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Abstract: The popularity of mobile devices with sensors is captivating the
attention of researchers to modern techniques, such as the internet of things
(IoT) and mobile crowdsensing (MCS). The core concept behind MCS is
to use the power of mobile sensors to accomplish a difficult task collabo-
ratively, with each mobile user completing much simpler micro-tasks. This
paper discusses the task assignment problem in mobile crowdsensing, which
is dependent on sensing time and path planning with the constraints of
participant travel distance budgets and sensing time intervals. The goal is
to minimize aggregate sensing time for mobile users, which reduces energy
consumption to encourage more participants to engage in sensing activities
and maximize total task quality. This paper introduces a two-phase task
assignment framework called location time-based algorithm (LTBA). LTBA
is a framework that enhances task assignment in MCS, whereas assigning
tasks requires overlapping time intervals between tasks and mobile users’ tasks
and the location of tasks and mobile users’ paths. The process of assigning
the nearest task to the mobile user’s current path depends on the ant colony
optimization algorithm (ACO) and Euclidean distance. LTBA combines two
algorithms: (1) greedy online allocation algorithm and (2) bio-inspired travel-
distance-balance-based algorithm (B-DBA). The greedy algorithm was sens-
ing time interval-based and worked on reducing the overall sensing time of
the mobile user. B-DBA was location-based and worked on maximizing total
task quality. The results demonstrate that the average task quality is 0.8158,
0.7093, and 0.7733 for LTBA, B-DBA, and greedy, respectively. The sensing
time was reduced to 644, 1782, and 685 time units for LTBA, B-DBA, and
greedy, respectively. Combining the algorithms improves task assignment in
MCS for both total task quality and sensing time. The results demonstrate
that combining the two algorithms in LTBA is the best performance for total
task quality and total sensing time, and the greedy algorithm follows it then
B-DBA.
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1 Introduction

The popularity of mobile devices that consists of internal sensors (camera, temperature, micro-
phone, GPS, Wi-Fi/3G/4G interfaces, accelerometer, etc.) and external sensors (Google glass, health-
care sensors, wearable sensors, etc.) is captivating the attention of researchers for the internet of
things (IoT) [1,2] and mobile crowdsensing (MCS) [3,4] techniques. MCS is a novel paradigm of
crowdsourcing that is a methodology in which many people use their mobile sensors for sensing,
collecting, sharing data, and extracting information to analyze [5].

Comparing MCS with traditional sensor networks, one of the significant benefits is the
active participation of workers in the collection and sharing of sensing data. This is attributed
to that MCS is a powerful paradigm because of has extraordinary sensing requirements [5–8].
The sensing requirements, communication capabilities, and computation allow smartphones to
execute more complicated tasks. There are many applications examples of MCS include intelligent
transportation [9], air quality monitoring [10], road traffic monitoring [11], surface monitoring of
road pavements [12], noise level sensing, location-based/mobile/spatial crowdsourcing, smart cities,
etc.

Participatory sensing and opportunistic sensing are the two paradigms of MCS. Active engage-
ment of mobile users is not required in opportunistic sensing [13], and mobile users typically walk
along predetermined pathways or follow movement patterns driven by their everyday schedules,
tastes, or desires. Mobile devices may be designed to capture sensing data when their owners travel
automatically. Mobile users are expected to travel to certain task sites to complete those activities in
participatory sensing [14]. The motions of such users are planned around delegated sensing tasks, and
their participation is voluntary and regulated.

Mobile crowdsensing had many challenges for research, such as maximizing data and tasks
quality, minimizing sensing cost, privacy guarantee, the storage and energy limitation of mobile node
resources, and task assignment. To overcome these challenges, this work focuses on the tasks assign-
ment considering various constraints, such as spatial coverage travel budget, energy consumption,
travel cost, sensing time intervals, and sensing task quality [15]. To maximize the sensed data quality,
the scenario allocated sensing tasks to a suitable number of participants in a certain area with minimum
sensing time.

MCS process consists of: (1) requesters, who send tasks, (2) workers, who have sensor-rich devices,
and (3) platform, which receives sensing tasks from requesters and allocates them to workers then sends
data back to requesters. The relationship between workers and tasks is critical to the success of MCS
applications. The sensing tasks are an essential part of the sensing process.

Selecting tasks for a mobile user might be difficult because different task assignment schemes
have varying assignment criteria. Therefore the online task assignment problem for MCS is described
in this work. There are many challenges for allocating tasks for a mobile user:

� Challenge 1: There is a large number of sensing tasks for a large number of participants,
and a single mobile user may participate in multiple sensing tasks. The sensing tasks need data
from various sensors at various times.
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� Challenge 2: Encourage more people to engage in sensing activities.
� Challenge 3: Determine whether the task has the smallest increasing aggregate sensing time
assigned to a mobile user.
� Challenge 4: Locating the nearest task for the mobile user whose total travel budget is less
than the worker’s total travel distance.

