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Abstract: Tongue diagnosis is a novel and non-invasive approach commonly
employed to carry out the supplementary diagnosis over the globe. Recently,
several deep learning (DL) based tongue color image analysis models have
existed in the literature for the effective detection of diseases. This paper
presents a fusion of handcrafted with deep features based tongue color
image analysis (FHDF-TCIA) technique to biomedical applications. The
proposed FDHF-TCIA technique aims to investigate the tongue images using
fusion model, and thereby determines the existence of disease. Primarily, the
FHDF-TCIA technique comprises Gaussian filtering based preprocessing
to eradicate the noise. The proposed FHDF-TCIA model encompasses a
fusion of handcrafted local binary patterns (LBP) with MobileNet based deep
features for the generation of optimal feature vectors. In addition, the political
optimizer based quantum neural network (PO-QNN) based classification
technique has been utilized for determining the proper class labels for it. A
detailed simulation outcomes analysis of the FHDF-TCIA technique reported
the higher accuracy of 0.992.

Keywords: Tongue color image; tongue diagnosis; biomedical; healthcare;
deep learning; metaheuristics

1 Introduction

Tongue colour is regarded as a key indicator of somatic healthcare in the field of East Asian
medication that was initially invented in early China [1]. Generally, physicians estimate tongue
features and utilize resulting conclusions to notify their intelligence and decision regarding medical
conduct. Tongue colour is categorized by various subclasses that offer valuable diagnostic data of a
personal conflict. E.g., a reddish colour recommends psychological issues/extreme inner body heat,
whereas a bluish colour recommends blood coldness/blood congestion, amongst others [2]. Moreover,
researchers used certain pattern detection methods like artificial intelligence, to assess relationships
among disease state tongue colour and [3]. But, indications for the use of tongue body colour
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estimations in consolidative medication still remain uncertain, since assessment models utilized before
haven’t often been adequately reproducible/quantitative (medical experience/tacit knowledge have
always been prioritized in evaluations) [4]. When relationships among tongue body colour, as evaluated
through a noninvasive tongue inspection, and certain medical results are determined, subsequently
tongue colour evaluation may permit for the earlier recognition of human body disease/irregularities.

Traditionally, medical doctors would examine this colour feature based on thorough understand-
ing [5]. However, ambiguity and subjectivity are frequently followed by their diagnosis’s result. In order
to remove these qualitative features [6], tongue colour analysis is studied objectively using its colour
characteristics which offer a novel methodology to diagnose diseases, one that decreases the physical
injuries caused to the patient (associated with another medical study) [7]. The current publication
has been determined and applied DL models to extract higher level representations to wide vision
analyses procedures such as handwritten digit recognition, face identification, and object detection.
However, there arises small or no research on CAD tongue image analysis through DL methods [8],
in which CAD expert system using unambiguity and objectivity tongue analyses results are employed
to facilitate the Western and TCM diagnoses results.

Kawanabe et al. [9] evaluate either tongue colour assessments, as accomplished in Kampo
(classical Japanese) medication, through an automatic image acquisition scheme that has been related
to specific indexes of personal healthcare. Information on age, diastolic blood pressure, sex, systolic
blood pressure, body temperature, pulse rate (PR), past medical history (PMH), body mass index
(BMI), and blood inspection results (creatinine, haemoglobin) have been gathered. Jiang et al. [10]
proposed methods according to the computer tongue image analyses technique for observing the
tongue features of 1778 contributors. Integrating quantitative tongue image characteristics, serological
indexes, and fundamental data, involving the FLI and HSI, they used ML algorithms, involving LR,
SVM, RF, GBDT, AdaBoost, NB, and NN for NAFLD diagnoses. The optimal fusion method to
diagnose NAFLD using LR comprised the tongue image parameter.

Li et al. [11] established the prediction method which is employed for evaluating patients with
blood glucose in higher and crisis situations. They establish the diabetes risk predictive method
generated by integrated TCM tongue diagnoses with ML models. The 1512 subjects have been
employed from the medical centre. Afterward, data preprocessing, they receive the 1 and 2 datasets.
Dataset 1 has been utilized for training traditional ML method, whereas dataset 2 has been utilized
for training DL method. Li et al. [12] established the noninvasive diabetics risk predictive method on
the basis of tongue feature fusions and forecast the risk of diabetics and prediabetics. They gather
tongue images, extracting texture features with TDAS and tongue features with colour, and extracting
the innovative tongue feature using ResNet50, attains the combination of 2 features using GA_XGBT,
lastly established the non-invasive diabetics risk predictive method and estimate the efficiency of testing
efficiency.

