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Abstract: Computer gaming is one of the most common activities that indi-
viduals are indulged in their usual activities concerning interactive system-
based entertainment. Visuospatial processing is an essential aspect of mental
rotation (MR) in playing computer-games. Previous studies have explored
how objects’ features affect the MR process; however, non-isomorphic 2D and
3D objects lack a fair comparison. In addition, the effects of these features
on brain activation during the MR in computer-games have been less investi-
gated. This study investigates how dimensionality and angular disparity affect
brain activation during MR in computer-games. EEG (electroencephalogram)
data were recorded from sixty healthy adults while playing an MR-based
computer game. Isomorphic 2D and 3D visual objects with convex and reflex
angular disparity were presented in the game. Cluster-based permutation
tests were applied on EEG spectral power for frequency range 3.5–30 Hz
to identify significant spatio-spectral changes. Also, the band-specific hemi-
spheric lateralization was evaluated to investigate task-specific asymmetry.
The results indicated higher alpha desynchronization in the left hemisphere
during MR compared to baseline. The fronto-parietal areas showed neural
activations during the game with convex angular disparities and 3D objects,
for a frequency range of 7.8–14.2 Hz and 7.8–10.5 Hz, respectively. These areas
also showed activations during the game with reflex angular disparities and
2D objects, but for narrower frequency bands, i.e., 8.0–10.0 Hz and 11.0–
11.7 Hz, respectively. Left hemispheric dominance was observed for alpha
and beta frequencies. However, the right parietal region was notably more
dominant for convex angular disparity and 3D objects. Overall, the results
showed higher neural activities elicited by convex angular disparities and 3D
objects in the game compared to the reflex angles and 2D objects. The findings
suggest future applications, such as cognitive modeling and controlled MR
training using computer games.
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1 Introduction

When individuals play computer-games, information processed by them is primarily visuospatial
in nature. Visuospatial processing involves perceiving, analyzing, manipulating, and transforming
visual patterns or images in order to understand them in the task context. Mental rotation (MR) is one
of the most important aspects of visuospatial processing, which facilitates transformation, rotation,
comparison, judgment, and other spatial manipulation on a mental image to process the object
characteristics (e.g., dimensions, angles, directions, reference frames). Even in day-to-day activities in
our lives, it plays a crucial role, especially in the tasks requiring fast manipulation of the visual contents,
such as learning geometry or navigating a map. Therefore, it is a crucial component of visuospatial
processing concerning learning, reasoning, decision making, and visual perception tasks as well [1–4].

In MR, the characteristics of the visual objects affect task execution. One of these important
characteristics (parameters) is angular disparity at which an individual has to rotate the mental images
[5–9]. It is the angular difference between the two objects, whose mental images are being compared
during an MR task. Shepard and Metzler suggested an ‘inverted V’ shaped plot between angular
disparity and reaction time during the MR task [5]. Later other studies also reported the same trend
of angular disparity on response time in the MR task [6–8]. Another crucial parameter that may affect
the performance during an MR task is dimensionality of the presented images/objects. Studies have
explored dimensionality of the object in 2D and 3D categories and reported performance dependency
on the dimensionality of the image or object during the MR processes [6–8]. Also, the differences
in mechanism followed by the human brain while processing 2D and 3D objects in MR tasks are
discussed earlier. Piecemeal processing is elicited by complex unfamiliar shapes, such as torus shapes,
requiring rotation in-depth, whereas holistic processing is elicited by familiar 2D stimuli, such as
alphanumeric characters, requiring rotation in the picture plane [9–11]. Studies have suggested that
the stimulus category, task environment, and spatial reference frames also play an important role in
selecting the strategy to process the information during MR.

Previous studies have examined dimensionality in MR, where the investigators have used different
types of objects for 2D and 3D, whereby the use of isomorphic stimuli is missing [12,13]. This aspect
is an important concern because the object category (stimulus type) could also influence the strategy
selection to process MR. The current study has used isomorphic objects, allowing better experimental
control in studying the 2D vs. 3D aspects of dimensionality. The point is that if objects are non-
isomorphic, the effect may not be only because of dimensionality, but also the factor concerning non-
isomorphic objects itself could play a role. In the context of the current study, the investigators have
categorized angular disparity into convex angular disparity (CA) and reflex angular disparity (RA).