To address these challenges, there are two mechanisms. First, reducing the total sensing time
of mobile users reduces energy consumption to encourage more participants to engage in sensing
activities. Second, determining the location of both mobile users and tasks then choosing the nearest
task to the mobile user’s path. This work presents a framework location time-based algorithm (LTBA).
The framework works on reducing total sensing time based on overlapping in sensing time intervals
and assigning the nearest task to the path of the mobile user. Reducing total sensing time and increasing
task quality incentivizes mobile users to participate in mobile crowdsensing applications.

LTBA enhances performance metrics for total tasks quality and aggregate sensing time. LTBA
combines two algorithms: (1) greedy online allocation algorithm [16,17] and (2) bio-inspired travel-
distance-balance-based algorithm (B-DBA) [18]. B-DBA was location-based and worked on maximiz-
ing total task quality. The greedy algorithm was sensing time interval-based and worked on reducing
the overall sensing time of the mobile user. Combining the algorithms improves task assignment in
MCS for both total task quality and sensing time of both mobile users and tasks.

The scenario has a sensing task set T and a mobile worker set M that arrive in sequence at the
service platform. Their arrival obeys a Poisson distribution without knowing what will happen next.
The service platform must reply to each incoming request, and delegate tasks in the tasks set T to users
in the users set M. The smartphone’s sensing capabilities can be fully utilized. Because of location
privacy for mobile users in mobile crowdsensing, the cases focused on where they are anonymous, and
no single mobile user’s contribution history is tracked.

The main contributions of this paper are summarized as follows:

� This work formulates and enhances the problem of sensing tasks assignment in MCS by a
tradeoff between maximizing total tasks quality and minimizing aggregate sensing time.
� Considering two critical attributes: sensing time of mobile user and location of both tasks
and mobile user.
� For improving tasks assignment, this work proposes a combination of two algorithms: (1)
greedy online allocation algorithm and (2) B-DBA.
� Overlapping or covering in the sensing time interval, in this scenario, the service platform
divides the available tasks into two task groups based on the complete or partial intersection
in time intervals of tasks and mobile user’s task pool.
� Determining the nearest task. The service platform chooses the nearest task in the available
task set to the mobile user’s path without exceeding budget constraints for increasing task
quality. Selecting tasks depends on the ant colony optimization algorithm (ACO) [19] and
Euclidean distance.
� Both synthetic and real-world data are used. The synthesis data set is used to generate
information on tasks and mobile users. The real data set is for the location of both tasks and
mobile users.

The rest of the paper is structured as follows. Section 2 introduces previous work. Section 3
formulates the task assignment problem and designs the system models. Section 4 discusses in detail
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the combination of two task assignment algorithms. Section 5 discusses the results’ simulation for
success assessment. Finally, Section 6 concludes the work and represents the future direction.

2 Related Work

In this section, some previous work that studied task assignment problems based on two attributes:
sensing time and location of both sensing tasks and mobile users are addressed. MCS employs
smartphones to collect data on a much bigger scale than is possible with traditional methods.
Selecting tasks for a mobile user might be difficult because different task assignment schemes have
varying assignment criteria and objectives. For example, Zhao et al. [16,17] introduced two allocation
algorithms, approximation algorithm for offline model and greedy algorithm for the online model.
Allocating tasks with mobile users was depended on time overlapping between tasks’ sensing intervals
that needed the same sensing services from mobile users. They focused on the energy consumption of
smartphones, fairness in assigning tasks, and task arrivals that were dynamic and unexpected. They did
not work on heterogeneous sensing tasks or with flexible times’ starting and ending and concentrated
on reducing smartphone sensing time, but no energy savings have been reported.

Gong et al. [18,20] designed four algorithms to assign workers based on the location of tasks and
the current location of workers to increase task quality. Whereas quality/progress-based algorithm
(QPA) chose the work with the highest task quality increment to trip cost ratio, task density-based
(TDA) tended to direct users to high task-density regions. At the same time, travel-distance-balance-
based (DBA) considered journey distance balance information. Bio-inspired travel-distance-balance-
based (B-DBA), the final algorithm, combines the travel-distance-balance-aware measure in DBA with
a bio-inspired search to further boost job assignment performance. One type of task was assigned to
workers.

Wang et al. [21] used spatiotemporal correlations to address heterogeneous crowdsensing tasks.
They involved all sharing the same resources but had different spatiotemporal granularities. They
used assignment stages such as intra- and inter-task. To enhance the time efficiency, they developed a
decomposition-and-combination framework. They aimed to improve data quality while reducing the
total incentive budget.

Xia et al. [22] employed geoindistinguishability to make workers’ location privacy more secure
and minimize workers’ travel distance. So, they designed two probability-based distance comparison
mechanisms, the worker-based distance comparison mechanism (WDCM) and the task-based distance
comparison mechanism (TDCM). Yin et al. [23] introduced task assignment in crowdsourcing
platforms by allocating one task to multiple workers using a many-to-one matching approach. They
focused on budgetary limits, quality requirements of tasks, and heterogeneity in sensing tasks and
workers. Tao et al. [24] worked on the task assignment that depended on the location of both workers
and tasks to maximize data quality and increase worker profit. They provided a genetic algorithm
(GA) and a detective algorithm (DA).