Fan et al. [13] examine distinct characteristics in patients with diabetic Mellitus, gastric indications
with images gathered from digital tongue images. Multitype feature extraction and election from 466
tongue images have been carried out. In the classifier phase, 2 dissimilar classifier models have been
used, RF and SVM, for classifying gastric disease symptoms of TCM and DM.

Kawanabe et al. [14] use advancement in digital imaging processing to verify and quantify medical
data tongue colour diagnoses by characterizing variances in tongue features. Estimation of body,
coating, and tongue colour has been carried out using 10 skilled Kampo medical doctors. The attained
images are categorized into 6 tongue coating colour classes and 5 tongue body colour classes according
to the evaluation from ten medical doctors with widespread Kampo medical knowledge. K-means
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clustering model has been employed as an ML method (the research of pattern detection using
computation learning) approach to the attained images for quantifying coating colour and tongue
body data. Gholami et al. [15] focus on increasing the precision of gastric cancer diagnoses through
integration of DNN, SVM, and DCNN depending on the colour and surface features of the tongue.
The presented model has been estimated in 7 CNN frameworks.

This paper presents a fusion of handcrafted with deep features based tongue color image analysis
(FHDF-TCIA) model for biomedical applications. Primarily, the FHDF-TCIA technique comprises
Gaussian filtering based preprocessing to eradicate the noise. The proposed FHDF-TCIA model
encompasses a fusion of handcrafted local binary patterns (LBP) with MobileNet based deep features
for the generation of optimal feature vectors. In addition, the political optimizer based quantum
neural network (PO-QNN) based classification approach has been utilized for determining the proper
class labels for it. A detailed simulation outcomes analysis of the FHDF-TCIA technique occurs on
benchmark images and the outcomes are inspected in varying aspects.

2 The Proposed Model

In this study, a new FHDF-TCIA technique has been developed for automated tongue color
image analysis. The proposed FHDF-TCIA technique comprises preprocessing, fusion based feature
extraction, QNN based classification. Fig. 1 demonstrates the overall block diagram of FHDF-TCIA
model.

Figure 1: Overall block diagram of FHDF-TCIA model

2.1 Pre-processing

The GF has been utilized to smoothen and eradicate noise. It needs high computation resources.
The convolutional operators are the Gaussian operators and the method of Gaussian smoothing has
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been attained using convolution. It can be represented in Eq. (1):

G1D(x) = 1√
2πσ

e
−

(
x2

2σ2

)
. (1)

The optimal smoothening filter for an image can be limited in spatial as well as frequency domain,
thus satisfies the uncertainty relationships:

�x�ω ≥ 1
2

. (2)

The Gaussian operator in 2D can be defined using Eq. (3):

G2D(x, y) = 1
2πσ 2

e
−

(
x2+y2

2σ2

)
, (3)

where σ (Sigma) designates the SD of the Gaussian function. In addition, (x, y) specifies the Cartesian
coordinate points of the image demonstrating the window dimension [16].

MSE = 1
M × N

∑
i

∑
j

(Oimage − Rimage), (4)

where, M × N represent the Image size, Oimage refers the original image and Rimage the restored image.

The peak signal-to-noise ratio (PSNR) defines the ratio of highest probable power of a pixel value
and the power of distorted noise, which can be mathematically defined using Eq. (5):

PSNR = 10log10

[
255 × 255

MSE

]
, (5)

whereas 255 × 255 is the highest values of pixel existing in the image, and MSE can be determined for
the input and reconstructed images with the size of M × N.

