preprocessing step is developed in a perceptual-oriented CIEL∗a∗b∗ color space to enhance
the contrast and adjust the light-illumination.

2) A pretrain TL (DL) approach is used through expected gradient length (EGL) to eliminate
the need of large number of labeled fundus images. This step reduces training efforts for CNN
model.

3) To develop PCNN, the 14-layer CNN network was pre-trained using fewer labeled fundus
images. This can assist PCNN system to learn simple to complex fundus feature.

4) Useful masks can be generated by the proposed PCNN system to predict and segment DR-
related regions.

5) To the best of our knowledge, there is no previous CAD-DR model in the medical imaging
field that works in harmony with CNN parameters to select the most informative patches and
images.

6) State-of-the-art comparisons are also performed to test and evaluate the performance of
proposed CAD-DR system.

1.2 Paper Organization

The rest of the paper is organized as follows. Section 2 shows the literature review of the recent
works related to the recognition of multistage of diabetic retinopathy (DR). In Section 3, the proposed
methodology is described along with the acquisition dataset. Experimental results and comparisons
with state-of-the-art methods are presented in Section 4. The discussion about the paper is described
in Section 5 and finally, the paper concludes in Section 6.

2 Related Works

Deep learning (DL) models especially deep convolution neural networks (CNN) have demon-
strated outperform performance in the grading of DR severity levels in several settings and on several
datasets when compared with traditional hand-designed methods [6]. A data science platform named
Kaggle launched a DR detection competition in 2015, the top participants used different settings of
CNN models on approximately 35,000 high-resolution labeled fundus images. They achieved that
successful training of such CNN networks was based on the large size of annotated samples. In a
previous study [7], a CNN model was developed with data augmentation to classify DR into five
stages such as normal, mild NPDR, moderate NPDR, severe NPDR, and proliferative PDR. Their
model was trained on more than 100,000 labeled images, yielded comparable performance with a
clinical expert. Similarly, Harry et al. in [8] trained a 13-layer CNN model on 80,000 labeled images
and obtained significant results in a classification of five severity-level of DR. Another study in [9], a
training procedure of CNN model was completed using 8,810 images and obtained comparable results
with ophthalmologists. This presents a challenge in clinical practice, as the computational systems need
thousands of labeled images to be feed to learn features, representing a time-consuming and expensive
process. For a real-time scenario, a well-performing algorithm requires such as a fewer data-intensive
CNN model that learns with a few labeled samples. Although, it observed that the previous CAD
systems tried to detect DR-related lesions [10] to recognize diabetic retinopathy. Those CAD systems
are briefly described in the upcoming paragraphs and compared in Tab. 1.
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Reference [11] shows the Faster-RCNN deep-learning (DL) based method to classify five stages
of DR lesions without using image preprocessing step for contrast enhancement and adjustment of
light illumination. To extract features from retinograph images, the authors used the DenseNet-65
DL model, and then the Faster-RCNN model is finally utilized to recognize the severity-level of
DR. For evaluation of the Faster-RCNN model, they used Kaggle and APTOS datasets to achieve
97.2% of accuracy. The reference [12] showed that the current CAD systems for DR are expensive
in computation and lack the ability to extract highly nonlinear features that are needed to classify
it into five stages. In that study, they utilized the lowest possible learnable parameters were used to
speed up the training and have faster convergence. They developed a VGG-NiN model based on the
VGG16 transfer learning and spatial pyramid pooling layer. On collected datasets, they showed 83.5%
classification accuracy on five stages of DR in comparison to other systems. Whereas in [13], a pretrain
based transfer learning algorithm (CNN) was used to detect five stages of DR from retinograph images.
They showed that the CNN model based on pretrain strategy achieved higher performance compared
to other systems. Similarly, in [14], they used transfer learning (TL) with representational learning to
recognize multiple stages of DR. They utilized the Inception-v4 TL pretrain model with fine-tune step.
To grade DR into five stages, they used fine-tune to achieve 96.6% accuracy.

