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Abstract: Metamaterial Antenna is a subclass of antennas that makes use of
metamaterial to improve performance. Metamaterial antennas can overcome
the bandwidth constraint associated with tiny antennas. Machine learning is
receiving a lot of interest in optimizing solutions in a variety of areas. Machine
learning methods are already a significant component of ongoing research
and are anticipated to play a critical role in today’s technology. The accuracy
of the forecast is mostly determined by the model used. The purpose of this
article is to provide an optimal ensemble model for predicting the bandwidth
and gain of the Metamaterial Antenna. Support Vector Machines (SVM),
Random Forest, K-Neighbors Regressor, and Decision Tree Regressor were
utilized as the basic models. The Adaptive Dynamic Polar Rose Guided
Whale Optimization method, named AD-PRS-Guided WOA, was used to
pick the optimal features from the datasets. The suggested model is compared
to models based on five variables and to the average ensemble model. The
findings indicate that the presented model using Random Forest results in a
Root Mean Squared Error (RMSE) of (0.0102) for bandwidth and RMSE of
(0.0891) for gain. This is superior to other models and can accurately predict
antenna bandwidth and gain.
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1 Introduction

Metamaterials are materials with special physical properties that cannot be reproduced using
natural materials, and so metamaterials are popular materials in today’s world and are frequently
used in many fields, such as microwave invisibility cloaks, invisible submarines, revolutionary elec-
tronics, microwave components, as filters, and antennas that are compact, efficient, and have a
negative refractive index. One of its most important uses is the design of antennas made possible by
metamaterials [1–3].

This is due to the fact that metamaterials have unique properties, and as a result, we may construct
antennas with innovative features that standard materials cannot provide. One or more layers of
metamaterials may be utilized as a substrate or in addition to the antenna design in order to boost the
system’s capabilities. Even if a compact antenna with low cost and high efficiency is desired, a slightly
larger antenna that costs less money and has better efficiency is the best option. The metamaterial
may help increase the bandwidth and gain of tiny antennas. Another advantage is that it reduces their
electrical size, but the ability to direct a signal increases. In the case of smaller antennas, metamaterial
antennas provide an advantage over traditional antennas since they have more bandwidth [4,5].

Simulation software is used to estimate the metamaterial effect. The CST Microwave Studio
(CST MWS) is an example of a software program that simulates electromagnetic simulations [6].
Antenna characteristics like bandwidth, gain, Voltage Standing Wave Ratio (VSWR), and return loss
may be calculated after the simulation. In the simulation phase, researchers may make adjustments
in Metamaterial Antenna, beginning with trial and error to get the set of antenna characteristics.
The amount of time it will take to finish this procedure is completely unpredictable. They are using
a machine learning model to estimate antenna characteristics. Numerous studies have examined
machine learning applications in antenna design. Machine learning is anticipated to speed the antenna
design process while retaining high accuracy, minimizing errors, saving time, and the ability to
forecast the antenna behavior, improve computing efficiency, and decrease the number of required
simulations [7–9].

Optimization is the study of finding optimal solutions to problems. Because optimization issues
are complex and grow with time, we resort to improved optimization algorithms [10–13]. Metaheuristic
algorithms are an excellent option for tackling complex issues that are difficult to solve with
conventional techniques. Algorithms start with a random population and pass on the best to the next
generation. Metaheuristic algorithms are dynamic and widely looking for a solution [14–17].

In this paper, an Antenna-derived metamaterial ensemble model is presented as a way to estimate
the bandwidth and gain of the Antenna. Of the basic models, we utilise Support Vector Machines
(SVM) [18,19], Random Forest [20], K-Neighbors Regressor [21,22], and Decision Tree Regressor
[23] to be compared with the presented method. Ensemble model is optimized using an optimization
method to identify the optimum features based on the adaptive dynamic polar rose guided whale
optimization (AD-PRS-Guided WOA) [24] algorithm. A regression analysis using the suggested model
indicated that it was superior to the other models, predicting antenna bandwidth and gain efficiencies.

The structure of this work is organized as follows: Section 2 presents a literature review. Section 3
describes data preparation and the suggested ensemble model in detail. Section 4 displays results and
discussion. The last section of the given study (Section 5) examines the conclusion.
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2 Literature Review

In general, the following steps can be taken to incorporate machine learning into the antenna
design problem. The electromagnetic properties of an antenna are first determined via a series of
simulations. These attributes are then saved in a database and used to train a machine learning system.
Finally, the algorithm determines the Antenna that produces the closest results based on the designer’s
requirements.