Miao et al. [25,26] assigned crowdsourcing task allocation dependent on participant position. The
aim is to use a quality-aware online task assignment (QAOTA) algorithm to improve overall efficiency
for location-based tasks. Gad-ElRab et al. [27] classified tasks based on sensors that required providing
interval tree structure in interval tree-based task scheduling method (ITBTS) and determined the
overlapping between sensing time instances to minimize the energy consumption and time for the
sensing process. Lai et al. [28] focused on the sensitive duration of each task and the capabilities of
participants. The objective was to increase the number of tasks that were completed. For allocating
tasks to participants, that article used a greedy heuristic algorithm. Xiao et al. [29] studied mobile social
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networks (MSNs) using MCS to solve the makespan-sensitive task assignment. The goal for different
types of sensing tasks was minimizing the average or the largest makespan. Average makespan sensitive
online task assignment (AOTA) algorithm and the largest makespan sensitive online task assignment
(LOTA) algorithm.

Wu et al. [30] evaluated the extrinsic and intrinsic ability of mobile users for allocating tasks.
A modified Thompson sampling worker selection (MTS-WS) algorithm was context-aware that was
designed to evaluate a worker’s service quality. Huang et al. [31] outlined task assignments based on
the performing task time. They illustrated a task assigning technique called the optimized allocation
scheme of time-dependent tasks (OPAT) to increase each mobile user’s sensing capacity.

The previous studies focused on the sensitive duration of tasks, sending tasks, receiving results,
context or location. Tab. 1 summarizes previous literature on task assignment problems in MCS. This
paper addresses the task assignment, total sensing time, and path planning problem. The requests of
mobile crowdsensing tasks determine the time interval for sensing the required data in specific regions.
For the mobile user’s tour, he moves from his starting point to his destination. In contrast, this work
differs from them in terms of problem definition. It redefines the task assignment problem by working
with task sensing time interval and location for both tasks and mobile users’ constraints. Combining
the two metrics improves the task assignment process in MCS, increasing the total task quality and
reducing the overall aggregate sensing time.

Table 1: A summary of some of the current related work

Study Objective Used methods Parameters

Zhao et al. [16]
and [17]

Tradeoff between energy
consumption of
smartphones and fairness
in assigning tasks.

Approximation (offline)
and greedy (online).

Sensing time interval.

Gong et al.
[18] and [20]

Increasing task quality. QPA, TDA, DBA and
B-DBA

Location of both
worker and task.

Wang et al.
[21]

Improving data quality and
reducing the total incentive
budget.

Region oriented search
(rosear), worker
oriented search (wosear)
and
worker-region oriented
search (wrposear).

Real-time and location.

Xia et al. [22] Location privacy and
minimizing workers travel
distance.

WDCM and TDCM. Location of workers

Yin et al. [23] Maximizing the total
quality of platform.

Greedy. Number of tasks and
workers.

Tao et al. [24] Maximizing data quality
and increasing worker
profit.

Genetic algorithm (GA)
and detective algorithm
(DA).

Location of both
workers and tasks.

(Continued)
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Table 1: Continued
Study Objective Used methods Parameters

Miao et al. [25]
and [26]

Quality maximization. Polynomial-time
(online) and
approximation
algorithm (offline).

Location.

Gad-elrab and
Alsharkawy
[27]

Minimizing the energy
consumption and time for
sensing process.

ITBTS. Sensing time instance.

Lai et al. [28] Increasing the number of
tasks that were completed.

Greedy heuristic
algorithm.

Sensitive duration of
tasks.

Xiao et al. [29] Minimizing the average
makespan or
minimizing the largest
makespan.

AOTA and
LOTA.

Time of sending tasks
and receiving results.

Wu et al. [30] Selecting mobile users with
high-quality.

MTS-WS. Context.

Huang et al.
[31]

Maximizing the capacity of
each mobile user’s sensing.

OPAT. The performing task
time.

3 The Proposed Method

This section discusses the system model and constructs the problem of online task assignment
based on two constraints: (1) task sensing time interval and (2) location for both task and mobile
user (the starting location and predetermined destination). The next subsections illustrate the system
model, task model, mobile user model, and algorithm design. Fig. 1 illustrates the proposed frame-
work. The proposed framework is explained in detail in Subsection 3.4. The proposed framework
consists of three phases. First, the preprocessing phase sets available tasks into task set T and mobile
users into worker set M. Second, overlapping or covering in time interval phase divides the available
tasks into two task groups based on a complete or partial intersection in time intervals of tasks and
worker’s task pool. Third, determining the nearest task phase chooses the nearest task in the available
task set T to mobile user mi path.

