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Abstract: COVID-19 has become a pandemic, with cases all over the world,
with widespread disruption in some countries, such as Italy, US, India, South
Korea, and Japan. Early and reliable detection of COVID-19 is mandatory
to control the spread of infection. Moreover, prediction of COVID-19 spread
in near future is also crucial to better plan for the disease control. For this
purpose, we proposed a robust framework for the analysis, prediction, and
detection of COVID-19. We make reliable estimates on key pandemic param-
eters and make predictions on the point of inflection and possible washout
time for various countries around the world. The estimates, analysis and
predictions are based on the data gathered from Johns Hopkins Center during
the time span of April 21 to June 27, 2020. We use the normal distribution
for simple and quick predictions of the coronavirus pandemic model and
estimate the parameters of Gaussian curves using the least square parameter
curve fitting for several countries in different continents. The predictions rely
on the possible outcomes of Gaussian time evolution with the central limit
theorem of statistics the predictions to be well justified. The parameters of
Gaussian distribution, i.e., maximum time and width, are determined through
a statistical χ2-fit for the purpose of doubling times after April 21, 2020. For
COVID-19 detection, we proposed a novel method based on the Histogram
of Oriented Gradients (HOG) and CNN in multi-class classification scenario
i.e., Normal, COVID-19, viral pneumonia etc. Experimental results show
the effectiveness of our framework for reliable prediction and detection of
COVID-19.
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1 Introduction

The COVID-19 pandemic, which is also known as the new corona virus disease 2019, has been a
focus of global health concerns since its emergence in December 2019. It is a potentially serious disease
which can lead to death, with the current reported mortality rate of 2%. The acute onset of the disease
might lead to death due to extensive respiratory system failure [1]. During January 2020, COVID-19
rapidly disseminated to many places of China, resulting in more than 7,000 infections by the end of the
month. The total count of cases in the first calendar month of COVID-19 exceeded the SARS cases
reported in 2002–2003, indicating that this new virus can transmit more rapidly than the SARS virus.
The early prediction of COVID-19 may be helpful for states to provide appropriate recommendations
and take necessary measures to prevent boosting of the infection rate when healthcare systems become
saturated [2].

As of early March 2020, the total number of infections worldwide reached 97,000 cases, with a total
of 3,400 deaths [2]. The World Health Organization (WHO) declared the virus outbreak as a pandemic
on March 11th and defined the COVID-19 occurrence as a Public Health Emergency International
Concern (PHEIC) [3] when the virus had been transmitted to 114 countries, including the United
States [3], Thailand [4], South Korea [5], and Japan [6]. A total of 118,000 people were infected and
4,300 people had died [3]. Later on, it was reported that up to 32% of the COVID-19 cases carried a
risk of critical consequences [7,8]. In addition, an unexpected death rate of 61.5% in serious infected
cases was recorded, with the observation that the mortality rate was correlated with age, as well as
patients with concomitant diseases [2]. Caring for the infected people and the seriousness of their
cases created significant demands for medical care that led to the straining of hospitals and medical
services worldwide.

Strict implementation of social-distancing measures is considered to be a primary step towards
interrupting the spread of the pandemic. In early March 2020, mandatory lockdowns were imposed
in various countries around the world, with charges and fines for people who did not follow the
prescribed Standard Operating Procedures (SOPs) [9]. Common measures for social-distancing were
imposed around the world, including closure of educational institutions and businesses which were
considered non-essential, to prevent public gatherings and crowdy events, limiting meetings to online
platforms, etc.