2.2 Fusion of Feature Extraction Models

The proposed FHDF-TCIA model encompasses a fusion of handcrafted LBP with MobileNet
based deep features for the generation of optimal feature vectors. The LBP model integrates the
histogram into separate vectors and each one is considered as a pattern vector. It can be represented
as an operator for texture definition that mainly relies on the signs of differences amongst nearby
and central pixels. The binary codes are called binary patterns. Therefore, the nearby pixels are 1 in
case of having increased pixel values over the threshold values [17]. The patterns denote the feasibility
of binary patterns present in the images. The histogram bin count relies on pixel count involved in
the computation of LBP. The basic mechanism of LBP employs the measure of intermediate pixel as
a threshold to the 3 × 3 neighboring pixel values. The thresholding function can be represented by
binary patterns exhibiting the texture features. It is defined using Eq. (6),

LBP(uc, vc) =
7∑

n=0

2ng(In − I(uc, vc)) (6)

LBP(uc, vc) implies the values of LBP at middle pixel (uc, vc). In and I(uc, vc) indicates the nearby
and middle pixels respectively. The LBP values are computed via scalar multiplication amongst the
binary and weight matrices. Next, the multiplication result is consolidated and denoted the value of
LBP.
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The MobileNet is utilized to enhance the performance of the DL models in the limited hardware
setting. It reduces the parameter count with no compensation in accuracy. Conv−Dw−Pw is a deeper
and distinguishable convolution model, comprised of point wise (Pw) and depth wise (Dw) layers. The
Dw is a deep convolutional layer with 3 × 3 kernel, where the Pw denotes the default convolutional
layer with 1 × 1 kernel. Every convolution outcome gets computed using the BN and ReLU methods.
Here, the activation function ReLU is replaced by ReLU6, and regularization process takes place using
BN approach supporting the automatic modification of data distribution. In addition, the formulation
of the ReLU6 is defined as follows.

y = min (max(z, 0), 6) (7)

whereas z represents the pixels values in the feature map. The general convolution architecture can be
defined using Eq. (8):

GN =
∑

M

KM,N ∗ FM (8)

whereas KM,N represents the filter, and M & N signifies the input and output channel count. Generally,
the input image comprises the feature image [18], FM indicates input image with feature map which
makes use of the fill style of zero padding.

When the size and channel of input image can be defined as DF ∗DF and M, it is needed to hold N
filter with M channel and the size of DK ∗DK before the output of N feature image of the sizes DK ∗DK .
The computation cost can be defined by DK ∗ DK ∗ M ∗ N ∗ DF ∗ DF . At the same time, the Dw can be
formulated using Eq. (9):

Ĝ =
∑

K̂1,M ∗ FM (9)

where K̂1,M denotes the filter. When the step size is 1, the 0’s placement assures the invariable feature
map size and the step size = 2 indicates that the feature map generated by the applications of deep
and separable convolution model becomes 5% of the feature map of the input image. Fig. 2 depicts the
structure of CNN model.

Figure 2: CNN structure

The deep separable conv framework of MobileNet has been obtained the same output as classical
conv dependent upon the same input. The Dw need M filters utilizing one channel and the sizes of
DK ∗ DK . The Pw needs N filters utilizing M channels and the sizes of 1 × 1. During this condition,
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the calculation cost of deep separable conv structure is DK ∗ DK ∗ M ∗ DF ∗ DF + M ∗ N ∗ DF ∗ DF ,

concerning
1
N

+ 1
D2

K

of that of classical convolutional. Besides, the data distribution is changed with

every convolution layer at the time of network trained.

2.3 Fusion Process

The feature fusion process takes place for fusing the features of LBP and deep features. The fusion
process is important and is done by the use of entropy process. The two feature vectors can be defined
as follows.

fMN1 × n = {MN1×1, MN1×2, MN1×3, . . . , MN1×n} (10)

fLBP1 ×p = {LBP1×1, LBP1×2, LBP1×3, . . . , LBP1×p} (11)

Moreover, the features derived are integrated into a single vector, as provided below.

Fused (features vector)1×q =
2∑

i=1

{fMN1 × n, fLBP1 ×p} (12)

where f signifies fused vector (1 × 1186).

2.4 OQNN Based Classification

The fused features are applied to the QNN model to carry out the classification process. The QNN
is mainly based on the quantum logic gate, comprising the phase rotation, input, reverse rotation,
output, and aggregation. The steps involved in the QNN model are listed as follows.

