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Abstract: The Internet of Things (IoT) has been deployed in diverse critical
sectors with the aim of improving quality of service and facilitating human
lives. The IoT revolution has redefined digital services in different domains
by improving efficiency, productivity, and cost-effectiveness. Many service
providers have adapted IoT systems or plan to integrate them as integral parts
of their systems’ operation; however, IoT security issues remain a significant
challenge. To minimize the risk of cyberattacks on IoT networks, anomaly
detection based on machine learning can be an effective security solution
to overcome a wide range of IoT cyberattacks. Although various detection
techniques have been proposed in the literature, existing detection methods
address limited cyberattacks and utilize outdated datasets for evaluations.
In this paper, we propose an intelligent, effective, and lightweight detection
approach to detect several IoT attacks. Our proposed model includes a collab-
orative feature selection method that selects the best distinctive features and
eliminates unnecessary features to build an effective and efficient detection
model. In the detection phase, we also proposed an ensemble of learning
techniques to improve classification for predicting several different types of
IoT attacks. The experimental results show that our proposed method can
effectively and efficiently predict several IoT attacks with a higher accuracy
rate of 99.984%, a precision rate of 99.982%, a recall rate of 99.984%, and an
F1-score of 99.983%.

Keywords: Anomaly detection; anomaly-based IDS; cybersecurity; feature
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1 Introduction

The Internet of Things (IoT) is now widely used and has been integrated into a wide range
of critical domains, including healthcare, transportation systems, energy, and manufacturing. This
technology enables multiple connected devices to communicate and exchange data with minimal or
no human interaction, offering many great advantages for both service providers and end users. IoT
applications have transformed buildings, vehicles, health-care systems, and even entire cities into smart
objects. With increasing demand for such a technology, the number of IoT devices is expected to reach
83 billion by 2024 [1].
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As heterogeneous data structures and protocols are inherent in IoT networks, security and privacy
issues have emerged. Consequently, IoT networks remain susceptible to several cyberattacks that
affect both service providers and end users. A well-known security issue that threatens web service
availability is Distributed Denial of Service (DDoS) attacks. Such an attack benefits from a large
group of compromised devices generating massive traffic toward the target, rendering the service
unresponsive or unavailable to legitimate users. Even worse is when the attack employs a botnet,
which enables the attacker to remotely control a large group of infected devices and launch IoT-based
botnet DDoS attacks, consuming available resources and causing tremendous damage to the target in a
short time [2]. Another common IoT security risk is a man-in-the-middle attack, in which an attacker
intercepts the network communication between IoT nodes and masquerades as an authentic device
to eavesdrop and compromise their communication [3]. Hide and seek (HNS) is another IoT threat
in which a malware employs a botnet to quietly compromise thousands of devices using advanced
communication techniques [4]. These devices are added to the malware network to perform malicious
activities.

Cybersecurity threats continue to pose a significant challenge to IoT networks, raising the demand
for securing them. Mirai botnet is a common IoT attack that causes significant damage. The IoT-
based botnet Mirai exploits IoT vulnerabilities and employs millions of infected IoT devices for
remote control and instruction by an attacker to behave as a group of malicious botnets to launch
a destructive DDoS attack [5]. The Mirai attack renders various service providers unavailable as they
encounter massive malicious traffic capable of disabling web services. In 2018, attackers targeted a
Saudi petrochemical plant to remotely access the workstation by installing malicious malware to
destroy data and shut down plant infrastructure [6]. Researchers found in 2019 that two million smart
home devices, including security cameras, baby monitors, and smart doorbells might be used to track
and eavesdrop on owners’ devices. The attack exploits vulnerabilities in Peer-to-Peer (P2P) technology,
allowing access without manual configuration [7]. Another sophisticated botnet-based IoT attack is
Dark Nexus, more than 40 versions of which have been developed in a short time (three months) and
affect a wide range of IoT devices [8]. Regrettably, IoT devices in the health-care sector are vulnerable
to and exploited by attackers. IoT devices can be deployed to monitor, manage, and alert health-care
workers about patient status, including infusion pumps, insulin pumps, and thermometer sensors;
attacks such as ransomware [9] and DDoS have had a major impact on smart healthcare devices [10].