2.1 Machine Learning Models

Machine learning is a technique that relies on algorithms which can learn from data without the
need of pre-programming. It can be classified into three types, named supervised, unsupervised and
reinforcement learning. To attain high performance in Artificial Neural Networks (ANN), extensive
interconnections of “neurons,” which are basic processing cells, are used. When complicated functions
with many characteristics are discovered, neural networks provide an alternative method for doing
machine learning. Multiple layers comprise neural networks: an input layer, an output layer, and
hidden layers between the input and output layers [25]. The SVM method is another kind of algorithm
for guided learning. It is mainly used in classification and employs kernel techniques to scope with a
challenging situation of non-linearly separable patterns. K-Nearest Neighbors (KNN) is considered
to be one of the simplest machine learning methods available. After remembering the training set, the
algorithm predicts the outcome of each new input using the outputs of its nearest neighbors in the
training set.

Machine learning algorithms have been applied in smart grid networks, where machine learning
can be used to anticipate malicious events, communication technology, including antenna selection in
wireless communications, wireless networks, where machine learning can be used to forecast wireless
users’ mobility patterns and content requests, and speech recognition. A technique for using machine
learning in antenna design is to train a learning algorithm on data from prior simulations in order to
improve the antenna parameters.

Metaheuristic algorithms solve unexpected issues since they are intelligent and have prior knowl-
edge of random search. These algorithms are either flexible, simple, or able to avoid local perfec-
tion. Exploration and exploitation are two elements of population-based heuristic algorithms. The
metaheuristic algorithm here selects between Exploration and exploitation. While exploring, the
technique examines the search space thoroughly. The area’s local search is currently at the exploitation
stage. Several global optimization methods inspired by nature have been developed in recent decades.
Population-based metaheuristics, often known as general-purpose algorithms, may be utilized in a
variety of situations. Metaheuristics are split into two types: metaphor-based and non-metaphor based.
In contrast, metaphors employ algorithms to represent natural phenomena or human behavior in
contemporary life [26].

2.2 Feature Selection

All machine learning processes rely on feature engineering, which entails the extraction and
selection of features, which are critical components of contemporary machine learning pipelines.
Despite the fact that feature extraction and feature selection procedures overlap in certain ways,
these words are often used interchangeably. Feature extraction is the process of extracting additional
variables from raw data in order to make machine learning algorithms function. The feature selection
method is focused on identifying the characteristics that are the most consistent, meaningful, and non-
redundant. The feature selection issue is unique in that the search space is constrained to two binary
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values: 0 and 1. As a result, the continuous version of an optimizer should be used and updated to
function correctly to address this issue. This method is considered in order to transform the suggested
continuous values of AD-PRS-Guided WOA algorithm to binary values, allowing it to be utilised to
solve the issue of feature selection. To transform, the Sigmoid form converts continuous values to
binary values.

3 The Proposed Ensemble Model

Ensemble techniques are getting preferred in addressing various artificial intelligence issues.
The average ensemble is among the most basic ensemble strategies that integrate base regressors’
outputs and compute the mean. This method aggregates the outcome of various regressors as well as
determines the mean value. In this paper, the average ensemble is employed as a reference set version
to review the efficiency of the suggested ensemble model. As shown in Fig. 1, the presented ensemble
model is based on the stages of preprocessing, feature selection and optimized ensemble algorithm
for both bandwidth and gain prediction. Ensemble model instead of selecting one ideal version from
the candidates combines all the designs by assigning weight to every model. The Ensemble technique
is verified as one of the significant methods in enhancing the prescient capability of conventional
versions. The ensemble model typically has two stages wherein the first stage, the outcome variable of
the best ensemble member, is picked to obtain the final forecast. The second stage blends the ensemble
members’ output variables using the mixed formula [27].

Data Preprocessing

Data Collection

Optimized Ensemble Algorithms for Bandwidth and Gain

Data Cleaning

Feature Selection

Standard Scaler Division (Test/Train)

Figure 1: The presented ensemble model based on the stages of preprocessing, feature selection and
optimized ensemble algorithm for both bandwidth and gain prediction

3.1 Data Preprocessing

The dataset utilised in this study includes eleven Metamaterial Antenna characteristics. The
dataset was obtained through Kaggle [28]. There are 572 records in this collection. Each record
contains the following information about the metamaterial antenna: the width and height of the split
ring resonator, the distance between rings, the width of the rings, the gap between the rings, the distance
between the antenna patch and the array, the number of split ring resonator cells in the array, the
gain of the Antenna, the distance between split ring resonator cells in the array, the bandwidth of the
Antenna, and the return. Tab. 1 summarises the dataset’s characteristics. These characteristics will be
utilised to estimate the Antenna’s bandwidth using a machine learning algorithm, and Fig. 2 shows
the distribution of bandwidth and gain feature.
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Table 1: Description of features of the dataset [28]