The behavioral and neuroimaging MR studies have used various tasks to measure or train
MR abilities. Most of them have utilized paper-pencil-based tasks and visual slides based on parity
judgment; however, few studies have also used real-world situations, video games, or computer-
based tasks [14–16]. Computer-games composed of complex visuospatial information with patterns
requiring rotation usually require fast responses, and the MR ability plays an important role in
efficiently executing the task. Though these games have been growing in recent years primarily for
entertainment, recent studies have been supporting their usefulness and effectiveness in assessing and
training cognitive abilities (e.g., [16–21]. Cherney investigated the effects of playing video games on
MR abilities and suggested improved performance on MR tasks [20]. Recently, Milani et al. reported
improvements in MR abilities by playing video games [16]. Hence, computer-games requiring MR
could effectively train the spatial abilities, considering their fast-growing access to everyone through
smartphones and other multimedia devices. So, in order to present the MR processing in an interactive
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and impactful manner, this study has utilized the computer-game environment and presented the MR
in the form of a computer-game to the participants.

Previous studies have investigated the neural activities during MR tasks using different neuroimag-
ing techniques [22–25]. Zacks reviewed several MR studies with neuroimaging methods and suggested
the increased activity in the intraparietal sulcus and adjacent regions during MR tasks. The study also
suggested neural activities in the medial superior precentral cortex, especially with the stimuli favoring
the motor simulation, which indicates the MR dependence sometimes also on motor simulation [26].
Further, the effects of spatial reference frames in MR tasks have also been discussed by Thomas et al.,
showing the increased EEG coherence for allocentric reference frames during the MR task [27].

The frequency bands of EEG rhythms are differently associated with the mental states. The
exhibition of stronger alpha-blocking with the use of an allocentric reference frame is suggested by
previous studies. Further, the desynchronization (loss in power) in alpha rhythms arises with increasing
engagement of the cortical network, which depends on one’s attentional demand for the visuospatial
tasks [22]. Due to the task being allocentric, alpha desynchronization is expected in the brain areas
associated with the task. Also, since CA and 2D were found more challenging than RA and 3D in the
previous study [28], it is expected to reflect higher active areas as no. of clusters for CA and 2D. Further,
the object characteristics in the task also affect the strategy selection during the MR process; therefore,
the cortical activation may vary depending on whether an individual selects a piecemeal or holistic
approach [29]. The right hemisphere dominates in the holistic approach, whereas the left dominates in
the piecemeal approach. The rotation process may approach different strategies with a smaller and
larger angle of rotation [30]. It is suggested in the previous study that rotation through a smaller
angle is a holistic process, whereas rotation with a larger angle is a piecemeal process. Further, 2D
object processing in MR is found more complex than 3D if the objects are isomorphic. Therefore, the
difference in hemispheric laterality is expected between groups, reflecting right-hemispheric laterality
for CA and 3D, however left-hemispheric laterality for RA and 2D.

Oei et al. suggested that the frequent training of a specific cognitive skill also reflects in another
task if they share common underlying demands [21]. A similar phenomenon was also reported by
Meneghetti et al., suggesting the transfer effects of MR training in the task requiring spatial skill
[31]. Understanding the driving parameters in the MR process would certainly help to improve a
computer-game for training the MR abilities. The neural correlates of these parameters may also help
to understand its effect on other cognitive skills and design games for brain entrainment. Interestingly,
it can provide a covert tool to train a cognitive skill silently behind a computer-game. This motivated
us to investigate how the driving components of an MR process in a computer-game impact the human
brain.

The investigators have used a parity task in the current study. The parity tasks are the most
commonly used in the previous MR studies, where an individual had to find the pair of given visual
patterns from the given choices by mentally rotating them; see Fig. 1. We designed a parity judgment-
based computer-game using the Unity3D game engine [28]. Multi-arms 3D models (similar to [5])
and their isomorphic 2D models were utilized, referred to as objects, to invoke mental rotation in the
game. These models were presented with either of the convex (0◦–180◦) or reflex (180◦–360◦) angular
disparities. At each stage (trial), the player had to make parity judgment from multiple similar-looking
objects, and the difficulty level was systematically raised by increasing the number of arms in the
object from 4 to 7. Four groups of fifteen healthy adults played either of the four sections of the
game with a unique combination of angular disparity and dimensionality. Continuous scalp EEG
data at ten sites from the frontal, central and parietal regions were recorded while participants played
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the computer-game. Using standard routines in the MNE-Python toolbox, the raw EEG data were
preprocessed. Then, the power spectral density was computed for the preprocessed data from all
the participants, using the multitaper method in the FieldTrip toolbox. Further, a clustering-based
permutation test was applied on the EEG power spectra to find the brain region with significant
activation due to changes in the game parameters. Also, the hemispheric laterality was evaluated to
show the hemispheric dominance correlated with angular disparity and dimensionality conditions.

