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Abstract: This article presents a new scheme for dynamic data optimization in
IoT (Internet of Things)-assisted sensor networks. The various components
of IoT assisted cloud platform are discussed. In addition, a new architecture
for IoT assisted sensor networks is presented. Further, a model for data
optimization in IoT assisted sensor networks is proposed. A novel Member-
ship inducing Dynamic Data Optimization Membership inducing Dynamic
Data Optimization (MIDDO) algorithm for IoT assisted sensor network
is proposed in this research. The proposed algorithm considers every node
data and utilized membership function for the optimized data allocation.
The proposed framework is compared with two stage optimization, dynamic
stochastic optimization and sparsity inducing optimization and evaluated in
terms of reliability ratio, coverage ratio and sensing error. Data optimization
was performed based on the availability of cloud resource, sensor energy, data
flow volume and the centroid of each state. It was inferred that the proposed
MIDDO algorithm achieves an average performance ratio of 76.55%, reliabil-
ity ratio of 94.74%, coverage ratio of 85.75% and sensing error of 0.154.

Keywords: Data optimization; IoT; sensor network; reliability; membership;
sensor energy

1 Introduction

With the recent revolution in the field of internet technology, big data analysis has become a
trending research area. The main limitation of this domain is the excessive storage requirements due
to the bulk of data involved in IoT systems [1]. The IoT sensors collect huge amount of raw data and
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transfer them to the cloud using a transport layer. The data in the cloud is analyzed by the cloud
servers for further processing [2]. The processed data is transferred back to the cloud. This process
creates severe delay due to the high volume of the data. Hence data optimization is an essential
task [3]. Quantum computing is a popularly used technique for data optimization. This involves
two systems namely tangible and intangible. Tangible systems include manufacturing defects and
intangible systems include sensor defects [4]. IoT systems are powered using wireless technologies.
In these systems the main aim of data optimization is to decrease the age of information [5]. The
main advantage of data optimization is the reduction in the energy consumption. To support this
non-orthogonal multiple access systems are popularly being employed [6]. The life of the IoT devices
is enhanced by the employment of wireless power transfer technology. This technology aids in the
transfer of energy in specific time slots to maximize the efficiency [7]. Another advantage of data
optimization is the efficient data acquisition. This is because of two improvements namely in the
domain of data redundancy and in the domain of energy consumption [8]. Compressive sensing is
used for compressing the acquired data so that the bulk of data transfer can be reduced. In addition,
the compressed data can be recovered back using suitable recovery systems [9]. Thus, data optimization
helps to achieve energy efficient, reliable transfer of IoT data with minimal delay. Further, the overall
cost requirements are also minimized with these schemes [10].

The large number of wireless devices, such as smart phones and the Internet of Things (IoT), has
resulted in the wireless network business producing and collecting an unprecedented amount of data
in recent years, owing to the exponential development in mobile traffic seen in recent years. The above
discussion shows the importance of data optimization in IoT sensor networks. Hence, in this research,
we present a new model for data optimization based on membership inducing technology.

Based on the idea of data optimization gained from the detailed literature survey, a new scheme
called Membership inducing Dynamic Data Optimization (MIDDO) algorithm for IoT assisted sensor
network is proposed in this research.

The main objective of the proposed research is to present a scheme for data optimization in IoT
assisted sensor networks. The system is to be designed such that the data is optimized along with
minimal energy loss and maximum reliability.

The contributions of this paper are as follows:

� The various components of IoT assisted cloud platform are discussed.
� Architecture of IoT assisted sensor networks is discussed.
� Data optimization in IoT assisted sensor networks is presented.
� A novel Membership inducing Dynamic Data Optimization (MIDDO) algorithm for IoT

assisted sensor network is proposed.
� Proposed framework is evaluated in terms of performance ratio, reliability ratio, coverage ratio

and sensing error.