An anomaly detection system has been implemented and integrated with IoT systems as an
essential component for securing IoT networks from several cybersecurity threats [11–13]. The
Intrusion Detection System (IDS) has grown in popularity as an effective protection for network
services. IDS can be utilized in two forms, signature-based and anomaly-based [14]. Signature-
based IDS (also known as rule-based IDS) detects attacks by searching for certain patterns to
identify an attack’s signature and report matched existing threats [15]. However, signature-based
IDS has a number of limitations [14]: it detects only known attacks and fails to identify new or
previously unknown threats such as zero-day attacks. As the number of newly discovered attacks has
increased, the number of signatures to match and identify attacks has also increased. Consequently,
the detection system’s computation cost increases, affecting overall performance and causing a critical
issue for real-time attack detection. Another issue with signature-based IDS is the need for human
involvement in reviewing, analyzing, and developing signature rules for new attacks, which consumes
time and effort and results in cost increases. Anomaly detection-based techniques can address all
the limitations listed above and identify both known and unknown attacks [16]. In other words, the
system builds normal user behavior from a sequence of incoming normal events; trained parameters
identify suspicious activities and consider them anomalies if they differ from the trained normal user
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model. Although anomaly-based IDS approaches overcome numerous limitations in signature-based
techniques, reducing false positive rates could be a challenge [17]. Many traditional solutions for
anomaly-based IDS are designed for dedicated hardware or traditional networking models; less effort
has been put into developing anomaly-based IDS for IoT networks [18]. The largest obstacle is that,
owing to the nature of IoT environments that have limited computational resources, it is crucial to
deploy an IDS on such an environment, raising the demand to design and develop a cost-effective
anomaly-based IDS for IoT applications. The deployment of a lightweight IDS close to IoT devices
will ensure an effective security protection to detect anomalies as near as possible to the IoT data
source. Another issue is that many anomaly-based IDSs have been developed based on different
techniques, such as statistical methods and rule-based models; these models often suffer from a high
false positive rate [19]. Although some traditional anomaly detection methods provide promising
results, these approaches rely on a single model, which may affect the prediction decision.

In this paper, an intelligent, lightweight, effective anomaly detection approach is proposed to over-
come a diverse range of IoT cyberattacks. As traffic flow features play a vital role in detecting attack
behavior, we propose a collaborative feature selection method for selecting the most valuable features
that can effectively and efficiently detect attacks with higher accuracy and reduce false positives.
Because a robust detection approach requires detecting attacks rapidly to avoid further damage to the
target, our feature selection approach uses a set of algorithms to choose the best representation from
a given traffic flow with the goal of removing unnecessary features and improving detection time. We
also propose an ensemble learning method that employs multiple learning techniques that collaborate
in detecting several different cyberattacks with improved predictive performance. Additionally, we
validate our approach by applying the proposed model with the modern IoT dataset Aposemat IoT-
23, whose modern attack features include sophisticated attacks such as IoT-based botnet attacks. The
main contributions of this paper can be summarized as follows:

� We propose an intelligent, lightweight, and effective anomaly detection approach to detect a
diverse range of modern cyberattacks in IoT networks.

� We develop a collaborative feature selection method that uses a group of machine learning
models to produce an optimal representation set of data features to effectively and efficiently
help the anomaly detection model predict IoT attacks.

� To improve detection performance, we employ an ensemble learning model, which combines
several learning techniques to produce the best prediction decision.

� We model, validate, and analyze our anomaly detection approach with both large- and small-
scale data to show the effectiveness of the proposed method, which can accurately and quickly
identify abnormal data when the dataset is relatively small.

� We analyze, evaluate, and compare our proposed method with other machine-learning tech-
niques and existing works to demonstrate the robustness and effectiveness of our proposed
method.