3.1 System Model

In the MCS sensing process, a mobile user mi has a tour from his starting point to his destination.
The requests of mobile crowdsensing tasks determine the time interval for the sensing required data in
specific regions. A mobile user mi is allocated with sensing tasks in mi path without exceeding mi travel
budget. In a real-time system, requesters’ mobile users and tasks arrive at the service platform online
sequentially. The service platform must reply to each incoming request without knowing what will
happen next. Because of location privacy for mobile users in MCS, this work focuses on cases where
users are anonymous, and no single mobile user’s contribution history is tracked. The assignment is
dependent on the tasks that are still available on the service platform that have arrived and have not
yet expired. The algorithm regards tasks that demand the same sensing service from mobile users to
be homogeneous. Tab. 2 shows a list of notations that are used in this work.
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Figure 1: The framework of location time-based algorithm (LTBA)

Table 2: The basic notations in this work

Notation Description Notation Description

mi, M Mobile worker i and worker
set.

| Pmi
| The number of tasks in mobile

user’s task pool.
tj , T Task j and tasks’ requests set. dist(locik ,

locj)
The distance between current
mobile user location locik and
task locj.

(Continued)
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Table 2: Continued
Notation Description Notation Description

T ID The composition of task id
and task number.

T(mikj) Mobile user travel cost budget
constraint.

TLoc It represents task tj location
latitude and longitude.

Pmi worker’s task pool.

sj The start of task tj sensing
time interval.

length (Pmi ) Path length for user mi.

ej The end of task tj sensing time
interval.

Δli It represents the increasing in
sensing time after allocating
task tj to mi.

pj̇ It denotes the probability, that
a randomly selected mobile
user would provide correct
data for task tj.

τ tail,j The local pheromone on the
ant path from the current path
tail and task tj.

li The aggregate sensing time of
mobile user mi.

τ0 Global pheromone.

Apj̇ (k) The function used to calculate
task’s tj quality.

λ The evaporation decreasing
rate on the path between task
tj and the current path tail.

K The number of mobile users
that executes task tj.

edij The distance between tj and
mi tail.

Fpj̇ (k) The auxiliary function that
smoothes quality function.

(lat,lon) Latitude and longitude of
location.

UID It represents both mobile user
number and id.

Mi The capacity for user mi of
sensing tasks that he can
execute.

iniLoc It is the current location of
user mi.

desti It is the predetermined
destination of user mi.

Bi The maximum travelling
distance budget for user mi.

θ The travel budget ratio of
mobile user mi

3.2 Task Model

Requesters send sensing tasks to the service platform that are published dynamically upon their
arrival. The sensing tasks set are denoted T = {t1, t2, . . . .., tn} every task has attributes such as tj = {TID,
TLoc, sj, ej, pj̇}, ∀ ti ∈ T , where TID is the composition of task id and the task number, TLoc represents
longitude and latitude of task location, sj is the start of sensing time interval for tj, ej is the end of sensing
time interval and pj̇ denotes the probability, that a randomly selected mobile user would provide correct
data for task tj. For each task tj, the increment of aggregate sensing time of mobile user mi is checked
if task tj is allocated to it as [16]:

min

(
n∑

i=0

li

)
(1)
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where li is the aggregate sensing time of mobile user mi. The number of mobile users who perform
a task denoted by k affects the task quality function Apj̇ (k) in [18]. Because the reliability of each
individual mobile user is unknown, the outcome is assumed using the majority voting rule:

� for odd values of k:

Apj(k) =
k∑

r= k+1
2

(
k
r

)
pr

j(1 − pj̇)
k−r (2)

� else,

Apj(k) =
k∑

r= k
2 +1

(
k
r

)
pr

j(1 − pj̇)
k−r + 1

2

⎛
⎝ k

k
2

⎞
⎠ p

k
2
j (1 − pj̇)

k
2 (3)

where k is the number of mobile users that perform task tj and a non-negative integer. pj̇ is more than
0.5. This is due to the fact that for tasks with pj less than 0.5, the mobile users’ results are reversed,
then correct answers are obtained with a probability greater than 0.5. The task quality increases with
odd k and stays the same otherwise. In [18], an auxiliary function Fpj(k) is designed to smooth quality
function.

� for zero and odd values of k:

Fpj̇(k) = Apj̇
(k) (4)

� else

Fpj̇(k) = Apj̇(k − 1) + Apj̇(k + 1)

2
(5)

3.3 Mobile User Model

The mobile user intended to travel from his or her current location to a destination. The service
platform assigns tasks to mobile users’ tours to perform without exceeding their travel budget. Every
mobile user sends his information to the service platform. Mobile users set is denoted as M = {m1,
m2, . . . ., mm}. Every user has attributes such as mi = {UID, iniLoc, desti, Bi, Mi}, where UID represents
both mobile user number and id, iniLoc is the current location of user mi, desti is the predetermined
destination of user mi, Bi represents traveling distance budget. Mi is the maximum number of sensing
tasks that he can execute. The mobile user is now at iniLoc and plans to go to desti. However, completing
tasks can require him to take a detour, resulting in extra travel costs. The overall travel cost does not
surpass Bi. Any function that measures the cost of traveling from one place to another can be used to
calculate the travel cost. In this work, Euclidean distance is used.