In Section 2, we have discussed the background study data optimization and analytics in Cloud-
IoT Systems. In Section 3, we have discussed modeling on IoT Assisted Cloud Platform, the system
design and data optimization of IoT Assisted Cloud Platform, Membership Inducing Dynamic
Data Optimization (MIDDO) algorithm. Section 4 illustrates the Numerical Analysis, results, and
discussion part. Section 5 concludes the work.
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2 Related Works

This section deals with the background study for IoT supported sensor networks. Data opti-
mization techniques can be made understood through a thorough literature review. The main goal
is to develop a data optimization technique for IoT supported sensor networks. The system must
be built to optimize data while minimizing energy loss and ensuring optimal reliability. Yang et al.
[11] has proposed a system in which the real time data optimization was done based on clustering
model. Here, dynamic transportation technique was used for optimal allocation of resources. The
input database of IoT systems was optimized and various parameters like performance and economic
cost were evaluated. Vimal et al. [12] has presented a scheme for energy enhancement based on
ant colony optimization technique. Clustering was performed based on data aggregation to support
optimization. This clustering technique was done such that the energy constrained devices support
enhanced data utilization. Li et al. [13] has designed a scheme for optimization of IoT devices based
on block chain. This system utilized edge computing technique for the joint optimization. Security
aspects of block chain were enhanced in this system along with the reduction in energy requirements.
Thus, delay tolerant data was achieved in this system. Irshad et al. [14] has proposed a framework for
the optimization of performance of biological systems using IoT network. Here, deep learning was
utilized for achieving optimization. The huge bulk of biological data collected using IoT sensors were
optimized to prevent the loss or damage of sensitive data. Chen et al. [15] has designed a technique for
the minimization of lost energy in unmanned aerial vehicle systems. Further, the loss of transmitted
data is also minimized by the effective optimization of IoT devices. Swarm optimization technique
was employed here to achieve dynamic optimization. Al Shorman et al. [16] has presented a scheme
in which support vector machine was utilized to achieve optimization of IoT data. This system was
designed to protect the IoT data from the distributed denial of service attack.

Further, evolutionary optimization technique was proposed to effectively allocate the IoT
resources. Iwendi et al. [17] has presented a framework for the optimization of energy using a meta-
heuristic approach. The amount of energy consumed by the IoT sensors are minimized using this
technique based on cluster head selection technique. The main advantage was the increase in the life
time of the IoT sensors. Hossain et al. [18] has presented a technique for simultaneous optimization
and compression of IoT data. This technique is designed for implementation by smart decision
systems. Fog and edge computing techniques were evaluated for the data optimization to achieve
sensor efficiency. Côrte-Real et al. [19] has proposed a model for the big data analytics. Here, the IoT
data generated based on European and American firms were collected and used for analysis. Partial
least square technique was used for the data optimization. Azar et al. has designed a scheme for data
compression to achieve energy efficient system in IoT data transfer. Edge machine learning algorithm
was used for the compression of data. Moreover, time saving and improved privacy was achieved by
this system. The transmitted data was constructed over the edge node in this framework to achieve
optimization of data [20–25].

3 Proposed Framework
3.1 Components of IoT Assisted Cloud Platform

The main components of the IoT assisted cloud platform are the data monitoring, data analysis,
data optimization and data prediction.

Fig. 1 illustrates the components of the IoT assisted cloud platform. The first main component
is the data monitoring. The parameters of the IoT sensors are monitored in real-time by the IoT
assisted cloud platform. This is a crucial component especially in case of medical IoT sensors related to
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healthcare. It is also used in other platforms like industrial platform, agricultural sector etc. The next
main component is the data analysis. The analysis of IoT data is done for classification. Classification
is essential so that the system can be improved based on machine learning algorithms. The third main
component is the data optimization. Since the data generated by the IoT systems are huge, it is called as
big data. The two main challenges of the big data are the data storage and data processing. To address
these two issues, data optimization is a must. The last component is the data prediction. Prediction
helps to predict the future variables that can be useful to make various decisions. The various layers
in the architecture of IoT assisted sensor network is discussed in the following section.