Table 1: Computer-aided diagnosis systems to recognize grades of diabetic retinopathy. Performance
based on sensitivity (SE), specificity (SP), accuracy (ACC), and area under the curve (AUC) are shown
for deep learning algorithms (DLA)

Cited Methodology Performance Limitation

[6] Detection of referable
diabetic retinopathy (DR)
by DLA algorithms.

AUC: 0.955, SE: 92.5% and
98.5% of SP on 12,329.

Without dermoscopy,
no-pre-processing, limited
grades of DR and huge
training time.

[7] DLA algorithm to grade
DR.

SE: 90.3%, SP of 98.1% on
9963 images

No-pre-processing, and
DLA can be improved
through preprocessing and
best training steps.

[8] A network based on CNN
architecture and focusing
on data augmentation

SE: 95% on 80,000 images Through pre-processing
step, the SE can be
improved, and it required
huge computational time.

[9] Pretrain transfer
learning-based recognition
system for five stages of
DR.

SE: 80.28% and SP: 92.29%
on 35,000 images

Without image
enhancement and
illumination adjustment,
and huge training time.

[11] DenseNet-65 DL model,
and then the Faster-RCNN
model to recognize
severity-level of DR.

Kaggle and APTOS
datasets to achieve ACC:
97.2%

Without image
enhancement and
illumination adjustment,
and huge training time.

(Continued)
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Table 1: Continued
Cited Methodology Performance Limitation

[12] A VGG-NiN model based
on the VGG16 transfer
learning and spatial
pyramid pooling layer

ACC: 83.5% Model can be improved by
preprocessing and effective
training process

[14] A pretrain transfer learning
(TL) with representational
learning. They utilized the
Inception-v4 TL pretrain
model.

ACC: 96.6% Through pre-processing
step, the SE can be
improved, and it required
huge computational time.

[15] Saliency maps, structure
tensor and active counters
are used to segmented
DR-related lesions and
classify them through
VGG-19 into five stages of
DR.

SE: 82% and ACC: 96% on
20,000 Kaggle dataset

Through pre-processing
step, the SE can be
improved, and it required
huge computational time.

In this research [15], the author’s developed preprocessing-based segmentation along They used
saliency maps detection to highlight anatomical structures of lesions compared to the background.
Afterward, the structure tensor technique was applied to enhance the edges of the lesions and active
contours is performed to accurately segment DR-related lesions. Finally, they used the VGG-19
pretrain TL model to identify the level of severity of DR. The experiments were performed on the
Kaggle dataset consists of 20,000 images. On average, they reported 82% of sensitivity and 96% of
accuracy. In contradiction with the above-mentioned approaches, the researchers in [16] developed a
recognition system of three stages-based DR instead of five severity-level of DR. In that study, they
used semantic segmentation to detect microaneurysm along with CNN model to recognize three-stages
of DR.

3 Proposed Methodology

The Fig. 2 shows a systematic flow diagram of our proposed CAD-DR system through pretrain
transfer-learning based model. The CAD-DR system is developed in different phases. In the first
phase, the retinograph image is transferred to perceptual-oriented CIE L∗a∗b∗ uniform color space and
preprocessed it to adjust light illumination and enhance the contrast. In the next phase, the fourteen
layers of CNN architecture is proposed by a pretrain transfer learning strategy. In first 10 layers, the
different convolutional filters are used along with ReLU, BN and max pool layers. Next, the BN, Max
pool and dropout layers are integrated and lastly, the ReLU and SoftMax layers are integrated to
recognize five stages of DR.

3.1 Data Acquisition and Platform

To pretrain and evaluate the proposed CAD-DR system, the retinograph images are obtained from
the Kaggle platform [17]. The images in this dataset are captured from various patients in different
light illumination, many age groups and different people’s ethnicity. Due to these variations, it makes
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distortion of pixel intensity within the image and creates other variations that affect the classification
results. To overcome these issues, the contrast enhancement and light adjustment of retinograph images
are implemented through uniform color space and non-linear wavelet technique as stated in [18]. After
image normalization, the dataset resized to 48 × 48 pixels which retained the fundus feature to identify
and thus reduced memory size of dataset the GeForce GTX TITAN X 1080GPU could handle. Each
image of the patient can only have one label corresponding to a single group depending on the divisions
outlined for the dataset. Moreover, while testing to measure the performance of PCNN network, only
unseen patches of patient images are considered.