Step 1: Assume |xi〉 = (cos ti, sin ti)
T , and define the qubit phase rotation gate using Eq. (13):

R(θ) =
(

cosθ −sinθ

sinθ cosθ

)
. (13)

Next, the aggregation process can be resulted into
n∑

i=1

R(θi)|xi〉 = [cos θ sin θ ]T , (14)

where θ = arg
(

n∑
i=1

R(θi)|xi〉
)

= arg
(

tan
∑n

i=1 sin (ti + θi)∑n

i=1 cos (ti + θi)

)
Step 2: The output of Eq. (14) generates the reverse rotation process using controlled NOT gate:

U(γ ) =
cos

(
f (γ )

π

2
− 2θ0

)
−sin

(
f (γ )

π

2
− 2θ0

)
sin

(
f (γ )

π

2
− 2θ0

)
cos

(
f (γ )

π

2
− 2θ0

) , (15)

where f implies sigmoid function which can be achieved using Eq. (16):

U(γ )

n∑
i=1

R(θi)|xi〉 =
[
cos

(π

2
f (γ ) − θ

)
sin

(π

2
f (γ ) − θ

)]T

(16)
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Hence, the relations amongst the output and input of the quantum neurons can be represented as
follows.

y = sin
(π

2
f (γ ) − θ

)
= sin

(
π

2
f (γ ) − arg

(
n∑

i=1

R(θj)|xj〉
))

. (17)

According to the quantum neuron module a QNN, the NN includes input, hidden, and output
layers. It assumes the input variable as |xi〉, outcome of hidden layer h, the outcome of QNN yk, R(θij)

signifies the quantum rotation gate amongst the hidden and input layers for updating the qubits, and
wjk means the network weights for the final and hidden layers [19]. Assume the qubit controlled NOT
gate U(γj) as transfer function of the hidden layer and the outcome of the QNN is represented using
Eq. (18):

yk = g

(
m∑

j=1

wjkhj

)
= g

(
m∑

j=1

wjk sin

(
π

2
f (γj) − arg

(
m∑

i=1

R(θij)|xj〉
)))

, (18)

Whereas i = 1, 2, . . . , n; j = 1, 2, . . . , m; and k = 1, 2, . . . , p.

To optimally modify the variables involved in the QNN model, the PO algorithm is applied. The
PO was simulated by the western political procedure of optimized that contains 2 features. An initial
statement is that every citizen tries for optimizing its goodwill to win the selective. The second statement
has that each party effort for obtaining further seats from parliament. The PO has consisted of 5 phases
that contain party development and constituency distribution, selective campaign, party switching,
interparty selective, and parliamentary affair.

The whole population has been separated as to n political parties that are demonstrated as in
Eq. (19).

P = {P1, P2, P3, . . . , Pn} (19)

All the parties have of n party members, as represented in Eq. (20).

Pi = {p1
i , p2

i , p3
i , . . . , pn

i } (20)

All the parties member contains d dimensional, as depicted in Eq. (21)

pj
i = [pj

i,1, pj
i,2, pj

i,3, . . . , pj
i,d]T (21)

All the solutions are also selective candidates. Supposing there are n electoral districts as signified
in Eq. (22).

C = {C1, C2, C3, . . . , Cn} (22)

It can be considered as n members from all constituencies, as expressed in Eq. (23).

cj = {pj
1, pj

2, pj
3, . . . , pj

n} (23)

The party leader has been determined as member with optimum fitness from the party, as
illustrated in Eq. (24).

q = arg min
1≤j≤n

f (pj
1), ∀iε{1, . . . , n} (24)
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p∗
i = pq

i

Each party leader has been written as in Eq. (25).

P∗ = {p∗
1, p∗

2, p∗
3, . . . , p∗

n} (25)

The winners of distinct constituencies are known as members of parliament, as demonstrated in
Eq. (26).