Figure 1: Components of IoT assisted cloud platform

3.2 Architecture of IoT Assisted Sensor Networks

The architecture of IoT assisted sensor networks comprises of three main layers that include the
sensing layer, transport layer and the application layer.

Fig. 2 illustrates the architecture of IoT assisted sensor networks. The bottom most layer is the
sensing layer. This layer includes all the IoT sensor nodes. These nodes include physical devices
that collect various real time data and transmit those using wireless technologies like RFID (Radio
Frequency Identification), Wi-Fi etc. The second layer is termed as the transport layer. This layer
is used for transferring the data acquired by the sensing layer to the cloud. The final layer is the
application layer that includes cloud, servers, processors and users. This layer is responsible for
providing application-based services to all the users of the network. Important component of this
layer is data optimization. This is discussed in the next section.

3.3 Data Optimization in IoT Assisted Sensor Networks

Data optimization is essential for optimizing the resource allocation to various components of the
cloud system.
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Figure 2: Architecture of IoT assisted sensor networks

Fig. 3 depict the data optimization scheme in the IoT assisted sensor networks. In these systems,
the first group of devices are the IoT based smart devices. These devices continuously collect real time
data through different equipment. With the development of internet technology various devices are
equipped and connected to the IoT framework. The collected data are huge. This data is transferred to
the IoT cloud. From the IoT cloud, the sensor data is transferred to the storage devices. Again, from
the storage device the data is transferred to the processing unit. The processing unit performs the task
of data optimization.

Figure 3: Data optimization in IoT assisted sensor networks

Fig. 4 indicates the proposed membership inducing dynamic data optimization (MIDDO) model.
The bottom layer of the model has the IoT sensor network. It includes smart houses, smart cameras,
smart phones, smart surveillance systems, smart mills, smart irrigation, smart transportation etc. This
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data is then optimized using the proposed MIDDO model. The optimized data is then transferred to
the cloud. The optimized data has better data rate, better reliability and minimal storage requirements.

Figure 4: Proposed membership inducing dynamic data optimization model

3.4 Proposed Membership Inducing Dynamic Data Optimization (MIDDO) Algorithm for IoT
Assisted Sensor Network

The proposed Membership inducing Dynamic Data Optimization (MIDDO) algorithm for IoT
assisted sensor network is given below.

Algorithm 1: Membership inducing Dynamic Data Optimization (MIDDO)
- Input: State vector of k nodes.
- Output: The optimal data allocation Dopt.
BEGIN

1. For each kth node find the cloud resource as μk = arg max
xk

λ(xk)

2. The initial value of cloud resource is computed as μ0 = {D0.k/
k∑

i=1

D0 > 0}
3. The necessary condition of data optimization is given by the following equation

0 ≤ Xi,j ≤ max(0, μk)

4. The sensor node at the yth location is given by F(y) = {p′(δ)/ξ ∗ Xi,j};
(Continued)
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Algorithm 1: Continued
5. The optimal sensor node is computed using the following equation

F ′
k = min(0, p′(δ));

6. The data flow volume for the i, j state is Mi,j = M −
M∑

i=1

N∑
j=1

δ(i, j);

7. The energy of the sensor for the i, j state is given by Ni,j = N + [μ0/δ(i, j)];

8. The sensor cost for the i, j state is given by Pi,j = P −
M∑

i=1

N∑
j=1

(δ(i, j)∗p′(δ));

9. The initial membership parameter is given by Qfirst
i,j = e

Mi,j /λ
M∗N

;

10. The final membership parameter is given by Qlast
i,j = e

Mi,j /λ
M+N

;

11. The centroid of the ith state is given by Cri =
∑N

j=1 δ(i,j)

M∑
i=1

N∑
j=1

δ(i,j)
;

12. The centroid of the jth state is given by Crj =
∑M

i=1 δ(i,j)

M∑
i=1

N∑
j=1

δ(i,j)
;

13. The optimal data allocation is given by Dopt = arg min
Di

[
Cri−Crj

Q
first
i,j +Qlast

i,j

]
;

END.