� Mobile user sensing time constraint:

Δlij = 0 or min(Δlij) (6)

� Mobile user capacity constraint:

| Pmi
| ≤ Mi (7)
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� Mobile user travel cost budget constraint:

T(mikj) =
|Pmi |∑
r=1

dist(locik, locj) ≤ Bi (8)

�
Bi, = dist(iniLoc, desti) ∗ θ (9)

where �lij = lij−li. li is the sensing time of mobile user mi. lij is the sensing time of mi after assigning
task tj. �lij =0 means that the sensing interval of task tj is within a task interval in Pmi. Pmi is a
task pool that contains mobile user tasks. |Pmi| is the number of tasks in a mobile user’s task pool.
dist(locik, locj) denotes the distance between current mobile user location locik and task location locj.
dist(iniLoc, desti) is the travel distance between the starting location to the destination of mobile user
mi. θ denotes travel budget ratio.

3.4 Algorithm Design

The sensing tasks and mobile users arrive at the service platform upon arrival rate. At each time
instance, the service platform schedules available tasks in task set T and available mobile user in worker
set M based on the sensing time interval of each task and location of both tasks and workers. LTBA
algorithm consists of three phases:

1) Preprocessing phase: In this phase, the service platform sets available tasks into task set T
and mobile users into worker set M. To explain this phase in detail, at each time instance
of arrival rate, the service platform adds the arrival tasks to task set T and the arrival mobile
user to worker set M, then extracts tasks’ attributes (i.e., location TLoc, start sensing time sj,
end sensing time ej and task correctness pj̇) and mobile user’s attributes (i.e., current location
iniLoc, destination desti, path length, sensing time li , distance budget Bi and capacity Mi). The
path length is the total travel distance of the mobile user from starting location to the current
location, passing through all tasks in the worker’s task pool Pmi

. Sensing time for mi is the sum
of sensing time for tasks in the worker’s task pool Pmi

. Capacity Mi is the maximum number of
tasks that user mi can execute.

2) Overlapping or covering in time interval phase: In this phase, the service platform divides the
available tasks into two task groups based on the complete or partial intersection in time
intervals of tasks and worker’s task pool. To explain this phase in detail, mi in worker set �lij is
determined for each mobile user, representing the increasing sensing time for mi after allocating
task tj to him, where �lij = lij−li.

For example, a mobile user mi has task tj [2,5] in task pool Pmi
. Task set contains tx [3,4], ty [4,6],

and tz [6,8]. Each task has to sense interval I = [sj, ej]. The sensing time for mi, lij = l{ [2,5]} = 3. There
are some cases to select the best task,

1. In the case of adding tx to Pmi
, sx > sj and ex < ej, so tx is covered by tj. lijx = l { [2,5] ∪ [3,4]} =

l { [2,5]} = 3 and �lijx = lijx−lij, �lijx = 0.
2. In the case of adding ty is Pmi

, so, lijy = l { [2,5] ∪ [4,6]} = l { [2,6]} = 4 and �lijy = 1. There is
overlapping between tj and ty.

3. In the case of adding tz to Pmi
, so, lijz = l {[2,5] ∪ [6,8]} = 3 + 2 = 5 and �lijz = 2.
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From the previous example, the delta sensing �lij and the sensing time lij are smaller in cases 1
and 2. In case1, tx is covered by tj. In case 2, there is an overlapping between tj and ty. So, the chance
of choosing these tasks for the next phase is greater. Then dividing available task set into two groups,
one has tasks with smaller sensing time and the other with greater sensing time. In this phase, the
algorithm uses two rules [16]. “Rule 1: assigning a task to a smartphone if it can be fulfilled by other
tasks already assigned to that smartphone. Rule 2: assign a task to the smartphone with the shortest
aggregate sensing time if the task were to be assigned.

3) Determining the nearest task phase: In this phase, the service platform chooses the nearest task
in the available task set T to mobile user mi path. To explain this phase in detail, use the task
group TGi with smaller sensing time from the previous phase to find the nearest mobile user
mi that exceeds the mobile user’s budget. The algorithm uses B-DBA [18]. Selecting the nearest
tasks process depends on the ACO algorithm and Euclidean distance [32].

For ACO, intelligent ants begin their moves to search for food randomly. When an ant finds food,
it returns to the colony and leaves a trail of pheromones. Other ants use that route in search of food if
they detect the pheromone. The pheromone fades with time, preventing the algorithm from reaching a
local optimum solution. The basic idea of B-DBA was dependent on the bio-inspired search and travel
distance. B-DBA works as follows: it consists of rounds where (round > 1). Each round has a group of
ants that move from the user’s current position and all available tasks to the destination. In the first
round, the initial global pheromone τ 0 is the same for each task location. Then measure preferences
of the available tasks using Eq. (10) for each ant to select the next task’s location in the user’s tour.

pre(tj) = τ ε

tail,tj
.
ΔFpj · (Bi − length(pi) − dist(ptail, tj) − edij)

α

dist(ptail, tj)
γ (10)

Euclidean distance between two locations:

dist(tail, t) =
√

(lattail − latt)
2 + (lontail − lont)

2 (11)

where τ tail,tj denotes local pheromone between the current user’s location and task tj. ε, γ and α are
weighting parameters. length(pi) is path length of user mi. dist(ptail, tj) denotes distance between current
user’s location and task tj. edij denotes distance between user’s destination and task tj. lattail and lontail

are latitude and longitude of current user’s location. latt and lont are latitude and longitude of task’s
location.