Normal

Mild NPDR

Moderate NPDR
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PDR

Pretrain Transfer Learning-based CNN (PCNN)
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Figure 2: The proposed CAD-DR system to recognize five severity-level of diabetic retinopathy shown
as a systematic flow diagram

The proposed CAD-DR based on PCNN model is trained using 80,000 images from the publicly
available Kaggle dataset. Each image has a resolution of 6 M pixel and rated by the clinician for
the presence of DR into five graded such as 0-normal, 1-mild DR, 2-moderate DR, 3-severe DR
and 4-proliferative DR. These scales were used as labels to develop PCNN model. The training and
testing procedures of PCNN are accomplished by using 50,000/30,000 images. All experimental codes
were written in Python 3.6 and deep learning package Keras (http://keras.io/) with the TensorFlow
(http://deeplearning.net/software/tensorflow/) backend. These platforms are used because of their low
computational time, easy access to parameters and maturity level. The GeForce GTX TITAN X
1080GPU having a memory of 12 GB is the hardware used for the experiments. The proposed PCNN
model classified image into each DR class in 0.04 s that shows the possibility of real-time feedback to
the patient.

3.2 Data Augmentation

To avoid overfitting and to improve the localization power of the proposed CAD-DR system, a
dropout of 0.5 value on dense layers 12 and 13 with data augmentation such as flipping (horizontal
and vertical) and random rotation 0◦–270◦ degrees are utilized. After data augmentation and cropping

http://keras.io/
http://deeplearning.net/software/tensorflow/
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steps, the dataset splits are undertaken. For this purpose, patches of each class are chosen randomly
as follows: 8,760/1,314 patches for each of the classes in the training and testing splits. This data
augmentation step is implemented through Albumentations library functions.

3.3 Preprocessing to Enhance Contrast and Illumination Adjustment

Retinograph images are captured from different devices and environment conditions. A visual
example is displayed in the Fig. 3. As a result, the preprocessing step is trying to enhance the patterns,
which are presented in the DR-related lesions at the same time to decrease the training efforts in the
classification phase. The selected space is kept as close as possible to human perception because the
enhancement algorithm aims to help doctors in their diagnosis of retinopathy.

(a)

(b)

(c)

Figure 3: A visual example of the preprocessing step to enhance the original input retinograph images
(See Fig. (a)), correct light illumination (See Fig. (b) L∗ image) and improve contrast (See Fig. (c)) in
a perceptual-oriented color space

In practice, the color retinograph images can be characterized in different color spaces such
as HSV (hue, saturation, value), RGB (red, green, blue), CIELUV, etc. The uniform color space is
dependent on the application because the color space is very important for image enhancement. The
HSV and RGB are not uniform color spaces so they cannot be adopted for image enhancement.
As a result, if choose the right color space then the image enhancement method is helping the
ophthalmologists in the diagnosis eye-screening process. Hence, it is required that the selected space
must be as close as possible to human perception. The CIE L∗a∗b∗ and CIE L∗u∗v∗ color spaces are
closed to human perception, but the CIE L∗u∗v∗ color space has a problem of white adaptation that
can lead to poor image enhancement results. Therefore, in this paper, we have used CIEL∗a∗b∗ color
space. To perform image enhancement on retinograph images, the first step is transformed from the un-
uniform RGB image into uniform perceptual-oriented color space (CIEL∗a∗b∗). To perform this step,
The only available color spaces close to human perception are CIE L∗a∗b∗ and CIE L∗u∗v∗ and both
have been extensively used. It may be noted that the white adaptation in CIE L∗u∗v∗ can lead to poorer
results as mentioned before. The white adaptation has a subtractive change that involves a vector
displacement instead of the multiplicative normalization that will produce the desired proportional
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movement. Therefore, our proposed algorithm initially transform the images from the RGB color
space used by the acquisition device to CIE L∗a∗b∗ color space.