Figure 1: A typical MR process in a parity task for finding the target-match from image 1 and 2

2 Materials and Methods
2.1 Experimental Design and MR Gaming Task

This experiment employs a factorial design with angular disparity (AD) and dimensionality (D)
having two conditions each, i.e., 2 (AD: convex vs. reflex range) × 2 (D: 2D vs. 3D objects) between-
groups design. As shown in Fig. 2, there are four groups and, in each group, objects from four
categories of the varying number of arms (4, 5, 6, and 7 arms) were presented twice for each of the
four angles of rotation. Therefore, each of the four groups included 32 (4: arms × 2: repetitions × 4:
angular disparities) trials altogether. The computer-game involving the above-mentioned MR tasks
was designed in the Unity3D game engine [32]. The isomorphic 2D and 3D multi-arms objects, like
the previous studies [5,8], were designed using Blender [33]. The 2D objects were obtained by removing
the depth of their 3D counterparts. The game was developed for the Windows platform and presented
on a 24-inch display with a 1920 × 1080 screen resolution. The gaming task had multiple successive
trials, and in each trial, the player had to identify a multi-arms object presented on the left side of the
monitor and from a group of five look-alike objects (distractors) on the right side. The distractors were
rotated at a fixed angle. Based on the angle of rotation and dimensionality of the objects presented,
the complete game was divided into four sections:

1. CA2D: 2D objects with convex angular disparities;
2. CA3D: 3D objects with convex angular disparities;
3. RA2D: 2D objects with reflex angular disparities;
4. RA3D: 3D objects with reflex angular disparities.
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Figure 2: (a) Angular disparity conditions for CA and RA, (b) the game with 2D (left) and 3D objects
(right)

The four convex type angular disparity conditions for Sections 1 and 2 were AD1CA (= 40◦), AD2CA

(= 80◦), AD3CA (= 120◦), and AD4CA (= 160◦) whereas, the four reflex type angular disparity conditions
for Sections 3 and 4, were AD1RA (= −40◦ or 320◦), AD2RA (= −80◦ or 280◦), AD3RA (= −120◦ or 240◦),
and AD4RA (= −160◦ or 200◦). The angles for AD#RA were the reflection of their convex counterparts
from AD#CA across the 0◦ line in Fig. 2a, where ‘#’ represents the index of the rotation. The objects
were rotated in XY-plane (plane of the monitor screen), considering Z-axis normal to the plane.

The location of matched object was randomized, and the player had to identify the match and
respond by using a mouse as soon as possible for proceeding to the subsequent trial. The trials
were not time-limited so that a player could respond conveniently, and the time was recorded as
response/reaction time. Players earned one score for each correct response and accumulated score
was displayed on the right upper corner of the screen throughout the session. Fig. 2b shows examples
of the 2D and 3D objects utilized in the game.

2.2 Participants and Experimental Setup

Fig. 3 shows an overview of the experimental workflow in the study. A total of 72 healthy
engineering students voluntarily participated in the experiment. The data for 12 participants were
discarded due to either excessive movement artifact or high impedance during the acquisition. After
the exclusion, the sixty volunteers (51 males and 9 females; all right-handed; age range 18–29 years;
Mean = 21.6 years; SD = 3.13) were selected for the study. All of them had normal or corrected to
normal visual acuity. They all reported no medical history of neurological or psychological disorders.
Each participant gave informed consent before starting the experiment, in a format approved by the
Institute Human Ethics Committee. The equal number of participants were randomly assigned to each
of the four groups—CA2D, CA3D, RA2D, and RA3D, each for one gaming section. Each group had
15 participants, and they were instructed to play the section of the gaming task assigned to them. All
the participants were remunerated after the experiment.