C = {c∗
1, c∗

2, c∗
3, . . . , c∗

n} (26)

In the selective campaign stage, Eqs. (27) and (28) have been utilized for updating the place of
potential solutions [20].

pj
i,k(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if pj
i,k(t − 1) ≤ pj

i,k(t) ≤ m∗ or pj
i,k(t − 1) ≥ pj

i,k(t) ≥ m∗,
m∗ + r(m∗ − pj

i,k(t));
if pj

i,k(t − 1) ≤ m∗ ≤ pj

ik(t) or pj

i,k(t − 1) ≥ m∗ ≥ pj

i,k(t),
m∗ + (2r − 1)|m∗ − pj

i,k(t)|;
if m∗ ≤ pj

i,k(t − 1) ≤ pj

i,k(t) or m∗ ≥ pj

i,k(t − 1) ≥ pj

i,k(t),
m∗ + (2r − 1)|m∗ − pl

ik(t − 1)|;

(27)

pj
i,k(t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if pj
i,k(t − 1) ≤ pj

i,k(t) ≤ m∗ or pj
i,k(t − 1) ≥ pj

i,k(t) ≥ m∗,
m∗ + (2r − 1)|m∗ − pj

i,k(t)|;
if pj

i,k(t − 1) ≤ m∗ ≤ pj
i,k(t) or pj

i,k(t − 1) ≥ m∗ ≥ pj
i,k(t),

pj
i,k(t − 1) + r(pj

i,k(t) − pj
i,k(t − 1));

if m∗ ≤ pi
i,k(t − 1) ≤ pj

i,k(t) or m∗ ≥ pj
i,k(t − 1) ≥ pj

i,k(t),
m∗ + (2r − 1)|m∗ − pj

i,k(t − 1)|;

(28)

For balancing exploration as well as exploitation, party switching has been implemented. An
adaptive parameter λ was utilized that is linearly reduced in [1–0] under the whole iterative manner.
All the candidates are chosen based on probabilities λ and replaced with least member of an arbitrarily
chosen party, as represented in Eq. (29)

q = arg max
i≤j≤n

f (pj
i) (29)

During the selective stage, the winner in constituency has been reached, as revealed in Eq. (30)

q = arg min
i≤j≤n

f (pj
i) (30)

c∗
j = pj

q

3 Performance Validation

The FHDF-TCIA technique is simulated utilizing Python 3.6.5 tool on a standard dataset,
including 936 images with 78 images in 12 distinct class labels. Fig. 3 illustrates a few sample images.

Tab. 1 and Figs. 4 and 5 demonstrates the overall results analysis of the FHDF-TCIA technique
under ten test runs. The results depicted that the FHDF-TCIA technique has accomplished enhanced
outcomes under every run. For instance, with run-1, the FHDF-TCIA technique has gained precision,
recall, accuracy, F1-score, and kappa of 98.00%, 97.58%, 99.68%, 98.80%, and 98.80% respectively.
Moreover, with run-2, the FHDF-TCIA approach has reached precision, recall, accuracy, F1-score,
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and kappa of 98.06%, 98.57%, 99.12%, 98.85%, and 98.55% correspondingly. Furthermore, with run-
4, the FHDF-TCIA manner has attained precision, recall, accuracy, F1-score, and kappa of 99.10%,
98.80%, 99.33%, 98.67%, and 97.44% respectively. In line, with run-6, the FHDF-TCIA system has
attained precision, recall, accuracy, F1-score, and kappa of 99.76%, 99.33%, 98.88%, 98.55%, and
99.54% correspondingly. Along with that, with run-8 the FHDF-TCIA methodology has achieved
precision, recall, accuracy, F1-score, and kappa of 99.22%, 98.83%, 98.99%, 99.78%, and 97.57%
respectively. Finally, with run-10, the FHDF-TCIA algorithm has gained precision, recall, accuracy,
F1-score, and kappa of 98.74%, 98.56%, 99.33%, 99.54%, and 99.57% correspondingly.

Figure 3: Sample tongue images

Table 1: Result analysis of proposed FHDF-TCIA model in terms of different measures

No. of runs Precision Recall Accuracy F1-score Kappa

Run 1 98.00 97.58 99.68 98.80 98.80
Run 2 98.06 98.57 99.12 98.55 98.55
Run 3 98.08 99.77 99.80 99.22 99.22
Run 4 99.10 98.80 99.33 98.67 97.44
Run 5 98.37 98.70 98.66 99.00 99.00
Run 6 99.76 99.33 98.88 98.55 99.54
Run 7 98.29 99.11 99.34 99.45 99.45

(Continued)