Contrast enhancement method that preserves the characteristically features of the images using
multiscale discrete-shearlet transform (DST), the perceptual uniform color space CIE L∗a∗b∗ and a
local-influence control function. The DST technique has provided in the past an efficient multiscale
directional representation of the image in a discrete framework and it is, therefore, better suited for
multi-scale edge enhancement than the traditional wavelet decomposition. The method follows three
main steps: firstly, the DST coefficients of L∗ plane in the corresponding subbands are modified by
a Ben Graham’s method [19] to enhance the conditions of illumination for the images so that we can
augment the perceptions from eye images and contrast adjustments, respectively. Secondly, the inverse
transform is applied to modify L∗ coefficients for a better reconstruction and visualization without
generating artifacts. Thirdly, a∗ and b∗ planes are combined with this lightness component to perform
the final enhancement.

3.4 Architecture of Pretrain Transfer Learning

To develop this CAD-DR system, the pretrain CNN model is utilized as a basis and the
corresponding layers are selected as required to recognize five stages of DR. This research uses a
14-layer CNN architecture, shown in Fig. 4, after studying the literature for other complex image
recognition tasks. It is perceived that an increased number of layers allows the network to learn the
deepest features. For instance, the initial convolutional layer learns basic features like edges, while
the last convolutional layer performs a learning process of DR lesions. This PCNN model consists
of an input patch layer followed by the convolutional layer, max pooling, and fully connected layers.
The soft-max classifier is used in the last fully connected layer to perform five severity levels of DR
classification. Leaky rectifier linear unit (ReLU) with 0.01 value and then batch normalization was
used as hyper-parameters after each convolutional layer to stop over-reliance on nodes in a network
and to control feature maps per block. A kernel size of 3 × 3 and 2 × 2 was applied to perform max
pooling. Similarly, the initialization of network layers was performed using the weights and biases from
the method stated in [20]. Gaussian distribution technique was also applied to initialize the network
to reduce training time and to randomly generate biases for the last fully connected layer.
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Figure 4: Proposed architecture of pretrain convolutional neural network (PCNN) model by using
transfer learning-based CNN network

3.5 Procedure of Pretrain Transfer Learning

The training of our CNN was accomplished using expected gradient length (EGL) [21,22] to
decrease image labelling efforts during CNN training and to make CNN intelligent to learn features
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from the relevant data. It trained PCNN system from scratch using a well-known optimization
algorithm called Stochastic Gradient Descent (SGD) to optimize parameters by utilizing one instance
or sample batches instead of complete training samples. Eq. (1) illustrates SGD cost function J
optimization using model parameters ω:

ωi+1 = ωi − α ∇ω(ωi; xi; yj) (1)

where x is an input matrix, xi is an element of that matrix, ∇ω is a weight of the convolution filter, b
is the bias term, max(.) is the maximum function and xj represents the region of x where the pooling
operation is applied.

ω(xi) =
l∑

j=1

p(yi = j|xi)|| Jc(∅i)|| (2)

In Eq. (1), Jc(∅i) represents a cost function applied at ith training sample (xi, yi) in iteration i, σ

means learning rate and shows a gradient operator. A training sample ith with its label is then used
to estimate the cost function Jc(∅i) and its gradient length || Jc(∅i)||. To select the most relevant image
patches, each batch of SGD depends on the highest gradient value of instance, having a probability of
sample with yth label. A term l in Eq. (2) indicates total number of labels, while � represents sort values
used by EGL algorithm from unlabeled data pool U. The selection mechanism of most informative
samples is performed using the calculation of two terms of Eq. (1) such as, a probability of sample
with jth label, forward propagation across the network is performed to get same probabilities from the
last dense layer. Whereas gradient length is calculated using backward propagation to get frobenius
norm of gradient parameter. This strategy is then repeated for all labels of each sample. At last, k
sample with highest EGL value is chosen from the sort data pool �. Algorithm 1 shows the patch
selection steps by our PCNN network. After calculation of the significant patches by Algorithm
1, it is straightforward to extend our experiments to choose the most informative images within
training dataset. This was done by the calculation of interestingness of an image using image squares
(patches) with the given stride and then densely calculating �. Afterwards, image sortation by their
top EGL value was done and then patches belong to the most relevant image added to the training
data for further parameter updates by Algorithm 1 until convergence. These steps were described in
Algorithm 2.