The experiment was conducted in an isolated and noise-free environment to avoid any possible
distraction and noise to EEG. The participant was seated on a comfortable chair in front of a
computer monitor with MR gaming tasks. The monitor size was 24 inches with a screen resolution of
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1920 × 1080, and the distance between the monitor and the participant was approx. ∼65 cm. A 10-
channel MP 150 system (BIOPAC® Systems Inc., CA, USA) was used in the unipolar mode to acquire
EEG data from 10 scalp positions—FPz, FC1, FC2, C3, Cz, C4, CP3, CP4, Pz and POz. The individual
gold-plated electrodes were attached at the ten pre-marked positions after measuring based on 10–20
international standards, using Ten20® conductive Neurodiagnostic electrode paste. The linked ears
were used as a common reference for all the channels, and the impedance was maintained below 5 kΩ.

Figure 3: Experimental workflow (left) and schematic diagram for the data acquisition setup (right)

2.3 Task Execution and Data Acquisition

Before starting the experiment, each participant was explained the instructions for the task
execution in detail and asked to keep the head movement minimal during the experiment. The 10-
channels MP150 system was set for a 2 kHz sampling rate. Baseline EEG data for 5 min was recorded
before the gaming-task execution, during which the participant was sitting at rest. After a training
session with four trials (similar but not included in the actual experiment) to get participants familiar
with the tasks, the actual gaming-task assigned to the group was started. The tasks had four levels
with increasing angular disparity, and TTL (transistor-transistor logic) triggers were generated at
the beginning of each level to synchronize the EEG data acquisition with the gaming-tasks using
StimTracker® and a photodiode attached on the monitor. Fig. 3 also shows the schematic illustration of
the data acquisition during the gaming session. The task session for a participant was in a single run.
The tasks were not time-limited; however, the elapsed time (in second) was continuously displayed
along with the total rewarded points in the monitor’s corner. At the end of the gaming session, the
datasets were saved along with the triggers for further offline analysis.

2.4 Group Design with Independent MR Parameters

Based on the individual parameters used for the experimental design, viz., angular disparity and
dimensionality, we further arranged the EEG datasets into four groups for the analysis:

1. Group CA (participants who executed the tasks with convex AD with 2D/3D objects);
2. Group RA (participants who executed the tasks with reflex AD with 2D/3D objects);
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3. Group 2D (participants who executed the tasks with 2D objects with convex/reflex AD);
4. Group 3D (participants who executed the tasks with 3D objects with convex/reflex AD).

Each of the four groups (each with 30 subjects) was analyzed to evaluate the effects of angular
disparity and dimensionality conditions on EEG rhythms.

2.5 Data Analysis

For offline data analysis, the data were first preprocessed utilizing standard routines in MNE-
Python [34], and further analysis was done using the FieldTrip toolbox [35] and customized scripts in
MATLAB® (www.mathworks.com). Fig. 4 shows the analysis workflow employed in the study.

Figure 4: The analysis workflow in MNE-Python (blue) and FieldTrip (black)

2.5.1 Preprocessing of the EEG Data

First, by manually inspecting, we identified and marked if there was a bad EEG channel. Since
using the MP150 system, we could acquire data only ten scalp positions with identical EEG channels at
the high temporal resolution; therefore, along with the bad channels, if any, we also interpolated EEG
data at four important positions—AFz, CPz, P1, and P2; see channels with blue labels in Fig. 5a. These
four positions were in close vicinity of the recorded channels minimizing the possible interpolation
error. The interpolation was done using the spherical spline method [36], which projects the sensor
locations onto a unit sphere and interpolates signals at the bad/missing sensor locations based on
good quality signals at nearby locations. Thus, the datasets were transformed into a total of fourteen
channels. Subsequently, the new sets of 14-channel EEG data were filtered through a 2–60 Hz bandpass
FIR filter followed by a 50 Hz notch filter to remove the power line noise. The filtered data were then
re-referenced with the average of all the channels.

To remove the strong artifact due to the eye blinks during the experiment, we applied ICA (inde-
pendent component analysis) [37]. The eyeblink component was rejected based on the components’
field map, and the clean signal was reconstructed using the rest of the components, shown in Fig. 5b.
After that, the blink-removed EEG data sets were segmented for baseline, and the four angular
disparity categories utilizing the event markers/triggers saved with the data. Finally, the preprocessed
and segmented (condition-specific) EEG data were saved as .fif files for group-wise spectral analysis.

www.mathworks.com
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Figure 5: (a) The originally recorded (black) and interpolated channels (blue), (b) signals morphology
and eye-blink component selection from ICs