Several models have been proposed for predicting infectious diseases which spread similarly to
the corona virus. Recently, the susceptible-infected-removed (SIR) model [10,11] was used to estimate
the spread and mortality rate of COVID-19. Different versions of these models seem to be either so
simple that they cannot produce accurate predictions or are very difficult to understand. Predictions
of specific features of COVID-19, such as the maximum number of cases, mortality rate in a day
or predicting the peak number, time and date for newly extreme sick individuals per day (SSPs)
are considered to be of vital importance for every country in world, particularly those which are at
the beginning of exponential growth. In particular, rapid and reliable predictions of the coronavirus
pandemic are vital for policymakers to improve their monitoring of the disease trend and to take
proper measures to avoid scarcity of life-saving resources in hospitals and throughout the healthcare
system. To have an influence on the development of infectious disease models, this article presents
the development and use of a Gaussian Model (GM) as a useful, easy and successful explanation of
deaths caused by the COVID-19 pandemic over time, as well as recent studies in the United States
[12] and Germany [13]. In contrast to earlier research, we prefer to employ the informed regular death
rates logarithm [14] as tested input data, as an alternative to cumulative infections, and we also present
the gaussian doubling times principle as a measure of the rate of increase [15]. Gaussian distribution
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function analysis plays an instrumental role in resolving numerous glitches in plasma kinetic theory,
called drift-maxwellian [16] or counter streaming bi-maxwellian [17] velocity distribution functions.
These terms are referred to as statistical physics or plasma physics.

Early and accurate COVID-19 detection is vital to control the spread of COVID-19 among the
people. After the confirmed cases of COVID-19 in vaccinated people, it has become more important
to detect the infected people so they can quarantine themselves and control the spread of disease.
PT-PCR is considered to be the standard technique for COVID-19 detection, but it generates a
large number of false negatives due to numerous reasons such as disease stages, method of gathering
specimens, methodological drawbacks, which delay the detection and control. The specificity and
sensitivity of PT-PCR for COVID-19 detection have been discouraged in numerous studies [18–21].
Therefore, we need an alternative automated diagnostic technique that can prevent the fast spread of
COVID-19 [22].

Apart from the medical effects the COVID-19 has, the world experienced an economic meltdown
when the pandemic broke out. Till today, the world is still found it to recover from these adverse
effects which lead to compulsory virtual meetings, reduction of interactions and reduction of business
opportunities. Medically, COVID-19 posed the greatest threat in that the world was faced with a
dangerous disaster which led to a lot of commotion and death. This led us to finding a way to detect
this COVID-19 so as to ensure this outbreak doesn’t happen again, this experiment is also aimed at
finding a way to control such disasters in the future. Catching COVID-19 at its early stage is crucial
to recovery because once it gets to a certain stage, the effects are deadly and irreversible, detecting it
early will help the patient and the specialists take the necessary actions to mitigate and cure it.

Several governments including China, South Korea, Bahrain and United Arab Emirates, imposed
some of the strictest measures such as imposing curfews and suspended air transport based on the data
gotten from Johns Hopkins University data. This goes to show the relevance and importance of setting
up artificial intelligence as a shield for COVID-19 across the world.

To address the challenges associated with the prediction and detection of COVID-19 at early stage,
we proposed a robust framework for reliable analysis, prediction and detection of COVID-19. The
proposed system is able to successfully detect the viral pneumonia, and other infections along with the
COVID-19. The major contributions of this research work are as under:

• We employed gaussian doubling times to better analyze and predict the COVID-19 worldwide.
• We proposed a robust COVID-19 detection method by employing the HOG and CNN.
• Our COVID-19 detection method is capable of detecting the normal, COVID-19, viral pneu-

monia and other lung infected patients.
• Detailed experiments were performed to demonstrate the efficacy of the proposed framework

for COVID-19 detection and prediction.