The explanation of the proposed algorithm is given below.

For each kth node find the cloud resource as

μk = arg max
xk

λ(xk) (1)

where,μk is the cloud resource of the kth node, xk is the state vector of the kth node and λ(xk) represents
the overall state momentum of the xk node. The term arg max

xk

λ(xk) identifies the value of state vector

that gives maximum value of overall state momentum. Thus, the cloud resource identification is done
in the first step in the optimization of cloud data. The initial value of cloud resource is computed as,

μ0 =
{

D0.k/

k∑
i=1

D0 > 0

}
(2)

where μ0 is the initial cloud resource value, D0.k is the incidence ratio for the kth node, D0 is the initial
incidence ratio, D0 > 0 refers to condition where the incidence ratio is greater than zero, the term

k∑
i=1

D0 > 0 refers to sum of the states when the incidence ratio is greater than zero and {D0.k/
k∑

i=1

D0 > 0}
gives the value of incidence ratio of the kth node, given the total incidence ratio is greater than zero.
The necessary condition of data optimization is given by the following equation,

0 ≤ Xi,j ≤ max(0, μk) (3)

This condition denotes that the non-repeatable data for the i, j state must be in between zero and
max(0, μk). The term max(0, μk) refers to the cloud resource of the kth node if it is greater than zero.
The sensor node at the yth location is given by

F(y) = {p′(δ)/ξ ∗ Xi,j} (4)
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where F(y) refers to sensor node at the yth location, p′(δ) is the coverage area of the F(y) sensor, ξ is
the data rate, Xi,j is the non-repeatable data for the i, j state. The term p′(δ)/ξ ∗ Xi,j gives the ratio of
the of the coverage area of the F(y) sensor to the product of the data rate and non-repeatable data for
the i, j state. The optimal sensor node is computed using the following equation.

F ′
k = min(0, p′(δ)) (5)

where F ′
k is the optimal sensor node identifier, p′(δ) is the coverage area of the F(y) sensor, the term

min(0, p′(δ)) refers to the coverage area of the F(y) sensor if its less than zero. The data flow volume
for the i, j state is

Mi,j = M −
M∑

i=1

N∑
j=1

δ(i, j) (6)

Here, Mi,j is the data flow volume for the i, j state, M is the initial data flow volume and δ(i, j) is the

server space for the i, j state and the term
M∑

i=1

N∑
j=1

δ(i, j) gives the total server space for all the states. The

energy of the sensor for the i, j state is given by

Ni,j = N + [μ0/δ(i, j)] (7)

where Ni,j is the energy of the sensor for the i, j state, N is the initial sensor energy, μ0 is the energy
coefficient and δ(i, j) is the server space for the i, j state. The term μ0/δ(i, j) gives the ration of energy
coefficient to the server space. The sensor cost for the i, j state is given by

Pi,j = P −
M∑

i=1

N∑
j=1

(δ(i, j)∗p′(δ)) (8)

Here, Pi,j is the sensor cost for the i, j state, P is the initial cost and δ(i, j) is the server space for the i,

j state. The term p′(δ) gives the coverage area. The term
M∑

i=1

N∑
j=1

(δ(i, j) ∗ p′(δ)) gives the total coverage

volume of all the sensors. The initial membership parameter is given by

Qfirst
i,j = eMi,j/λ

M ∗ N
(9)

where Qfirst
i,j is the initial membership parameter of the i, j state. The term M ∗ N gives the total area of

nodes in the network, λ gives the state value. The term eMi,j gives the exponential of data flow volume
for the i, j state. The final membership parameter is given by,