2.5.2 Spectral Analysis

Oscillatory components contained in continuous EEG signals often show changes in power
relative to experimental conditions. Since the EEG data were from resting-state recording, we assume
that the power spectrum is stationary over time. Hence, we analyzed the power spectrum averaged for
the whole duration in one gaming session, not how it changes over time. We computed the PSD (power
spectral density) for the preprocessed continuous datasets from all the participants. For computing
the PSD, the multitaper method [38,39] for frequency transformation in ft_freqanalysis was utilized
with a single hanning taper, a frequency bin of 0.25 Hz, and a non-overlapping window of length
4 s. A variance-based trial rejection method was used while computing the spectra for discarding
the windows with variance higher than the 95th percentile of the maximum variance across all the
windows [40]. It discarded the windows with the data having excessive movement artifacts. Thus, the
data were transformed into condition-specific power spectra for each of the fourteen channels. Further,
we computed the baseline normalized power spectra within 2–60 Hz for all channels, dividing the
power spectra in each MR condition by the baseline power spectra. It gives the relative change in power
from the baseline to each experimental condition, aka. relative power. Fig. 6 shows the distribution of
band-specific relative power across brain regions for all four groups compared with the global baseline
(mean of all baselines). The figure also plots the variation in averaged relative power for five regions—
frontal (F), central (C), left central (CL), right central (CR), and parietal (P). Since the figure indicates
that power tends to zero after ∼30 Hz, we constrained our further analysis below 30 Hz.

Using the computed relative power spectra, we applied cluster-based permutation tests [41,42],
and hemispheric laterality analysis [43] to investigate the difference between groups due to changes
in angular disparity and dimensionality in the computer-game with MR. To infer the statistical
significance, we used the alpha level of 0.05 throughout this study.

(a) Cluster-based Permutation Test

As Fig. 6 indicates no changes in power beyond 30 Hz, we constrained our statistical tests within
3.5–30 Hz to improve the sensitivity of the test (i.e., the probability of detecting an effect). Differences
in the relative power at the frequency range 3.5–30 Hz between the baseline and each of the four groups
of the computer-game were statistically evaluated by a permutation test utilizing ft_freqstatistics.m in
the FieldTrip toolbox. The paired sample t-statistic was computed for each EEG channel between
the baseline and a gaming group. The channels were clustered based on their spatial adjacency using
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their neighborhood information. We specified the minimum number of neighboring channels two
(cfg.minnbchan = 2) for considering a cluster sample, i.e., a cluster whose t-statistic is higher than the
corresponding p < 0.05.

Figure 6: Relative power for all the four groups compared with the baseline for the frequency bands θ

(3.5–7.5 Hz), α (7.5–13.0 Hz), and β (13.0–30.0 Hz)

The statistical significance of the spectral power difference between the baseline and a gaming
condition was evaluated using a two-tailed t-test where the cluster’s observed test statistic was the
threshold at the 95th percentile of the null distribution. Subsequently, the cluster level statistic was
computed by taking the sum of the t-values in each cluster, compared with the null distribution of
the cluster statistics computed from the random permutation steps (5000 times) utilizing the Monte
Carlo method. Finally, the p-values of the clusters were computed by estimating the proportion of
draws from the permutation distribution with a maximum cluster-level statistic that is larger than the
cluster-level statistic.

(b) Hemispheric Lateralization

For studying the hemispheric lateralization, we analyzed band-wise regional and global hemi-
spheric laterality. The laterality index (LI), which is the difference between responses from left (PL)
and right (PR) hemispheres normalized by the sum of both, was computed as [43]:

LI = PR − PL

PR + PL

(1)

Here P represents the relative spectral power, and the values of LI vary between −1 to +1,
indicating the complete left to the complete right hemispheric dominance. The values corresponding
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to frontal, parietal, and central regions were computed for each of the four groups. Similarly, the
global laterality indices were computed between the entire left and right hemispheres. The subsets of
channels selected for the left and right regions are shown in Tab. 1. The channels close to the midline
were excluded from both regions.