1.1 Literature Review

The application of deep learning algorithms has been exponentially increasing in numerous fields
such as cancer detection [23–26], tumors detection [27–31], medicines [32–35], and heart diseases
[24,25]. Research community has also explored various deep learning techniques [36–41] to detect
COVID-19 using lung x-rays. In [32], COVID-Net a CNN-based model was designed to detect
COVID-19 patients. An accuracy of 83.3% was yielded. In [37], various deep learning pre-trained
models such as ResNet-50, VGG-19, GoogleNet, AlexNet were used to detect COVID-19. ResNet-
50 performed well among the other pre-trained models. However, small amount of data was used,
and the model was not evaluated in multi-class environment such as three classes (COVID-19, viral
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pneumonia, bacterial pneumonia) to detect COVID-19. In [34], a deep learning model based on
xception neural network was design to diagnose the COVID-19 patients. An accuracy of 89.6% was
obtained. In [22], three CNN models such as Inception-v3, Inception-ResNet-v2, and ResNet-50 were
employed using 5-fold cross validation to detect COVID-19 patients. 100 X-ray images were used, half
of which belonged to healthy persons and half belonged to COVID-19 patients. RestNet-50 yielded
maximum accuracy of 98%. Similarly, in [39], eleven deep learning algorithms were employed such as
DenseNet-201, XceptionNet, Inception-ResNet-v2, Inception-v3, ResNet-101, ResNet-50, ResNet-
18, GoogleNet, VGG16, VGG19, and AlexNet to detect COVID-19 patients. Two datasets were used
comprising of 50 and 266 images, respectively. An accuracy of 95.38% was obtained using the ResNet-
50 and SVM. In [40], a framework was designed named COVIDX-Net, which can help the radiologists
to detect COVID-19 patients using x-rays images. Dataset comprising of 50 images was used for
experiments. Dataset was divided into two classes such as COVID-19 and normal. Each class has
25, 25 images and were resized to 224 × 224 pixels. Seven deep learning models such as ResNet-v2,
modified VGG19, DenseNet, Inception-v3, Xception, Inception, and MobileNet were employed to
design COVIDX-Net. Among the seven deep learning models, VGG19 performed the best and yielded
the F1-score of 91% for Covid-19 patients. In [41], multi-level thresholding and SVM based COVID-
19 detection framework was designed using the x-ray images and achieved an accuracy of 97.48% on
a small dataset of 40 images.

The limitation of the existing works is the same for all, the problem of inadequate and imbalanced
dataset due to the fact that COVID-19 came into existence is the ending of 2019 and so there have not
been enough dataset gather to enable researcher create effective deep learning models. Deep learning
models require large amounts of data to function as expected so until much more data is gotten, most
experimental works will always be in the improving stage.

1.2 Research Gap

The tasks of creating a model that uses recorded data to detect the presence of COVID-19 is
one that is necessary today, considering how the pandemic caused chaos. However, there were certain
areas which served as hinderances to the execution of the task thereby threatening the efficiency of the
system. These are discussed below:

• Inadequate dataset: considering the fact that the COVID-19 happened barely a year and a half
ago, the dataset gathered is relatively small. This constitutes a problem because deep learning
models require an enormous amount of data to yield effective results with high accuracy.

• Imbalanced dataset: even the gathered dataset contains parts that are not relevant to the task
at hand, this leads to outliers which produce overfitting or underfitting.

2 Mathematical Models

This section presents a detailed overview of the models for COVID-19 prediction globally.
Moreover, we have also discussed the details of our deep learning based COVID-19 detection method.

2.1 Data

Data was gathered via real-time enquiry from Johns Hopkins University data and other sources,
such as the world health organization, in order to examine and predict the coronavirus pandemic for
the worst affected countries. Nowadays, all COVID-19 data are collected from different sources: online
news reports, media reports, government reports, etc. It turns out to be very important to take the data
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from all sources, organize it and examine it to get a full and complete picture of the pandemic and its
significances.

2.2 Formulation of Mathematical Model

Earlier literature and data [1] show that the spread of pandemics in terms of the number of infected
people increases exponentially at first, followed by a peak and rapid decrease [42]. Thus, we adopt a
Gaussian curve to model the evolution of the pandemic. If It denotes the number of infected people
per day t, then it is modelled by the gaussian curve in Eq. (1)

I(t) = I0e−( t−E
� )

2

(1)

where I 0 is the maximum number of cases per day-on-day E, and � is the standard deviation of the
curve.

The rate of change of infections can be derived by differentiating I(t) with respect to t. Thus, the
relative rate of change P(t) is given by Eq. (2)

P(t) =
dI(t)

dt
I(t)

= d ln I(t)
dt

= 2(E − t)
�2

(2)

2.3 Expression for Doubling Time

In terms of doubling time D, the observed cases per day can be expressed as follows:

Ilobst(t) = Iobs0etln2/D (3)

The relative change can be expressed similarly, as follows:

P(t) =
dIobs(t)

dt
Iobs(t)

= d ln Iobs(t)
dt

= ln 2
D

(4)

Using the results of Eqs. (2) and (4), it can be seen that the doubling time in terms of E and � can
be expressed as:

D(E, t) = ln 2�2

2(E − t)
= 0.35�2

E − t
(5)

Then at t = 0,

D(E, 0) = 0.35�2

E
(6)

Thus, to get the Gaussian equation, we need to find the doubling time, through which we can find
the values of E and �.