# Feature Description

1 Wm Split ring resonator’s width and
height

2 W0m Gap between rings
3 Dm Distance between rings
4 Tm Width of rings
5 SRR_num # Split ring resonator cells
6 Xa Distance between antenna patch

and array
7 Ya Distance between split ring

resonator cells
8 Gain Gain of Antenna
9 VSWR Antenna’s voltage standing wave

ration
10 Bandwidth Antenna’s bandwidth
11 S11 Return loss

Figure 2: Distribution of bandwidth and gain feature

The first step is to format the nulls, the second step is to filter out null values, and the third step is
to deal with nulls using a formula. Min-max normalisation is one of the most frequently used methods
of data normalising. For each feature, the lowest value is converted to a 0, the highest value is converted
to a 1, and all other values are converted to a decimal between 0 and 1. The dataset’s correlation matrix,
as shown in Fig. 3, Wm and tm are strongly correlated with the bandwidth.
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Figure 3: Correlation of metamaterial antenna

3.2 The AD-PRS-Guided WOA Algorithm

The AD-PRS-Guided WOA algorithm was first proposed in [24]. A binary version of the AD-
PRS-Guided WOA algorithm is used to select the ideal attributes from the datasets to offer an optimal
ensemble design for predicting the bandwidth and gain of the Metamaterial Antenna. The algorithm
can check out the search space successfully to improve exploration efficiency. The algorithm also uses
three arbitrary solutions as it makes use of significant change to transform between exploration and
exploitation processes. According to the most effective remedy, it also calculates a listing of generated
walks in a diffusion process as a polar increased feature. The AD-PRS-Guided WOA algorithm is
shown in Algorithm 1.

The updating positions mechanism of the algorithm of AD-PRS-Guided WOA is modified to
follow three random solutions of Xo1, Xo2 and Xo3. These solutions are updated every iteration to
enhance the algorithm performance and get the optimal solution.

X(t + 1) = w1 ∗ Xo1 + w2 ∗ z ∗ (Xo2 − Xo3) + w3 ∗ (1 − z) ∗ (Q − X(t)) (1)

where X(t + 1) is the updated solution in iteration t + 1 and X(t) is the current solution at iteration t.
Q is the optimal solution. w1, w2 and w3 are random values in [0, 0.5], [0, 1], and [0, 1], respectively. z

is updated as z = 1 −
(

t
tm

)2

for t iteration and tm as maximum iterations.

The algorithm gets the best solution related to the calculated best fitness value. Then, the
individuals are split into exploration groups and exploitation groups. Individuals in the exploitation
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group are moving to the leaders, and individuals in the exploration group are searching for leaders.
Individuals in the sub-groups are changed dynamically. For balancing purposes, the algorithm divides
the population into (50/50) for the two groups.

In the algorithm, the polar rose function is used to search the leaders’ purpose to find other good
solutions. Based on different values of the main parameters of this function named a and b, Fig. 4
shows the output of the polar rose function. The polar rose function is calculated as follows to search
around the best solution.

X(t + 1) = k ∗ sin
(a

b
θ
)

(2)

where X(t + 1) is the updated solution in iteration t + 1. The a and b parameters are within [−10, 10]

and 0 ≤ θ ≤ 12 π . k is calculated as k = 2 −
(

2 ∗ t2

t2
m

)
.

Figure 4: Changing the values of a and b to generate different polar rose function outputs

Algorithm 1: Continues AD-PRS-Guided WOA algorithm
1: Set population Xi(i = 1, 2, . . . , n), objective function Fn, size n, maximum iterations itersmax.
2: Set parameters w1, w2, w3

3: Collection AD-PRS-Guided WOA configuration parameters
4: Calculate objective function Fn for all solutions Xi

5: Set Q = best agent position
6: while t ≤ itersmax do
7: for (i = 1: i ≤ n) do
8: Select three random solutions Xo1, Xo2, and Xo3

9: Set z = 1−
(

t
itersmax

)2

(Continued)
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Algorithm 1: Continued
10: Update position of current search agent as

X(t + 1) = w1 ∗ Xo1 + z ∗ w2 ∗ (Xo2−Xo3)+(1−z) ∗ w3 ∗ (Q − X(t))
11: end for
12: Update Solutions in exploration group (n1) and exploitation group (n2)
13: if (Best Fn is same for three iterations) then
14: Increase solutions of exploration group (n1)
15: Decrease solutions of exploitation group (n2)
16: end if
17: for (i = 1: i ≤ n1) do