Table 1: Region-wise channel selection for computing laterality indices

Left region Selected channels Right region Selected channels

FrontalLeft FC1 FrontalRight FC2
Centro-parietalLeft C3, CP3 Centro-parietalRight C4, CP4
ParietalLeft P1 ParietalRight P2
GlobalLeft FC1, C3, CP3, P1 GlobalRight FC2, C4, CP4, P2

3 Results
3.1 Cluster-based Permutation Tests

The condition-specific differences from baseline to each of the four groups were examined using
the significance threshold of 0.05. Though we applied the test for each of the θ , α, and β bands, the
significant clusters were notable around the α frequency range (5–15 Hz) across the four groups. Fig. 7
shows the spatio-spectral changes for all the four groups from the grand baseline, where xlim represents
the frequency range on X-axis and ylim represents the relative power on the Y-axis. The vertical
grey lines show the frequencies at which the clusters exist with a p-value lower than the significance
threshold. For all the four groups, Tab. 2 lists the p-value threshold for the significant clusters, the
number of clusters, and the cluster statistics, which is the sum of t-statistics across the clusters with the
p-value lower than the threshold mentioned above. Appendix A shows the individual clusters for each
of the four groups, where ‘∗’ represents a cluster with p < 0.01 and ‘x’ with 0.01 < p < 0.05.

Figure 7: Plots corresponding to the frequency range for significance difference from baseline and
most significant clusters
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Table 2: Cluster-statistics, p-values, and number of clusters for significant clusters for the four groups

Cluster-statistics p-value No. of clusters

CA 187 0.001 27
RA 54 0.020 9
2D objects 21 0.047 4
3D objects 93 0.011 12

For the CA group, a higher number of clusters were notable in the frontal and parietal regions
within the frequency range of 7.8–14.2 Hz. Fig. 7 also shows a few clusters involving the left central
EEG channels. Appendix A demonstrates individual clusters at each frequency bin. For the RA group,
fewer clusters were notable as compared to the CA group. These clusters were found within a lower
alpha range (8.0–10.0 Hz). The clusters for the RA group were more visible in the frontal and left
centro-parietal regions. In the case of the 2D group, no significant cluster was observed when applying
the test for the frequency range 5–15 Hz; however, a few clusters were found when testing with the
frequency range constrained to alpha (7.0–13.0 Hz). These clusters exist within the higher alpha range
(11.0–11.7 Hz) involving the frontal and parietal regions. For the 3D group, the clusters were found
over the frontal and left centro-parietal regions. These clusters lay within a lower alpha range (7.8–
10 Hz).

3.2 Hemispheric Laterality Tests

LIs were computed for each subject using the relative power for θ , α, and β bands. The
distributions of LIs for all four groups are shown in Appendix B. To examine the laterality changes
from baseline, T-statistics was applied separately for the α band and combined θ , α, and β bands, using
the significance level 0.05. Tab. 3 lists the t-statistics and p-values for regional and global laterality
changes from baseline in all four groups of MR. The italic entries show the significant changes from
baseline. The highly significant changes were found in centro-parietal regions for the alpha band,
guiding the variation in global laterality. For the frequency range 3.5–30 Hz, similar trends were found.

Table 3: t-statistics (t-stat) and p-value (p) showing the significance laterality change from baseline to
MR

Only α (7.5–13.5 Hz) Combined θ , α, and β (3.5–30 Hz)

Frontal Centro-
parietal

Parietal Global Frontal Centro-
parietal

Parietal Global

t-stat p t-stat p t-stat p t-stat p t-stat p t-stat p t-stat p t-stat p
CA −1.20 0.23 −2.52 0.01 0.05 0.96 −2.21 0.03 −1.25 0.21 −2.47 0.01 −1.85 0.07 −1.56 0.12
RA −0.27 0.79 −3.00 0.01 −1.42 0.16 −3.12 0.01 0.32 0.75 −2.15 0.03 −2.18 0.03 −2.40 0.02
2D −0.80 0.43 −3.51 0.01 −1.39 0.17 −3.52 0.01 −0.08 0.93 −3.65 0.01 −1.90 0.05 −3.66 0.01
3D −0.74 0.46 −1.98 0.06 0.09 0.93 −1.74 0.09 −0.84 0.40 −1.02 0.31 1.45 0.15 −0.42 0.68
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Further, the t-test was applied with a significance level of 0.05 to evaluate the difference between
CA vs. RA and 2D vs. 3D groups across the frequency range of 3.5–30 Hz. The mean LIs for baseline
and each group for θ , α, and β bands are shown in Fig. 8. The figure clearly shows the positive LIs for
most of the groups. The positive LIs for the α band indicate higher alpha desynchronization in the left
hemisphere in all the cases of MR. The CA group showed a significant laterality difference from the
RA group only in the parietal region (t-statistics = −2.91, p = 0.01), indicating its right hemispheric
dominance; however, the dominant alpha desynchronization in the left hemisphere impacts it, and
the synergic effect can be noticed in this band. Similarly, the 3D group showed right-hemispheric
dominance in contrast to the left dominating 2D group. The significant differences were found in the
centro-parietal (t-statistics = 1.97, p = 0.04) and parietal (t-statistics = 2.43, p = 0.01) regions as well
as globally (t-stat = 2.32, p = 0.02). Though the right frontal region showed higher positive mean LIs
across all the bands for the CA group compared to the lower LIs for RA, a statistically significant
difference was not observed (t-statistics = −0.61, p = 0.23). Because of the system limitation, we could
not investigate the temporal or other regions.