The doubling time is calculated by using expression (4):

D(t) = T ∗ ln 2

ln
C(X + T)

C(X)

(7)
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where C(X ) is the number of cases on X Day, and T is the rolling window. A rolling window of 7 was
used for this paper.

2.4 Doubling Time for Global Cases

The doubling rate for global cases from 21th April, 2021 is shown in Fig. 1. This date was chosen as
the starting point because this was when reliable data was available onward as more and more countries
make the data public. The observation was carried out up until 27th June, 2021. The assumed error on
the observed data was 20% which denotes the percentage of the data that was wrongly recorded or
inaccurate. The dataset is described in the Section 2.1. To get the value of E, we look at the observed
doubling rate when t = 0:

D(E, 0) = 0.35�2

E
= 22.6 ⇒ 0.35�2 = 22.6E (8)

Figure 1: Doubling rate of global cases

Using Eqs. (5) and (8):

D(E, t) = 0.35�2

E − t
= 22.6E

E − t
= 22.6

1 − t/E
(9)

This is the Gaussian model global doubling rate. Fig. 2 shows the doubling rate from 21 April
2020 to 27 June 2020, with error bars with 20% error.

Figure 2: Doubling rates of global cases
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3 Methodology
3.1 Gaussian Predictive Analysis Method

The main idea of predictive analysis is to imagine, examine and predict the statistical behavior
of worldwide COVID-19 datasets, which can be helpful to understand the pandemic’s development
around the globe. Gaussian predictive analysis will help to predict how coronavirus may grow in
countries with severe confirmed cases and infected people with casualties. Two methods that have been
implemented for analysis of data gathered through the above-mentioned resources will be discussed
in this paper. The first is a simple, Python-based, data analysis library, known as Facebook prophet
library, which is open-source and available in python: it is adopted to provide predictive analysis of
the data.

The second method that is used for this purpose is a parameterized model from different countries,
using the gaussian kernel method. A gaussian-based parameterized model is developed with the help
of least-squares minimization on the data available till June 27, 2020. Assuming that the tuple (di, yi)
represents yi quantity of all reported COVID-19 cases of a specific country on the tth day, the developed
parameterized model reduces the following objective function:

||e||2
2 =

N∑
i=1

[yi − f̂ (di; a, μ, σ)]2 (10)

Here, ||e||2 represents the standard l2 norm (i.e., energy of the error), while N is the total number of
days under consideration. The parameterized model in Eq. (1) is defined by the symmetric bell-shaped
kernel, i.e.,:

f̂ (di; a, μ, σ) = ae
− 1

2

(
di−μ

σ

)2

, ∀ i = 1, 2, . . . N (11)

where a is considered to be the peak of the predictive curve, while μ and σ signify the central point
of regularity and the width of the parametrized model, respectively. The model parameters (a, μ, σ )
are calculated numerically using the ordinary scientific computing library of python (SciPy) to get the
corresponding values for each country.

3.2 COVID-19 Detection
3.2.1 Dataset

We used a standard dataset COVID-19 CHEST X-RAY DATABASE for experimentation
purpose that is publicly available [40]. This dataset was developed by a team of researchers from various
countries such as University of Dhaka, Bangladesh, university of Qatar, Doha, Qatar, Malaysia, and
Pakistan with their collaborators (medical doctors). Dataset comprises of images belong to four classes
such as viral pneumonia patients, normal persons, lung opacity (non-Covid infections), and COVID-
19 patients. We used the second version of this dataset, which has 3,616 images of COVID-19 patients,
6012 of lung opacity, 10,192 of normal persons, and 1,345 of viral pneumonia patients. All the images
of the dataset are in portable network graphic (PNG) format with the resolution of 299 × 299.