The chance of selecting task tj as the next task depends on its probability and performance value.
The highest preference value of task tj gives a high probability to tj to be chosen as the next task. The
pheromone on the path between task tj and the current path tail is reduced by evaporation rate λ, when
selecting tj as the next task. For updating local pheromone:

τtail,tj=(1 − λ).τtail,j+λ.τ0. (12)

After determining all ants’ pathways for one round, select the two highest increments of task
quality of two ants. The best two ant’s global pheromones of task locations are increased by τ 0 for the
best ant and τ 0/2 for the second-best ant, on the path that they follow, then a new round starts after
all local pheromones have been modified to match their global pheromones.

Algorithm 1 illustrates the steps of the LTBA scenario. New tasks from available tasks are
assigned to mobile users at every arrival without exceeding the budget and capacity constraints. Line
2 initializes, sensing time, delta, and creates task group TGi set. Lines 3 and 4 calculate sensing time
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by CalcSensingTime() function at Algorithm 2 and delta sensing time for each task tj, if it is added to
the worker’s task pool. Lines from 5 to 9 check if task covered by any tasks in worker’s pool, then add
tj to TGi else add sensing time and delta sensing to subsets �, TL. Line 12 checks for overlapping and
append those tasks with minimum delta and sensing time to TGi. Line 13 calls TGi to TheClosestTask
() function.

CalcSensingTime () at Algorithm 2 checks the length of the worker’s pool to determine sensing
time then return it. TheClosestTask () function at Algorithm 3 is used to find the nearest task tj in the
mobile user mi path. Line 2 determines the global pheromone for the tasks in TGi. Using iteration of
rounds to select the nearest task. Line 4 uses a global pheromone as a local pheromone. Line 5 makes
iterations for a group of ants to select the best next task. Lines from 6 to 11 calculate preference for
each task, and the task with the maximum preference is selected, then update the local pheromone of
the chosen task. At the end of ant iterations, choose the best two ants, update the global pheromone
of tasks chosen, and start a new round iteration. Line 16 adds the nearest task tj to the worker’s
pool Pmi

.

Algorithm 1: Location time-based algorithm (LTBA)
Input: Mobile user mi, Sensing time li Budget Bi and available Taskset T = 1, 2, . . . , N.
Output: tasks tj in worker’s task pool Pmi.
1: for t = 1, 2, . . . , N do
2: lij←li; �lij←0; TGi←
;
3: lij←CalcSensingTime()
4: �li j = lij − li;
5: if � lij = 0 then
6: TGi←tj;
7: else
8: �←�lij;
9: TL←lij;
10: end if
11: end for
12: TGi←min � and minTL; Eq. (1)
13: TheClosestTask(TGi);

Algorithm 2: Procedure for CalcSensingTime() function.
Input: Sensing time li, interval of pj.
Output: lij.
1: function CalcSensingTime ()

Check the length of mobile user tasks’ pool Eq. (7).
2: if length(Pmi

) = 0 then
3: lij = ej − sj;
4: else
5: determining the intersection between
6: interval of tj and worker’s pool.
7: lij = max(ej)−min(sj)
8: end if
9: return lij
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Algorithm 3: Procedure for TheClosestTask () function.
Input: TGi.
Output: choose the Closest tj to the path of mi.
1: function TheClosestTask (TGi)
2: calculate global pheromone τ 0

3: for round = 1:30 do
4: τ tail,j ← τ 0

5: for ant = 1:30 do
6: Calculate preference for ant
7: to find next task using Eq. (10).

8: pre(tj) = τ ε

tail,tj
.
ΔFpj · (Bi − length(ti) − dist(ttail, tj) − eij)

α

dist(ttail, tj)
γ

9: choose next task with max preference
10: then update local pheromone for the newly
11: chosen task Eq. (12)
12: end for
13: choose the best two ants then update
14: global pheromone of tasks’ chosen
15: end for
16: Pmi

← tj

17: end function

4 Experimental Results

In this section, the performance is measured using two metrics: total task quality and aggregate
sensing time. This work aims to reduce total sensing time that reduces energy consumption, and
increase the quality of tasks metrics to encourage more participants and tasks requesters to engage
in sensing activities. The default parameter settings are discussed in the next subsection. The B-DBA
and greedy online allocation algorithms are used as the performance comparison baseline with LTBA.
The used dataset and simulation settings are illustrated in the next Subsections 4.1 and 4.2.