Algorithm 1: A patch selection step to train PCNN model
Requirement: Labeled (patch) dataset P, initial trained model M using patches in PεInput, k

samples of most informative patches
1. While no convergence do
2. Generate and mix sample batches from P
3. For each batch do
4. calculate �(x) using M, for all x e batch
5. end for
6. perform sorting process of � values and return highest k sample Pk

7. update M via P ∪ Pk

8. end while
Requirement: Labeled (patch) dataset P, initial trained model M using patches in PεInput, k samples

of most informative patches
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Algorithm 2: A patch selection step to train PCNN model
Requirement: Labeled (patch) dataset P, training set T, number n of initial images to look at
1. Chose randomly an initial set Tn of images
2. An initial training of model M using the expert notions from the n images
3. While no convergence do
4. For each image in T/Tn do
5. Patched image and calculate ∂image = ∑

patch ε input_image ∅(patch), using M
6. end for
7. Perform sorting process on all ∂_image values and return an image with highest Imax

8. Tn = Tn ∪ Imax

9. Pn = patch ε Pi, for all iεTn

10. Update M with the patches Pn and k selected patches via Algorithm 1

To calculate the loss function of PCNN model, the categorical cross-entropy (CCE) loss function is
utilized and applied after SoftMax function for taking the final decision of five severity level of diabetic
retinopathy. The CCE loss function is also known as SoftMax Loss. In practice, it is a combination
of SoftMax activation with a cross-entropy (CE) loss. If the CCE loss is used, then the PCNN
network model is trained to output a probability over the CC classes for each image. The CE Loss is
defined as:

Cross-entropy (CE) Loss = −log

(
esp∑C

j esj

)
(3)

where, the parameter SP is the PCNN score for the positive class. This loss function then able to
compute the gradient with respect to the output neurons of the PCNN model to backpropagate it
through the network and boost the defined loss function tuning the network parameters. As a result,
it is necessary to calculate the gradient of CE Loss with respect to each PCNN class score in ss. The
loss terms are zero for the negative classes. The Fig. 5 shows the visual plots of loss vs. validation of
the proposed PCCN model.

Figure 5: Proposed architecture of pretrain convolutional neural network (PCNN) model by using
transfer learning-based CNN network
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4 Experimental Results
4.1 Hyperparameter Settings

The proposed PCNN model to recognize severity-level of DR is formed by stacking the fourteen
layers of the network including dropout and SoftMax layers. Transfer learning is used for the
convolutional layers of the PCNN network. Fine tuning is also applied to the fully connected layers of
the PCNN. The hyper-parameters along with their values are shown in Tab. 2. An adaptive learning
rate is used so that the learning process can be speeded up and over-fitting can be avoided. Initially,
the learning rate is set to 0.01. Iterations are monitored and if the validation loss does not improve
for five consecutive iterations, then the learning rate is decreased by a factor of 0.1. In addition, we
used batch size of 8, minimum learning rate of 0.0001, initial learning rate of 0.01, momentum of 0.9,
number of epochs of 24 and network layers of 14 to test and train the PCNN model.

Table 2: Performance of the proposed PCNN with preprocessing step model for classification of five-
class severity level of DR on 30,000 test images