3.3 Features Extraction
3.3.1 Histogram of Oriented Gradients (HOG)

Histogram of oriented gradients (HOG) algorithm was designed in [43] to represent an image
based on the gradient direction. HOG is a feature descriptor used in computer vision and image
processing to detect objects and image classification. The main idea of the HOG is to compute the
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histogram of oriented gradient in patches of local images. As shown in Fig. 3 and 4 an input image
is divided into different small, and connected regions called blocks. Blocks are further divided into
cells and histogram of gradient directions. We computed the HOG features as follow. Initially, we
divided the image patch of the sample (48 × 48 pixels) into small cells of equal size (8 × 8 pixels) and
then computed the gradient histogram of the pixels in each cell by dividing the orientations into 9
bins. Instead of using the gradient of each pixel as a feature, computation of nine bins histogram for
each cell makes the representation more robust and compact to noise. The gradient components of
x-ray images were computed using 1-dim centered technique in both directions such as vertical and
horizontal. We computed gradient components as follows:

Gx(x, y) = H (x + 1, y) − H(x − 1, y) (12)

Gy(x, y) = H (x, y + 1) − H(x, y − 1) (13)

where H(x, y) is the value of the pixel, Gx(x, y) and Gy(x, y) represent gradients in both directions
such as horizontal and vertical of the pixel (x, y), respectively. We computed the gradient magnitude
G(x, y) and gradient direction i.e., a (x, y) of the pixel (x, y) as follows:

G(x, y) =
√

Gx(x, y)
2 + Gy(x, y)

2 (14)

a(x, y) = tan−1(Gy(x, y)/Gx(x, y)) (15)

Figure 3: Framework of the proposed system

The range of orientation is (0◦–180◦) for gradients. We computed the magnitude and orientation
of gradients for each pixel in cells. Finally, we computed a normalized histogram for each cell and
concatenated all the histograms to represent a block. The set of block histograms represent the HOG
feature descriptor of the lung x-ray image. The advantage of HOG feature descriptor is that it preserves
the spatial information of an image.



CMC, 2022, vol.72, no.1 841

Figure 4: Histogram of oriented gradients

3.3.2 Convolutional Neural Networks (CNN)

CNNs are popular due to their enhanced performance for image classification. Convolution layers
of CNN along with various filters such as 3 × 3, 5 × 5, 7 × 7, etc., help in extracting the temporal and
spatial features from an image. These layers have weight sharing method that helps in minimizing
the computation efforts [44]. We fed the HOG representation of size 48 × 48 into the CNN. Our
CNN model comprises of three different building blocks such as convolutional layers, max-pooling
layers (sub-sampling) is to down sample an image and minimize the dimension, henceforth, reduce the
computational efforts and costs, and at the end dense layer. There are three convolutional layers, and
each layer is followed by max-pooling layer. Initial two convolutional layers have 5 × 5 kernels while
the third layer has 3 × 3 kernel. All the three convolutional layers are followed by max-pooling layers
of 2 × 2. We added a dense layer, which is followed by a drop out layer of 0.5 to reduce overfitting.
Finally, we used a dense layer for classification purpose for two classes, three classes, and four classes.
The proposed architectural overview of our CNN model is shown in the Fig. 5.

Figure 5: Architecture of the convolutional neural network

4 Results and Analysis

This section provides the results and discussion of different experiments conducted to measure
the performance of our method.

4.1 Detection Performance of COVID-19

We designed a multistage experiment to detect COVID-19 using lung x-ray images for different
classes such as two classes i.e., Normal vs. COVID-19, three classes i.e., Normal, COVID-19, and
Viral Pneumonia, four classes i.e., Normal, COVID-19, Viral Pneumonia, and Lung opacity. We
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employed HOG feature descriptor and feed HOG features into CNN to detect COVID-19 patients,
viral pneumonia, and non-COVID infection of lungs (Lung opacity).

In initial stage of the experiment, we measured the performance of the proposed system on
two classes such as normal and COVID-19 to detect COVID-19 patients. For this purpose, we used
10,192 lung x-ray images of normal persons and 3616 lung x-ray images of COVID-19 to discriminate
COVID-19 patient and normal person. Initially, we split the data into 80/20 and employed HOG
feature descriptor on both the training and testing sets. The training set comprises of 80% (11,047
images) while the testing set comprises of 20% (2761 images) data. As shown in Fig. 6, we achieved
an accuracy of 95.40%, precision of 96.89%, recall of 96.42%, and F1-score of 96.65%. We conclude
from the results that our method is effective to detect COVID-19 patients and can be used for reliably
as the precision rate is higher than PT-PCR tests.