(exploration group update)
18: update three random solutions Xo1, Xo2, X o3, and Q (The best solutions were elitism)
19: if (Q < Any of the best solutions) then
20: Mutate the solution by

X(t + 1) = k +
(∑

Xo1 + Xo2 + Xo3

ezk

)
, k = 2 − 2 × t2

(itersmax)
2

21: else
22: Update agent position by

X(t + 1) = w1 ∗ Xo1 + z ∗ w2 ∗ (Xo2 − Xo3) + (1 – z) ∗ w3 ∗ (Q − X(t))
23: end if
24: end for
25: for (i = 1: i ≤ n2) do

(exploitation group update)
26: update three random solutions Xo1, Xo2, Xo3, and Q (The best solutions were elitism)
27: if (Q < Any of the best solutions) then
28: Move towards the best solution by

X(t + 1) = w1 ∗ Xo1 + z ∗ w2 ∗ (Xo2 − Xo3) + (1 − z) ∗ w3∗ − (Q − X(t))
29: else
30: Search around the best solution

X (t + 1) = k sin
(a

b
θ
)

31: end if
32: end for
33: Amend solutions
34: Update fitness
35: end while
36: Return best agent Q

3.3 The Binary AD-PRS-Guided WOA Algorithm

The output solution is updated to a binary solution using (0 or 1) in case of a feature selection
problem. The sigmoid function is used in this paper to update the continuous solutions of the
optimizer’s output into binary solutions, as shown in Algorithm 2.
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Algorithm 2: Binary AD-PRS-Guided WOA Algorithm
1: Set AD-PRS-Guided WOA population, parameters, configuration.
2: Convert solutions to binary [0,1]
3: Calculate objective function and select best solutions
4: Train k-NN and calculate error
5: while t ≤ itersmax do
6: Apply AD-PRS-Guided WOA algorithm
7: Convert updated solution to binary
8: Calculate fitness
9: Update parameters
10: end while
11: Return best solution

4 Results and Discussion

The results in this section are explained as follows. The results, based on the Decision Tree,
Multilayer Perceptron (MLP), KNN, Support Vector Regression (SVR), Random Forest, regressors
in addition to the Average Ensemble and the proposed Ensemble model based on Random Forest
regressor, before applying the feature selection technique are discussed. Then the results are shown
after using feature selection to deliver the performance of the proposed model. Tab. 2 shows the
configuaration of the AD-PRS-Guided WOA algorithm.

Table 2: Configuration of the AD-PRS-Guided WOA algorithm

Parameter Value

Agents 10
Iterations 80
Repetitions 20
Dimension Number of features
a [−10, 10]
b [−10, 10]
θ [0, 12π ]
α of Fn 0.99
β of Fn 0.01

4.1 Performance Metrics

The performance metrics used in this work are Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), Mean Absolute Error (MBE), and the correlation coefficient (r) [22]. Tab. 3
shows the different performance metrics where Hp,i indicates a predicted value, Hi represents the
observed value, and n is the total number of observations. Hp,i and Hi indicate the average predicted
and observed values, respectively.
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Table 3: Performance metrics for classification [22]

Metric Value

RMSE

√∑n

i=1 (Hp,i − Hi)
2

n

MAE

∑n

i=1 |Hp,i − Hi|
n

MBE

∑n

i=1 (Hp,i − Hi)

n

r

∑n

i=1 (Hp,i − Hp,i)(Hi − Hi)√
n

∑n

i=1 (Hp,i − Hp,i)
2
(Hi − Hi)

2

4.2 Results Before Applying Feature Selection

The results based on the bandwidth features of the tested dataset before applying the feature
selection technique are shown in Tab. 4. Tab. 4 shows that the proposed Ensemble model using
Random Forest results based on the bandwidth features of RMSE of (0.0320), MAE of (0.0231),
MBE of (−0.0069), and r of (0.9752) are better than other compared models. The results using the
gain features of the dataset before applying the feature selection are shown in Tab. 5.