Grades Severity level SE (%) SP (%) ACC (%) F1-score

0 Normal 98.15 97.70 99 95
1 Mild NPDR 93.45 96.98 95 97
2 Moderate

NPDR
88.55 93.30 93 99

3 Severe NPDR 88.45 92.19 90 94
4 PDR 90.45 92.31 90 93

Average result 93.20 96.10 98 91

4.2 Statistical Metrics

Five evaluation metrics have been used to evaluate and compare our model with other systems.
These commonly used metrics are accuracy, F1-score, sensitivity, specificity, and ROC-AUC. The F1
score is the harmonic mean of the precision and recall. We have included F1 score as a metric because
there is a large class imbalance. Since F1 score is the harmonic mean of precision and recall, it is
considered a better metric than accuracy in such cases. A higher F1 score implies a better system.
Sensitivity is used to measure true positive rate which in our case means the correct identification of
vessel pixels. In contrast, specificity measures the true negative rate and that corresponds to the ability
of identification of non-vessel pixels by our model. AUC is used to measure the ability of the model
at discriminating between vessel pixels and non-vessel pixels. ROC graph plots the true positive rate
against the true negative rate at various thresholds and AUC is the area under the ROC curve. The
higher the AUC the better the model. The suitability of the proposed PCNN system for five severity
level of DR was evaluated on 30,000 test images using the statistical metrics, i.e., sensitivity (SE),
specificity (SP) and an accuracy. We define SE as the number of images correctly classified as having
DR among the total amount with DR and SP as the number of images correctly identified as having
no DR out of the total number with no DR. The accuracy is defined as the number of patients that
are correctly classified by the system.

Sensitivity (SE) = TP
TP + FN

(4)
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Specificity (SP) = TN
TN + FP

(5)

Accuracy (ACC) = TP + TN
TP + FN + TN + FP

(6)

F1-score = 2 × Precision × Recall
Precision + Recall

(7)

4.3 Results Analysis and Comparisons

This retinograph images’ dataset is divided into 40% of the testing set and the rest as the training
set. Also, we have split again the training set into 40% and assigned it to the validation set, and the
rest is used for training purposes. On a total of 30,000 images in the dataset, the 60% is working as the
training set, 20% as the validation set, and 20% as the test set. There are 24 epochs performed based on
the 10-fold cross-validation set. The Fig. 5 displays the proposed model training and testing loss versus
accuracy diagram. From this figure, it is noticed that this plot is displayed without performing any
fine-tune of the proposed model. In addition, this figure shows that the change between the predicted
stage of DR by our model and the true value in the form of the loss function, which is measured by a
category cross-entropy.

Fig. 6 shows the confusion metrics to achieve the results for recognition of five stages of diabetes
retinopathy. This confusion metric is calculated based on 20,000 retinograph images. This metric is
calculated based on proposed architecture of pretrain convolutional neural network (PCNN) model
by using transfer learning-based CNN network. On average, the 0.90 detection accuracy is obtained to
predict five stages. However, if training and testing datasets are increased to 30,000 then the detection
accuracy is increased too. The Tab. 2 reports the highly acceptable SE values for normal (98.15%),
mild (93.45%) and proliferative (90.45%) DR classes of the proposed CAD-DR system by using
preprocessing step and pretrain PCNN architecture. While the values of SP and classification accuracy
for five-classes of DR were found up-to-the-mark. The proposed PCNN is significantly improved in
SE of 93.20%, SP of 96.10% and an accuracy of 98% on the 30,000 test samples. However, the Tab. 3
shows the lower results because we did not use preprocessing step. We have also compared the PCNN
transfer learning model with other transfer learning (TL) algorithms such as VGG16, VGG16noFC1,
VGG16noFC2 and InceptionV3. On average, the results are mentioned in Tabs. 4 and 5 describes the
parameter used to compare the different TL models. The PCNN model is outperformed compared to
all other TL algorithms because of use of effective layers with loss function.

We have also performed comparisons of the proposed CAD-DR system with other state-of-the-
art systems such as CNN-Pratt-2016 [8], DenseNet-Albahli-2021 [11], and VGG-Khan-2021 [12] in
terms of recognition of five stages of DR. We have implemented by ourselves other state-of-the-art
DR systems such as CNN-Pratt-2016, DenseNet-Albahli-2021 and VGG-Khan-202. The authors
are requested to read those papers for detailed implementation of these papers. We have selected
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these DR-related systems because those are closely related to our proposed CAD-DR system. Those
comparisons are performed and evaluated based on different training and testing ratios on 30,000 test
images. Tab. 6 indicates the performance of the proposed PCNN model that is outperformed compared
to other systems for recognition of five stages of DR.