4.1 Dataset

This paper uses both synthetic and real-world datasets. The synthesis data set is used to generate
information on tasks and mobile users. The real data set is for the location of both tasks and mobile
users. Gowalla [33] is the real data set, a location-based social networking service where users check
in to report their whereabouts. It contains user-id, check-in time, latitude, longitude, and location id.
The location of tasks and mobile users is selected spatially uniformly distributed from 5000 data set
records.

4.2 Evaluation Metrics

The algorithms were implemented using MATLAB R2018a and running on a laptop with 16 GB
memory and Intel Core i7-8550U CPU. Both synthesis and real datasets are used. Calculating the
average of total tasks quality performance by:

n∑
j=1

Apj(k)/n (13)
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where n is the number of tasks, and aggregate sensing time by:

M∑
i=1

| Pmi |∑
j=1

lj (14)

The default parameters for sensing tasks are as follows: the arrival rate, location, the end of sensing
task intervals, and the probability of task correctness. Poisson distribution is used to determine the
arrival rate for tasks that are spatially uniformly distributed. The task arrival rate is set to 2.0 by
default. The task-lasting time intervals follow a normal distribution with default mean and standard
deviation values of 100 and 30, respectively. The probability of a task correctness pj follows a normal
distribution with 0.8 and 0.15 as the default mean and standard deviation, respectively.

The default parameters for mobile users are as follows: the arrival rate, the current location, the
travel budget ratio, and capacity. For the arrival rate, Poisson distribution is used and set to 1.0 by
default. The starting location and predetermined destination are spatially uniformly distributed. The
shortest trip distance between mobile users’ starting location and destination is denoted as travel
budget ratio (≥1) that follows a normal distribution with default 1.5 and 0.6 values for mean and
standard deviation, respectively. Capacity is set to 3.

The default setting for LTBA and DBA parameters, γ is 1, weighting parameters ε is 3,
evaporation rate λ is 0.9. Furthermore, the round number and the ant population size are set to 30
and 30, respectively. Euclidean distance is used to measure the distance between tasks’ location and
the mobile user’s current location. The default parameter settings are displayed in Tab. 3.

Table 3: The parameters settings

Parameters Values

Task arrival rate 2.0
Mobile user arrival rate 1.0
Task lasting time intervals N (100, 30)
Task correctness probability
(pj )

N (0.8,
0.15)

θ N (1.5, 0.6)
ε 3
γ 1
α 1
Round 30
Ant 30
Mi 3

4.3 Parameters Analysis

These parameters are determined by trial and error to achieve the best performance for the
tradeoff between higher task quality and lower sensing time in LTBA than in B-DBA and greedy.
The travel budget of mobile users is computed as Bi = dist(iniLoc, desti)∗ θ . θ follows N(μθ , σ θ) and the
probability of a task correctness pj follows N(μpj, σ pj) as [18] and [25].
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Effects of the ant population size on optimum solution, execution time, and pheromone
buildup [34]. The performance of the algorithm is not improved by having a large ant population
size. As a result, a limited number is recommended. In general, to restrict the worst-case complexity,
the values of round and ant are small. Capacity Mi is set to 3, which largely restricts the worst-case
complexity.

5 Simulation Results

There are several scenarios for parameters settings that influence the tasks’ quality and sensing
time. The simulation results for parameters of different algorithms are presented. Varying parameter
settings, while the default values are used for other parameters.

5.1 The Impact of γ

The impact of γ on tasks’ quality in Fig. 2a and sensing time Fig. 2c. γ is tested in the range
[1,5], increasing by 1. The quality of The total task is higher for both LTBA and B-DBA at γ equal 2.
However, sensing time is less at γ equal to 1. The tasks’ quality and sensing time are constant in the
greedy online allocation algorithm. The expected value of γ is 1 or 2. To determine γ , the difference in
values is calculated. The difference in the quality value at γ of 1 and 2 is very small, but the difference
in the sensing time at γ 1 and 2 is large. γ is equal to 1 for the optimal value for both task quality and
sensing time.

Figure 2: y and task lasting time intervals settings vs. total tasks quality and overall sensing time.
(a) The impact of y on tasks’ quality. (b) The impact of the task-lasting time interval on tasks’ quality.
(c) The impact of y on sensing time. (d) The impact of the task-lasting time interval on sensing time
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5.2 The Impact of Sensing Time Intervals

In this test, the simulations are to see how the lasting task interval impacts different algorithms.
The task-lasting time interval follows a normal distribution with a default mean equals to 30. Figs. 2b
and 2d illustrate the average tasks quality and total sensing time vs. standard deviation value that is
changed from 80 to 160. The task-lasting time interval is set to be 100 to achieve the best performance
for both quality and sensing time for LTBA sensing time.

5.3 The Impact of Task Arrival Rate

In this test, we are varying the task arrival rate from 1.0 to 5.0. Figs. 3a and 3c present the
performance of average task quality and overall sensing time under different settings vs. varying task
arrival rates. In LTBA, the peak for the average task quality is at an arrival rate of 4.0, and the next
is at an arrival rate of 2.0. However, the minimum value of the sensing time is at a task arrival rate of
3.0, and the next is at 2.0. In B-DBA and greedy, the peak is at 2.0. Therefore, the task arrival rate is
set to be 2.0 to achieve the optimal solution for increasing the average task quality and decreasing the
sensing time for LTBA.