Qlast
i,j = eMi,j/λ

M + N
(10)

where Qlast
i,j is the final membership parameter of the i, j state. The term M+N gives the total number of

nodes in the network, λ gives the state value. The term eMi,j gives the exponential of data flow volume
for the i, j state. The centroid of theith state is given by

Cri =
∑N

j=1 δ(i, j)
M∑

i=1

N∑
j=1

δ(i, j)
(11)
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where Cri is the centroid of the ith state, δ(i, j) is the server space for the i, j state, the term
∑M

i=1 δ(i, j)

gives the server space for all the i states and
M∑

i=1

N∑
j=1

δ(i, j) gives the overall server space. The centroid of

the jth state is given by

Crj =
∑M

i=1 δ(i, j)
M∑

i=1

N∑
j=1

δ(i, j)
(12)

where Crj is the centroid of the jth state, δ(i, j) is the server space for the i, j state, the term
∑M

i=1 δ(i, j)

gives the server space for all the i states and
M∑

i=1

N∑
j=1

δ(i, j) gives the overall server space. The optimal data

allocation is given by

Dopt = arg min
Di

[
Cri − Crj

Qfirst
i,j + Qlast

i,j

]
(13)

where,Dopt is the optimal data allocation, Cri is the centroid of the ith state, Crj is the centroid of the jth

state, Qfirst
i,j is the initial membership parameter and Qlast

i,j is the final membership parameter.

3.5 Challenges of Proposed MIDDO Model

The main challenge of the proposed MIDDO model is the vulnerability to security attacks. The
optimization algorithms can be compromised by the attackers to create threats to the entire IoT
framework.

3.6 Benefits of Proposed MIDDO Model

The main advantage of this MIDDO model is the increase in reliability of the system. In addition,
the overall sensing error is reduced with the proposed framework. Further, another main advantage is
the increase in coverage ratio and performance ratio.

4 Results and Discussion

The proposed methodology analyses various parameters like performance ratio, reliability ratio,
coverage ratio and sensing error. These are discussed in this section. Comparison is done with other
data optimization techniques like two stage optimization (TSO), dynamic stochastic optimization
(DSO) and sparsity inducing optimization (SIO).

Tab. 1 shows the variation of performance ratio for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm. It is clear from Tab. 1 that the mean value of performance ratio achieved by two
stage optimizations is 47.97%. Dynamic stochastic optimization achieved a mean value of 55.94% and
sparsity inducing optimization produces a mean performance ratio of 36.41%. However, the proposed
MIDDO algorithm achieves a mean performance ratio of 76.55% for the 12 sensor nodes. Thus, we
find that the proposed system produces best results. This is due to the fact that the proposed system
employs cloud resource allocation as a main criterion.
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Table 1: Variation of performance ratio

SENSOR
NODE

Performance ratio (%)

TSO DSO SIO MIDDO

1 46.5 56.5 38.6 78.9
2 43.2 57.8 32.7 77.5
3 44.7 57.4 35.4 76.4
4 47.5 56.5 33.7 77.4
5 48.9 53.4 36.4 74.5
6 46.4 52.3 35.7 73.5
7 48.5 57.6 32.7 77.2
8 52.3 58.9 36.5 74.2
9 52.4 58.9 37.5 74.1
10 46.8 54.3 35.9 78.6
11 48.6 55.2 38.6 79.4
12 49.9 52.5 43.2 76.9

Tab. 2 shows the variation of reliability ratio for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm.