Figure 6: Confusion metric of pretrain convolutional neural network (PCNN) model by using transfer
learning-based CNN network on 20,000 retinograph images

Table 3: Performance of the proposed PCNN model for classification of five-class severity level
without preprocessing step on DR of 30,000 test images

Grades Severity level SE (%) SP (%) ACC (%) F1-score

0 Normal 91.15 97.70 89 89
1 Mild NPDR 88.45 96.98 88 84
2 Moderate NPDR 84.55 93.30 85 81
3 Severe NPDR 82.45 92.19 82 80
4 PDR 80.45 92.31 81 78

Average result 84.52 85.20 87.5 82.5



4586 CMC, 2022, vol.71, no.3

Table 4: Comparison setup parameters to other state-of-the-art transfer learning algorithms

No. Models Layers Pretrain Learning rate Fixed
momentum

1 VGG16 16 Yes 0.0001 0.9
2 VGG16noFC1 15 Yes 0.0001 0.9
3 VGG16noFC2 15 Yes 0.0001 0.9
4 InceptionV3 15 Yes 0.0001 0.9

Table 5: Performance comparisons of proposed PCNN art with different pre-trained CNN networks
on 30,000 test images for five-class severity level of DR

No. TL models SE (%) SP (%) ACC (%)

1 VGG16 80 82 83
2 VGG16noFC1 88 79 85
3 VGG16noFC2 78 90 91
4 PCNN 93 96 98

Table 6: Performance comparisons of proposed PCNN art with different pre-trained CNN networks
on 30,000 test images for five-class severity level of DR

Cited Methods SE (%) SP (%) ACC (%)

[8] CNN-Pratt-2016 80 82 83
[11] DenseNet-Albahli-2021 88 79 85
[12] VGG-Khan-2021 78 90 91
Proposed PCNN 93 96 98

5 Discussions

Statistics show that many diabetic patients have a high probability of severe vision-loss by
diabetic retinopathy (DR). In daily practice, ophthalmologists use non-mydriatic fundus images
and Computer-aided diagnosis (CAD) programs for the early assessment/grade severity level of
DR. Those earliest assessment of DR is based on the recognition of lesions related to DR. These
DR-related lesions appear as unhealthy objects such as micro-aneurysms (MA’s), exudates (EX’s),
hemorrhages (HEM’s) and cotton wool spots (CWS) on the retinal surface in the fundus image.
Manual segmentation and count of DR-related lesions by clinicians is a difficult and repetitive
task. Moreover, the manual grading of DR requires extensive domain-expert knowledge and reader
inter-/intra-class variability experience. As a result, several CAD systems have been developed in the
past to recognize grades of DR in the clinical setting by digital retinograph images. However, those
CAD systems assist ophthalmologists to better screening of patients. As a result, the CAD systems
helps clinical experts to identify the early signs of eye-related abnormality, which is difficult to identify
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by human naked eyes. It noticed that the DR is easily detected by a CAD system to grade the severity-
level by using image processing and machine-learning techniques [6] on retinograph images. Nowadays,
the CAD systems for recognition of grades of DR are affected by various factors such as (1) it is very
much difficult to identify DR-related lesions and anatomical structure of retinograph, (2) it is also
difficult to detect accurate and early stage of retinal structure because it changes during the time, and
(3) there is a dire need to develop the effective and automatic CAD system to accurate screening of
DR-related diseases. Thus, there is a dire need to make DR diagnosis on much larger datasets and to
reduce the inter-reader variability.

Deep learning (DL) models especially deep convolution neural networks (CNN) have demon-
strated outperform performance in the grading of DR severity levels in several datasets and settings
compared to traditional hand-designed methods [6]. A data science platform named Kaggle launched a
DR detection competition in 2015, the top-most competitors used different settings of CNN models on
approximately 35,000 high-resolution labeled fundus images. They achieved that successful training of
such CNN networks was based on the large size of annotated samples. In a previous study [7], a CNN
model was developed with data augmentation to classify DR into five stages such as normal, mild
NPDR, moderate NPDR, severe NPDR, and proliferative PDR. Their model was trained on more
than 100,000 labeled images, yielded comparable performance with a clinical expert. Similarly, Harry
et al. in [8] trained a 13-layer CNN model on 80,000 labeled images and obtained significant results in a
classification of five severity-level of DR. Another study in [9], a training procedure of CNN model was
completed using 8,810 images and obtained comparable results with ophthalmologists. This presents
a challenge in clinical practice, as the computational systems need thousands of labeled images to be
feed to learn features, representing a time-consuming and expensive process. For a real-time scenario,
a well-performing algorithm requires such as a fewer data-intensive CNN model that learns with a
few labeled samples. Although, it observed that the previous CAD systems tried to detect DR-related
lesions [10] to recognize diabetic retinopathy. Those CAD systems have already been briefly described
in the Tab. 1.