Figure 3: The arrival rate settings for both tasks and mobile users vs. total tasks quality and overall

5.4 The Impact of Mobile User Arrival Rate

In this test, we are varying the mobile user arrival rate from 1.0 to 5.0. Figs. 3b and 3d illustrate
the performance of average task quality and overall sensing time under different settings vs. varying
mobile user arrival rates. The peak of the average task quality is at the mobile user arrival rate of 1.0
for LTBA, B-DBA, and greedy. The minimum value of the sensing time is at a mobile user arrival rate
of 1.0 for LTBA and greedy but for B-DBA is at 5.0. Therefore, the mobile user arrival rate is set to be
1.0 to achieve the optimal solution for increasing the average task quality and decreasing the sensing
time for LTBA.
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5.5 Different Cases of Tasks and Mobile Users

In Figs. 4a and 3b, different cases of tasks and mobile users are tested. In the case of increasing
tasks and mobile users, the total task quality decreases, and the overall sensing time increases. LTBA is
the best total task quality and the least sensing time, and the greedy algorithm follows it. The B-DBA
algorithm performs the worst if the number of tasks is greater than the number of mobile users. LTBA
is better than sensing time but smaller than the greedy algorithm in total task quality.

Figure 4: The different cases of tasks and mobile users vs. (a) total tasks quality and (b) overall sensing
time

5.6 Discussion

The previous observation motivates us to investigate the problem of assignment sensing tasks for
minimizing sensing time while maximizing total task quality based on sensing time and path planning
attributes. However, there are still a number of major challenges to be resolved. Striking a good balance
between maximizing overall job quality and minimizing sensing time is extremely important.

The requesters determine the time interval for each sensing task to collect the required sensing
data and the area of interest. In the proposed method, the covered phase is used because the optimal
solution remains optimal after assigning tasks covered by the optimal solution tasks. The optimal
aggregate sensing time remains constant.

This work uses the D-BDA, which consists of a bio-inspired search algorithm and a travel-
distance-balance-based Algorithm (BDA). ACO is easy to integrate with other methods, and it excels
at solving challenging optimization problems. The idea of BDA is based on whether there are two
possible tasks to consider: 1 and 2. The work quality increment is the same for both tasks, as is the extra



5636 CMC, 2022, vol.71, no.3

trip distance. The distance between task 1 and the user destination, on the other hand, is substantially
greater than the distance between task 2 and the user destination. As a result, if task 1 is chosen, a far
larger travel distance budget must be set aside for the user to arrive at his or her destination finally. If
task 1 is chosen, the trip distance budget for visiting other task sites will be considerably reduced. We
should act based on this observation.

Using the default parameter settings in Tab. 3 to calculate both total task quality and sensing time
for LTBA, B-DBA, and greedy. Tab. 4 shows the results. The results demonstrate that combining the
two algorithms in LTBA is the best performance for total task quality and total sensing time, and
the greedy algorithm follows it then B-DBA. Combining the algorithms improves task assignment in
MCS for both total task quality and sensing time.

Table 4: The results of the compared algorithms

Algorithm LTBA B-DBA Greedy

Average task quality 0.8158 0.7093 0.7733
Sensing time 644 1782 685 Time units

The computational complexity of function that calculates sensing time for all available sensing
tasks is O(n). The function that determines the closest task to the mobile user path has O(rρ log n)
where r is the round number and ρ is size of ant population. The computational complexity of the
available mobile user set for LTBA is O(n log n).

The performance metric for task assignment is based on task quality. D-BDA was compared
with quality-aware online task assignment QAOTA [25], which improved the overall task quality of
location-based. QAOTA has the lowest performance and the highest complexity. So, LTBA is the best
performance for total task quality and total sensing time, and the greedy algorithm follows it, then
B-DBA then QAOTA.

6 Conclusion

This work presents LTBA that enhances the task assignment in MCS, whereas assigning tasks is
restricted by time intervals and location of both tasks and mobile users. LTBA aims to achieve the best
performance for the tradeoff between higher task quality and lower sensing time. LTBA combines two
algorithms: (1) B-DBA, which was location-based and focused on increasing total task quality, and (2)
the greedy online allocation algorithm, which focused on minimizing overall sensing time for mobile
users. Minimizing the aggregate sensing time of the mobile user is based on the overlapping between
sensing time intervals. The process of assigning the nearest task to the mobile user’s current path
depends on the ACO algorithm and Euclidean distance. Using a combination of the two algorithms
to improve task assignment in MCS enhances task quality and reduces overall sensing time for mobile
users. Under various settings, LTBA outperforms the compared algorithms (B-DBA and greedy). The
future study will investigate ways to increase the performance of the proposed algorithm as well as
investigate their performance in other scenarios, such as discussing the privacy of mobile workers’
locations. The heterogeneous crowdsensing tasks will be the scope of the next work to maximize the
quality of the collected data.
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