Table 2: Variation of reliability ratio

SENSOR
NODE

Reliability ratio (%)

TSO DSO SIO MIDDO

1 78.4 88.6 67.5 97.8
2 12 87.4 68.6 92.4
3 76.4 89.6 64.5 95.4
4 76.3 84.6 66.4 92.3
5 78.5 83.5 68.6 92.4
6 79 87.5 65.3 94.5
7 79.8 86.7 63.5 96.4
8 77.5 84.4 63.8 93.2
9 74.5 82.2 68.4 94.3
10 73.5 84.3 68.3 96.2
11 72.1 85.6 67.1 96.3
12 71.3 82.1 69.2 95.7
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It is clear from Tab. 2 that the mean value of reliability ratio achieved by two stage optimizations
is 70.77%. Dynamic stochastic optimization achieved a mean value of 85.54% and sparsity inducing
optimization produces a mean reliability ratio of 66.76%. However, the proposed MIDDO algorithm
achieves a mean reliability ratio of 94.74% for the 12 sensor nodes. Thus, we find that the proposed
system produces best results in terms of reliability. This high value of reliability ratio is due to the
contribution of membership functions in the computation of data optimization.

Tab. 3 shows the variation of coverage ratio for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm. It is clear from Tab. 3 that the mean value of coverage ratio achieved by two
stage optimizations is 65.70%. Dynamic stochastic optimization achieved a mean value of 76.04% and
sparsity inducing optimization produces a mean coverage ratio of 56.37%. However, the proposed
MIDDO algorithm achieves a mean coverage ratio of 85.75% for the 12 sensor nodes. Thus, we find
that the proposed system produces best results in terms of coverage. This is because the proposed data
optimization is directly proportional to data flow volume value.

Table 3: Variation of coverage ratio

SENSOR
NODE

Coverage ratio (%)

TSO DSO SIO MIDDO

1 68.5 78.9 56.7 87.5
2 66.7 75.3 58.6 88.7
3 64.5 74.1 53.4 85.4
4 64.5 78.6 58.9 86.3
5 62.1 75.3 52.5 85.6
6 64.1 72.1 57.3 89.5
7 63.2 78.6 56.3 87.3
8 68.1 79.2 56.8 86.2
9 69.3 71.6 58.3 84.2
10 68.8 75.3 56.3 84.1
11 63.2 74.2 58.3 79.8
12 65.5 79.3 53.1 86.8

Tab. 4 shows the variation of sensing error for 12 different sensor nodes using two stage opti-
mization, dynamic stochastic optimization, sparsity inducing optimization and the proposed MIDDO
algorithm. It is clear from Tab. 4 that the mean value of sensing error achieved by two stage
optimizations is 0.524. Dynamic stochastic optimization achieved a mean value of 0.353 and sparsity
inducing optimization produces a mean sensing error of 0.633. However, the proposed MIDDO
algorithm achieves a mean sensing error of 0.154 for the 12 sensor nodes. Thus, we find that the
proposed system produces best results in terms of sensing error. The least value of sensing error is
due to the fact that the proposed system ensures the location of the optimized data to be placed at the
center of the ith and jth centroid.
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Table 4: Variation of sensing error

SENSOR
NODE

Sensing error

TSO DSO SIO MIDDO

1 0.56 0.36 0.65 0.15
2 0.45 0.35 0.62 0.12
3 0.59 0.32 0.65 0.11
4 0.53 0.34 0.62 0.16
5 0.58 0.38 0.63 0.18
6 0.54 0.39 0.61 0.16
7 0.52 0.37 0.64 0.14
8 0.53 0.35 0.68 0.16
9 0.56 0.32 0.62 0.18
10 0.48 0.31 0.61 0.19
11 0.49 0.36 0.63 0.15
12 0.45 0.39 0.64 0.14

Fig. 5 shows the variation of data flow volume for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm. It is evident from Fig. 5 that the mean value of data flow volume achieved by two
stage optimizations is 833.58. Dynamic stochastic optimization achieved a mean value of 889.91 and
sparsity inducing optimization produces a mean data flow volume of 672.16. However, the proposed
MIDDO algorithm achieves a mean data flow volume of 1158.83 for the 12 sensor nodes. Thus, we
find that the proposed system produces best results in terms of data flow volume. The highest value
of data flow volume is because of the inclusion of coverage ratio p′(δ) in the MIDDO algorithm.
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Figure 5: Variation of data flow volume