Figure 6: COVID vs. normal

In second stage of the experiment, we measured the performance of the proposed system on three
classes such as normal, COVID-19, and viral pneumonia to distinguish viral pneumonia, COVID-19,
and healthy person. For this, we used 1345, 10192, and 3,616 images of viral pneumonia, normal, and
COVID-19, respectively. We split the data into two sets such as training set and testing set. We used
80% (12,122 images) data of three classes for training the model and 20% (3,031 images) data of three
classes for testing the model. We extracted HOG features from the three classes and fed to the CNN
to discriminate Normal, COVID-19 patients, and Viral pneumonia patients. Fig. 7 shows the results
obtained of the proposed system. Our method yielded an accuracy of 91.55%, precision of 88.44%,
recall of 90.19%, and F1-score of 89.31% for the three classes. We can conclude from the results that
our method has successfully discriminated normal, COVID-19 patients, and viral pneumonia patients.
Experimental results show the superiority of our method to distinguish the healthy person, COVID-19,
and viral pneumonia.

In third stage of the experiment, we measured the performance of the proposed system on four
classes such as normal, COVID-19, viral pneumonia, and non-Covid infection of the lungs (lung
opacity) to show the robustness of our method for multi-class problem. For this, we used the same
number of images that was used for experiments of two and three classes of normal, COVID-19
patients, and viral pneumonia patients. We added 6,012 lung x-ray images of other infections of lungs
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to training and testing set. We split the data of four classes into 80/20 and used 80% (16,932 images)
for training while 20% (4,233 images) for testing purpose. We extracted HOG features from both the
training and testing set, which we fed to the CNN to distinguish the lung opacity (other infections),
normal, COVID-19, and viral pneumonia patients. Fig. 8 illustrates the results of the proposed method
on multiclass problem. We can observe that our method achieved an accuracy of 85.41%, precision
of 84.93%, recall of 85.49%, and F1-score 85.16%, which indicates the reliability of our method for
accurate classification of COVID-19, viral pneumonia and other infections in multiclass environment.

Figure 7: Normal, COVID, and viral pneumonia

Figure 8: COVID, normal, viral pneumonia, and lung opacity

4.2 Confusion Matrix Analysis

The confusion matrix is designed to represent the classification performance of our model in
terms of incorrect and correct projection for each class of the dataset. Keeping in mind these facts, we
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also designed multi-stage experiment for two, three, and four classes of COVID-19 CHEST X-RAY
DATABASE to better visualize the evaluation of the proposed system.

In initial stage of the experiment, we have designed a confusion matrix to show performance of
the proposed system for two classes i.e., COVID-19 and Normal person as shown in Fig. 9. From the
Fig. 9, we observe that the proposed system detected 64 healthy persons as COVID-19 patients out of
6,96 while 74 healthy people as COVID-19 patients out of 2,068. The FP rate of proposed system is
3.11% while the FN rate is 3.58%. This precision and recall rates show the effectiveness of our method
to accurately detect COVID-19 patients. Experimental results show that the proposed method can
reliably be used over the PT-PCR tests as these tests have lower precision rate ranges from 80%–85%.

Figure 9: Confusion matrix for two classes

In the second stage of this experiment, we designed a confusion matrix to visualize the perfor-
mance of our system on multiclass problem such as for three classes i.e., Normal persons, COVID-19
patients, and Viral pneumonia patients as shown in the Fig. 10. From the confusion matrix for three
classes, we observe that there are 46 FP out of 1,039, 68 FP out of 341, and 14 FP out of 136 for
normal persons, COVID-19 patients, and Viral pneumonia patients, respectively. There are 73 FN out
of 1,066, 43 FN out of 315, and 12 FN out of 134 for normal, COVID-19 patients, and Viral pneumonia
patients, respectively. The FP rates of our system are 4.42%, 19.94%, and 10.29% for normal, COVID-
19 patients, and Viral pneumonia patients, respectively while the FN rates of the proposed system are
6.84%, 13.65%, and 8.95%, respectively. Overall, our system achieved FP rate of 11.55% while FN
rate of 9.81%. These experimental results show the superiority of the proposed system for effective
detection of normal persons, COVID-19 patients, and viral pneumonia patients.
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Figure 10: Confusion matrix for three classes