Figure 8: Band-wise mean LIs for each group (legends in the first subplot are valid for all)

4 Discussion

In the study, the effects of dimensionality and angular disparity in an MR computer-game were
investigated, utilizing the power spectra of EEG recorded during the gameplay. The cluster-based
permutation tests were applied to find the spatio-spectral changes in EEG for the four groups of the
game from the baseline. We also investigated the regional and global hemispheric laterality for θ , α,
and β bands.

The permutation tests showed significant clusters in the frontal, centro-parietal, and parietal
regions around the alpha frequency range, which are aligned with our anticipation. The fronto-
parietal region is frequently referred to in the previous MR studies and related to the visuospatial
representation. The posterior parietal cortex is crucial for representing the spatial maps, mental
image formation, and uploading the spatial reference frames [27,44–48]. The decrease in alpha power
associates with increased cortical activity in related areas. For instance, reduced alpha power in
the parietal region during a cognitive task most likely reflects the cortical activation in the region,
indicating the demand for visuospatial representation [24]. Since the tasks in the study were allocentric,
increased activation in the bilateral parietal cortex was observed due to the object-centered allocation
of attention [49].
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For the group that played the MR game with convex angular disparities, significant changes were
found across the alpha frequency range and beyond (7.8–14.2 Hz). On the other hand, the group with
reflex angular disparity showed fewer clusters with alpha desynchronization limited to lower alpha
frequencies (8.1–10.0 Hz). The former group showed a higher level of alpha desynchronization in
frontal, left centro-parietal, and parietal regions, whereas, for the latter group, it was in frontal and left
parietal regions; these results match our expectations. Previous studies supported the findings for the
right-hemispheric bias of clockwise rotation and left for the counter-clockwise [50]. The significant
changes in the case of convex angular disparity showed lower hemispheric lateralization and an
extended cortical network, whereas the higher level of left-hemispheric lateralization was found in
the case of reflex angular disparity. Since no cluster showed a significant change from baseline beyond
5–15 Hz, the cluster-based analysis was limited to this range for better sensitivity.

The statistically significant clusters and the lateralization indices indicate that the MR with reflex
angular disparity is globally more left-lateralized than convex angles, which is quite close to our
assumption about hemispheric laterality. However, the hemispheric asymmetry in MR processes asso-
ciates not only the parity judgment but also reflects visuospatial processing, which utilizes the bilateral
fronto-parietal network, rather than regions restricted to the posterior parietal regions [23,46,51–55].
In addition, due to the stimulus type, the MR process may require other high-level processing such
as planning, reasoning, and other cognitive engagements; therefore, the left hemisphere usually gets
more involved in the process.

As it is evident that the MR process also depends on the strategy followed by an individual to
execute the task [44], the strategy affects the hemispheric lateralization for the process. The right
hemisphere is recruited if the individual uses a holistic strategy (rotating the image/object as a whole),
whereas the left hemisphere is recruited when the individual rotates the image/object in a piecemeal
manner using an analytic approach. However, in addition to the approach chosen, the type of the
objects (stimuli) and familiarity can impact on the selection of the MR strategy. For example, an
individual may switch to the piecemeal strategy for ‘complexed-looking’ strange shapes [11] and
holistic for the familiar objects or the objects with information, making the rotation easier [56,57].