Fig. 6 shows the variation of sensor energy for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm. It is evident from Fig. 6 that the mean value of sensor energy achieved by two
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stage optimizations is 55.33%. Dynamic stochastic optimization achieved a mean value of 64.66%
and sparsity inducing optimization produces a mean sensor energy of 53.25%. However, the proposed
MIDDO algorithm achieves a mean sensor energy of 36.33% for the 12 sensor nodes. Thus, we find
that the proposed system produces best results in terms of sensor energy. The highest value of sensor
energy is because the optimized data directly depends on the incidence ratio D0.k.
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Figure 6: Variation of sensor energy

Fig. 7 shows the variation of initial membership for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm. It is evident from Fig. 7 that the mean value of initial membership achieved by
two stage optimizations is 45.66%. Dynamic stochastic optimization achieved a mean value of 50.91%
and sparsity inducing optimization produces an initial membership of 34.91%. However, the proposed
MIDDO algorithm achieves initial membership of 84.16% for the 12 sensor nodes. Thus, we find
that the proposed system produces best results in terms of initial membership. The highest value of
initial membership is because of the proposed system considers the first membership value for resource
allocation.
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Figure 7: Variation of initial membership

Fig. 8 shows the variation of final membership for 12 different sensor nodes using two stage
optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
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MIDDO algorithm. It is evident from Fig. 8 that the mean value of final membershipachieved by
two stage optimizations is 45.16%. Dynamic stochastic optimization achieved a mean value of 54.2%
and sparsity inducing optimization produces a final membership of 31.91%. However, the proposed
MIDDO algorithm achieves a mean final membership of 56.91% for the 12 sensor nodes. Thus, we
find that the proposed system produces best results in terms of final membership. The highest value of
finalmembership is because the proposed MIDDO algorithm considers last membership value along
with initial value for resource allocation.
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Figure 8: Variation of final membership

Fig. 9 shows the variation of optimal data allocation for 12 different sensor nodes using two
stage optimization, dynamic stochastic optimization, sparsity inducing optimization and the proposed
MIDDO algorithm. It is evident from Fig. 9 that the mean value of optimal data allocation achieved by
two stage optimizations is 45.66%. Dynamic stochastic optimization achieved a mean value of 50.91%
and sparsity inducing optimization produces a mean optimal data allocation of 34.91%. However,
the proposed MIDDO algorithm achieves a mean optimal data allocation of 85.16% for the 12 sensor
nodes. Thus, we find that the proposed system produces best results in terms of optimal data allocation.
The highest value of optimal data allocation is achieved because of the effective allocation of the
available resources with minimal loss.
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Figure 9: Variation of optimal data allocation
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5 Conclusion

This paper presented a new algorithm called Membership inducing Dynamic Data Optimization
(MIDDO) algorithm for the IoT data optimization. Here, the data optimization was performed based
on the availability of cloud resource, sensor energy, data flow volume and the centroid of each state.
The optimized data can be used for reducing the storage requirements and data rate of the IoT system.
The advantages and limitations of the proposed MIDDO model were also discussed.

Further, the proposed system was compared with two stage optimization, dynamic stochastic
optimization and sparsity inducing optimization in terms of data flow volume, sensor energy, initial
membership, final membership and optimal data allocation. It was deduced that the proposed model
achieved a mean data flow volume of 1158.83, mean sensor energy of 53.25%, initial membership of
84.16%, meanfinal membership of 56.91% and mean optimal data allocation of 85.16% for 12 sensor
nodes.

In future, we have planned to implement the proposed system in IoT nodes and evaluate the energy
saved and efficiency achieved based on real-time IoT data. Different IoT-based sensing parameters
are required to be significant accumulations for engineers and organizations. In this context, energy-
efficient algorithms can be future study of this manuscript.
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