5486 CMC, 2022, vol.71, no.3

Table 1: Continued
No. of runs Precision Recall Accuracy F1-score Kappa

Run 8 99.22 98.83 98.99 99.78 97.57
Run 9 98.68 99.80 99.32 99.41 99.41
Run 10 98.74 98.56 99.33 99.54 99.57
Average 98.63 98.91 99.25 99.10 98.86
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Figure 4: Result analysis of FHDF-TCIA approach with varying measures

Fig. 6 demonstrates the average outcomes analysis of the FHDF-TCIA technique on the test
images applied. The figure depicted that the FHDF-TCIA technique has resulted in to increase in
average precision, recall, accuracy, F1-score, and kappa of 98.63%, 98.91%, 99.25%, 99.10%, and
98.86% respectively.

A comparative outcomes analysis of the FHDF-TCIA system with recent ones take place in Tab. 2
and Fig. 7. The outcomes depicted that the S-DTA manner has reached lower result with an accuracy
of 82.40%. Besides, the S-SVM, H-DTA, H-SVM, and DL-GNB methods have attained a moderately
closer 84.10%, 88.90%, 91.10%, and 92.50%. Afterward, the DL-RF and ASDL-TCI methodologies
have resulted in a competitive accuracy of 93.70% and 98.30%. At last, the presented FHDF-TCIA
manner has accomplished maximal efficiency with the superior accuracy of 99.25%.

Tab. 3 and Fig. 8 highlights the comparative study of the FHDF-TCIA technique with other
techniques. The results demonstrated that the VGG-SVM technique has gained worse outcomes with
an accuracy of 0.594. At the same time, the KNN, Bayesian, Geometry features, SVM, and GF-SRC
techniques have obtained a moderately closer 0.734, 0.75, 0.762, 0.765, 0.77, and 0.792. Followed by,
the GA-SVM and ASDL-TCI models have resulted in a competitive accuracy of 0.831 and 0.983.
However, the proposed FHDF-TCIA system has accomplished maximum performance with a higher
accuracy of 0.992. Therefore, the FHDF-TCIA technique is found to be an effective tool for tongue
color image analysis.
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Figure 5: F1-score and kappa analysis of FHDF-TCIA model under varying runs

Figure 6: Average analysis of FHDF-TCIA technique

Table 2: Result analysis of FHDF-TCIA method with existing approaches with respect to varying
measures

Methods Precision Recall Accuracy F1-score Kappa

FHDF-TCIA 98.63 98.91 99.25 99.10 98.86
ASDL-TCI 98.40 97.30 98.30 97.70 97.80
S-DTA 83.40 82.40 82.40 82.50 82.20
S-SVM 84.20 84.10 84.10 83.90 83.20
H-DTA 89.80 88.90 88.90 89.10 87.80
H-SVM 91.70 91.10 91.10 91.10 91.00
DL-RF 93.80 93.70 93.70 93.70 93.10
DL-GNB 94.50 92.50 92.50 92.80 92.20
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Figure 7: Comparative analysis of FHDF-TCIA approach with varying measures

Table 3: Comparative accuracy analysis of FHDF-TCIA technique with existing models

Methods Accuracy

FHDF-TCIA 0.992
ASDL-TCI 0.983
Geometry features 0.762
Bayesian 0.750
K-NN 0.734
SVM 0.765
GA-SVM 0.831
VGG-SVM 0.594
GF + SRC 0.792
CADAE 0.770
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Figure 8: Accuracy analysis of FHDF-TCIA technique with recent manner
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4 Conclusion

In this study, a new FHDF-TCIA technique has been developed for automated tongue color
image analysis. The proposed FHDF-TCIA technique comprises preprocessing, fusion based feature
extraction, QNN based classification, and PO based parameter optimization. The proposed FHDF-
TCIA model encompasses a fusion of handcrafted local binary patterns (LBP) with MobileNet
based deep features for the generation of optimal feature vectors. In addition, the political optimizer
based quantum neural network (PO-QNN) based classification technique has been utilized for
determining the proper class labels for it. A detailed simulation outcomes analysis of the FHDF-
TCIA technique occurs on benchmark images and the outcomes are inspected in varying aspects. The
detailed comparative results analysis showcased the improved efficiency of the FHDF-TCIA approach
compared to other techniques. In future, the FHDF-TCIA technique can be deployed in real time
environment.
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