Table 4: Results based on the bandwidth features of the dataset before applying feature selection

Regressor RMSE MAE MBE r
Decision tree 0.0608 0.0166 −0.0067 0.9383
MLP 0.0445 0.0327 0.0143 0.9643
KNN 0.1200 0.0302 −0.0136 0.6675
SVR 0.0677 0.0424 0.0015 0.9368
Random forest 0.0607 0.0241 −0.0041 0.9459
Average ensemble 0.0588 0.0238 −0.0017 0.9628
Ensemble using random
Forest

0.0320 0.0231 −0.0069 0.9752

Table 5: Results based on the gain features of the dataset before applying feature selection

Regressor RMSE MAE MBE r
Decision tree 0.1246 0.0221 −0.0164 0.718
MLP 0.1603 0.0566 −0.0161 −0.4929
KNN 0.1279 0.0237 −0.0168 0.6778
SVR 0.1355 0.0642 0.028 0.5251
Random forest 0.1218 0.0235 −0.016 0.8434
Average ensemble 0.1021 0.032 −0.0071 0.8721
Ensemble using random
Forest

0.0982 0.02311 −0.0152 0.9165
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Tab. 5 shows that the proposed Ensemble model using Random Forest results based on the gain
features of RMSE of (0.0982), MAE of (0.0231), MBE of (−0.0152), and r of (0.9165) are better than
other compared models. Fig. 5 shows the actual and the predicted values for the bandwidth prediction
from the tested dataset based on the AD-PRS-Guided WOA algorithm before applying the feature
selection process. While Fig. 6 shows the actual and predicted values by the AD-PRS-Guided WOA
algorithm for the gain prediction before applying the method of feature selection.

Figure 5: The actual values, in green color, and predicted values, in red color, by the proposed ensemble
algorithm for the bandwidth before applying the feature selection

Figure 6: The actual values, in green color, and predicted values, in red color, by the proposed ensemble
algorithm for the gain before applying the feature selection
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4.3 Results After Applying Feature Selection

After applying the feature selection technique, the results of the bandwidth features from the tested
dataset are shown in Tab. 6. Tab. 6 shows that the proposed Ensemble model using Random Forest
results of RMSE of (0.0102), MAE of (0.0344), MBE of (−0.0032), and r of (0.9932) are much better
than other compared models. The results of the gain features from the dataset after applying the feature
selection are shown in Tab. 7.

Table 6: Results based on the bandwidth features of the dataset after applying feature selection

Regressor RMSE MAE MBE r

Decision tree 0.0602 0.0258 −0.0156 0.9466
MLP 0.0413 0.083 −0.003 0.9784
KNN 0.0982 0.0451 −0.0136 0.8933
SVR 0.0404 0.0737 −0.0039 0.9481
Random forest 0.0532 0.0373 −0.0039 0.9591
Average ensemble 0.0372 0.0465 −0.008 0.979
Ensemble using random
Forest

0.0102 0.0344 −0.0032 0.9932

Tab. 7 shows that the proposed Ensemble model using Random Forest results of the gain features
as RMSE of (0.0891), MAE of (0.0234), MBE of (−0.0161), and r of (0.9443) which are much better
than other compared models. Fig. 7 shows the actual values and predicted values by the AD-PRS-
Guided WOA algorithm for the bandwidth after applying the feature selection. While Fig. 8 shows
the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain after applying
the feature selection.

Table 7: Results based on the gain features of the dataset after applying feature selection

Regressor RMSE MAE MBE r

Decision tree 0.1179 0.0236 −0.0182 0.6944
MLP 0.112 0.0406 −0.0066 0.187
KNN 0.1187 0.0257 −0.0169 0.7152
SVR 0.1161 0.0658 0.0295 0.4285
Random forest 0.1104 0.0237 −0.0159 0.927
Average ensemble 0.0974 0.0315 −0.0056 0.9173
Ensemble using random
Forest

0.0891 0.0234 −0.0161 0.9443
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Figure 7: The actual values, in green color, and predicted values, in red color, by the proposed ensemble
algorithm for the bandwidth after applying the feature selection

Figure 8: The actual values, in green color, and predicted values, in red color, by the proposed ensemble
algorithm for the bandwidth after applying the feature selection

5 Conclusion

Machine learning methods are already a significant component of ongoing research and are
anticipated to play a critical role in today’s technology. The accuracy of the forecast is mostly
determined by the model used. This paper uses the AD-PRS-Guided WOA method to pick the optimal
features from the metamaterial antenna dataset. Metamaterial antennas can overcome the bandwidth
and gain constraints associated with tiny antennas. Machine learning is receiving much interest in
optimizing solutions in a variety of areas. The optimal ensemble model achieved good results for
predicting the bandwidth and gain of the metamaterial antenna. The basic models have investigated
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SVM, Random Forest, K-Neighbors Regressor, and Decision Tree Regressor. The AD-PRS-Guided
WOA algorithm was utilized to pick the optimal features from the datasets. The suggested model
was compared to models based on five variables and to the average ensemble model. The findings
indicated that the suggested AD-PRS-Guided WOA algorithm-based model is superior to others and
can accurately predict antenna bandwidth and gain. The presented algorithm will be compared with
CST software in future work.
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