In the last stage of this experiment, we designed a confusion matrix for four classes such as normal,
COVID-19 patients, Viral pneumonia patients, lung opacity and to visualize the performance of the
proposed system to detect COVID-19 patients in multiclass problem as shown in Fig. 11. From the
Fig. 11, we observe that there are total 133 FP out of 601, 105 FP out of 1,041, 55 FP out of 364, 16 FP
out 125 of while 89 FN out of 557, 133 FN out of 1,056, 75 FN out of 384, and 12 FN out of 121 for
normal persons, COVID-19 patients, viral pneumonia patients, and non-COVID-19 lungs infection.
The FP rates of the proposed system are 22.12%, 10.08%, 15.10%, and 12.8% while the FN rates
are 15.97%, 12.59%, 19.53%, and 9.91% for normal persons, COVID-19 patients, viral pneumonia,
and non-COVID infection, respectively. Our system incorrectly classified 90 COVID-19 patients, 40
viral pneumonia patients, and 3 non-COVID-19 infections as normal persons while 64 normal, 32
viral pneumonia patients, and 9 non-COVID-19 infections as COVID-19 patients. The system also
misclassified 20 normal persons, 35 COVID-19 patients, and zero non-COVID-19 infections as viral
pneumonia patients while 5 normal, 8 COVID-19, and 3 viral pneumonia patients as non-Covid
infections.

4.3 Discussion and Conclusion

The fatal COVID-19 pandemic expanded to over 210 countries, producing over 3 million infected
persons and 230,000 fatalities around the globe by the end of April, 2020 (with a few countries of Asia,
Europe and, now, the US suffering the most). This work is based on the development, investigation
and simulation of a novel approach for facilitating in-depth analysis of the spreading and overcoming
of COVID-19 in the environment.
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Figure 11: Confusion matrix for four classes

The proposed gaussian model allows unpretentious predictions of the imminent progression of
the COVID-19 sickness and we have presented a first indication that a gaussian model is intelligent
enough to apprehend the time evolution of the day-to-day mortalities and infections per country.
Suitable models present past data, as well as data from China. The proposed model is so adaptable
that it can be replicated and practiced without thorough knowledge of epidemiology, statistics or
programming languages. There are numerous countries not yet severely affected by COVID-19, which
will likely vary over the coming weeks. Thus, the gaussian model may apply to such nations, as soon
as adequate data is available. Using the formula presented here, interested readers are in the position
to obtain estimates for the shape of the Gaussian curve for their country so that governments and
public bodies may apply this model to compute further measures of interest, such as estimating the
maximum quantity of respiratory machines required and the date of this maximum requirement.
Predicting the time of extreme rush days for SSPs, the total number and distribution of SSPs may
allow the administration and health agencies in these countries to enhance the management of disease
waves by taking efficient, time-limited, drastic measures. Additionally, as our analysis shows here, the
peak time of the virus wave varies between countries. Recognition of these peak times and related
timeframes helps other countries to benefit those who reach the height of the tendency for a brief,
predictable period with respiratory equipment and skilled medical staff at a slightly later time. We also
expect to raise community awareness of the gaussian or sigmoidal complexity resulting from infections
with COVID-19, parallel to the various recent deliberations on exponential functions.

Moreover, this paper has also presented a reliable framework for COVID-19 detection. We
extracted HOG features from lung x-ray images and employed CNN for two classes i.e., COVID vs.
Normal, three classes i.e., COVID-19 vs. Normal vs. Viral Pneumonia, and four classes i.e., COVID-
19, Normal, Viral Pneumonia, and Lung opacity to detect COVID-19 patients. The higher precision
rate shows the superiority and effectiveness of the proposed COVID detection system. Experimental
results on all the classes signify that our method performed well and effectively detected the COVID-19
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patients in two classes as well as in multiclass environment. In future, we aim to perform cross dataset
experiments to show the generalizability and strength of the proposed system for COVID detection.
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