The MR with 3D objects showed significant changes in EEG spectra in the fronto-parietal regions
leaned towards the left for the lower-α band (7.8–10.5 Hz). On the other hand, in MR with 2D objects,
we found fewer clusters within a higher alpha range (11.0–11.7 Hz), which slightly deviates from our
assumptions. The possible reason for the lower number of significant clusters in the case of the 2D
group could be the effect of mixed 2D-3D perception of the 2D objects in the experiment. Since the
2D objects in this study were designed by removing the depth information from the isomorphic 3D
objects, they still contained some 3D effects. Therefore, the participants possibly followed different
strategies, some of them by putting extra effort involving more reasoning and attention, whereas the
others just guessed or randomly chose the answer instead of answering after rotating them mentally.
Appendix B also shows that the IQR (interquartile range) for 2D is higher than the 3D, indicating
higher variance in the former, which further indicates that the participants possibly followed different
strategies rather than only piecemeal or the holistic approaches.

In laterality analysis, the t-statistics over the variation in laterality indices for each of the four
groups from the baseline show the significant changes in centro-parietal regions, which are majorly
driven by alpha rhythms; see Tab. 3. Further, the global and regional laterality for each of the four
groups over the frequency band (3.5–30 Hz) was evaluated; see Fig. 8. The positive values indicate
higher right-hemispheric power resulting from the increased desynchronization in the left hemisphere,
which indicates a higher level of decision subprocesses and analytical engagement [58]. In the parietal
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region, the negative LI for CA and positive LI for the RA group were observed, indicating right and
left dominating activations; however, the overall left-hemispheric alpha desynchronization impacts
synergically reduce the right hemispheric dominance of the parietal region for the alpha range.

The t-test indicated significant changes in the central region and global laterality indices (LIs) from
baseline to 2D group for α band and beyond but not for the 3D group. It indicates the hemispheric
asymmetry significantly increases from baseline to the MR tasks with 2D objects. Further, the
significant difference between LIs for 2D and 3D groups was found for all the regions showing higher
positive values for 2D. It contradicts some previous findings suggesting 2D prone to the right following
the holistic approach, whereas 3D to the left, utilizing the piecemeal strategy [11]. The possible reasons
we find here are the complexity and object unfamiliarity. Since the objects were unfamiliar and the 2D
without the depth information was more effort seeking, the subjects have possibly followed the more
analytical approach to process the 2D than that of the 3D. Overall, the findings are consistent with
those of earlier MR investigations.

Though the permutation-based clustering is a powerful tool to find the sensor level resting-
state EEG/MEG (electro encephalogram/magneto encephalogram) spectral changes between the
experimental conditions, the higher number of channels could undoubtedly be a strong add on to the
study. The individual gold-plated electrodes and more viscous paste (not gel) facilitated us to reduce
and sustain the EEG input impedance lower (<5 kΩ), and acquire high fidelity data; however, the
study could be reproduced with a dense-EEG, which would enable researchers to investigate also at
the source level. Additionally, new advances in signal processing, and the use of machine learning
approaches [59,60], can aid in the investigation of any hidden pattern in EEG signals beyond the
capability of traditional methods. Such patterns may aid in identifying a biomarker for specific clinical
conditions, such as autism. Further, to keep the objects isomorphic in the current study, the 2D objects
were designed by removing the depth effect from corresponding 3D models; however, they still had
some leftover 3D perception due to design constraints. The perfect isomorphic 2D and 3D models can
be designed for future studies to distinguish their effect on MR more precisely.

5 Conclusion

In this study, the isomorphic 2D and 3D objects with convex and reflex angular disparities were
presented as an MR parity judgment task in a computer-game form. The effects of the objects’
dimensionality and angular disparity on the ongoing brain activity were investigated using the
recorded EEG signal during the gameplay. Increased alpha desynchronization was found in fronto-
parietal regions during the MR games. Further, the left hemispheric laterality was observed within
3.5–30 Hz for most mental rotation cases; however, the activity during the games with convex
angular disparity and 3D objects showed the opposite laterality. The finding suggests possibilities
of influencing the MR process by manipulating the parameters in computer-games. Furthermore,
the correlation of the parameters with cortical functioning shows the possibilities of their effects
on cognitive skills associated with fronto-parietal brain regions. The findings have diverse potential
applicability in the future. They may help to design/improve computer-games for brain entrainment,
which can be utilized in several applications, e.g., mental rotation training. Since computer gaming
is increasingly being part of our day-to-day life, it can also be utilized as a covert tool to entrain our
cognitive skills behind the entertainment silently. An investigation with a larger sample size and the
long-term effect of such games on MR ability may further help to design gaming applications for
training and therapeutic applications. Furthermore, the game’s complexity can be personalized by
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utilizing advancements in machine learning, and the acquired neurophysiological data can be further
investigated in depth.
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