To develop this CAD-DR system, a preprocessing step is performed in a perceptual-oriented color
space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to
get high classification results. The architecture of the PCNN model has three main phases. Firstly,
the training process of the proposed PCNN is accomplished by using the expected gradient length
(EGL) to decrease the image labeling efforts during the training of the CNN model. Secondly, the
most informative patches and images were automatically selected using a few pieces of training labeled
samples. Thirdly, the PCNN method generated useful masks for prognostication and identified regions
of interest. Fourthly, the DR-related lesions related to the classification task such as micro-aneurysms,
hemorrhages, and exudates were detected and then used for recognition of DR. The PCNN model is
pre-trained on the publicly available Kaggle benchmark making use of a high-end graphical processor
unit (GPU). The obtained results demonstrate that the CAD-DR system outperforms when compared
to other latest, state-of-the-art systems in terms of sensitivity (SE), specificity (SP), and accuracy
(ACC). On the test set of 30,000 images, the CAD-DR system obtained an average SE of 93.20%,
SP of 96.10%, and ACC of 98%. Some of the example images are described in Fig. 7 that are correctly
classified by proposed PCNN model. We have achieved good results based on several improvements
to the CAD-DR system such as a preprocessing step is developed in a perceptual-oriented CIEL∗a∗b∗

color space to enhance the contrast and adjust the light-illumination. A pretrain TL (DL) approach is
used through expected gradient length (EGL) to eliminate the need of large number of labeled fundus
images. This step reduces training efforts for CNN model. This result indicates that the proposed
CAD-DR system is appropriate for the screening of the DR severity-levels.
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Figure 7: Fundus images depicting the five stages of diabetic retinopathy: (a) Without DR, (b) Mild,
(c) Moderate, (d) Severe and (e) PDR

6 Conclusions

In this paper, a new pre-train scheme of the CNN model (PCNN) is presented to develop a
label efficient training mechanism in the domain of retinal fundus images for diagnosis of DR. In
addition, we have also developed a preprocessing step in a perceptual-oriented color space to enhance
the contrast and adjust the light illumination. This proposed CAD-DR system is outperformed
compared to other state-of-the-art systems on 30,000 retinograph images. The DR-related lesion
patterns are identified by the proposed PCNN system into five classes. Moreover, an additional
interpretation layer is utilized to identify those image areas that should be labeled by the clinical
expert. In this paper, an improved computer-aided diagnosis (CAD) system to assist ophthalmologists
was developed. The presented PCNN architecture was evaluated on 80 thousand fundus images, and
the achieved results illustrate the feasibility of the presented grading system for DR-related lesion
detection and classification of the five-class severity level of DR. PCNN system was found useful for
human evaluation such as the high value of SE and SP rates. To complete this PCNN system, fast
image analysis methods with stable interpretation are utilized. Upon completion of PCNN model
training, the classification of DR stages was accomplished in 0.04 s. Keeping these conditions, the
obtained SE and SP rates indicate that a vast majority of the images were accurately classified into
one of the five-stages of DR. To the best of our knowledge, there is no previous CAD-DR model in
the medical imaging field that works in harmony with CNN parameters to select the most informative
patches and images. The proposed PCNN method is computationally challenged when dealing with
large-scale data. This issue can be resolved with standard sampling techniques. As future work, the
other existing deep-learning (DL) methods scheme can be utilized to train a CNN model detecting
and classifying diabetic maculopathy on the large-scale annotated datasets.
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