2 Related Works

A number of related works for anomaly detection-based IDS in the IoT network have been
proposed. Soe et al. [20] suggested a sequential attack detection approach for IoT environment that
utilizes machine learning techniques. The proposed detection method is validated based on the N-
BaIoT dataset which contains both normal and IoT attack traffic. The experiment result showed that
the proposed method can detect attacks with higher accuracy result. Injadat et al. [21] proposed a
detection mechanism by using a hybrid technique based on machine learning for attack classification.
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The detection approach utilized the bayesian Optimization Gaussian Process (BO-GP) model and
Decision Tree (DT) model. The evaluation results showed the efficacy of the proposed mechanism;
however, the result was performed on a small scale of normal data instances. Authors stated that in
the future work they will use more normal data samples to ensure more normal trained behavior in
such a complete dataset. Patel et al. [22] proposed a hybrid anomaly detection approach to identify
anomalies in the network. Authors used entropy method to calculate traffic feature; and the entropy
values were used then in a One Class Support Vector Machine (OCSVM) to classify anomalies.
The evaluation results showed the efficacy of the proposed approach. However, the performance
results have been performed on a synthetic dataset and limited to certain types of cyberattacks. Wang
et al. [23] proposed a host-based detection method for predicting cyberattacks in IoT environment.
Authors used a machine learning method named the Extreme Gradient Boosting (XGBoost) and Long
Short-Term Memory (LSTM) as a deep learning model for anomalies detection. The performance
metrics demonstrated that the proposed anomaly detection mechanism achieved good performance
results. However, authors examined their approach on customized dataset, in which a part of the
data was constructed by authors. In addition, the used dataset was limited to certain types of IoT
attacks; and not including sophisticated attacks such as IoT based botnet attacks. Alrashdi et al. [24]
proposed an anomaly detection approach (AD-IoT) to overcome cybersecurity attacks in a smart
city. The detection method utilized a machine learning technique based on random forest algorithm.
The evaluation results demonstrated that the proposed approach can effectively detect several IoT
cybersecurity threats in a smart city. However, the training model was performed on UNSW-NB15
dataset which was available in 2015. Abbasi et al. [25] proposed an anomaly detection to detect
several attacks in IoT networks. The proposed metho utilizes two machine learning techniques:
logistic regression and Artificial Neural Network (ANN). Authors used logistic regression model
for feature extraction, and ANN for attack classification. The performance results exhibit higher
accuracy, precision, recall, and F1-score rate. However, authors have not provided the prediction time
for the proposed method which is an essential part to evaluate the proposed model. Ullah et al. [26]
proposed an anomaly-based IDS in IoT environments which utilizes a deep neural network model
named a Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) for classifications.
Authors used Recursive Features Elimination (RFE) technique to select the best 48 features from 80
data features. The proposed approach obtained higher performance results compared to other used
techniques in the paper. However, authors have not provided the training and prediction time for
the proposed model. Sahu et al. [27] proposed a detection approach in the IoT environment using
hybrid deep learning model. Authors used CNN to extract data features for traffic classification. In
the detection phase, the proposed model used LSTM technique to predict and classify attack traffic.
The evaluation results show that the proposed model achieved 96% as an accuracy rate in detecting
IoT attacks. However, LSTM model is considered to be slow in attack detection due to sequential
computation such a model utilized in several layers. Dutta et al. [28] proposed a hybrid detection model
for network intrusion detection system. The proposed work utilized a Classical Auto Encoder (CAE)
technique along with a Deep Neural Network (DNN) model. The CAE model employed as feature
engineering to select most relevant features for traffic classification. The DNN used the produced
features from CAE for anomaly detection. The performance results illustrated that the proposed model
achieved good performance results comparing to other models. Xu et al. [29] proposed a hybrid deep
learning mode using CNN with ConvLSTM to distinguish between authentic and fake biometrics in
IoT platforms. The evaluation results of the proposed method achieved higher performance results
in terms of accuracy, sensitivity, specificity, and the F1 score. A number of limitations have been
identified in the literature. For example, using synthetic datasets rather than real-time IoT traffic may
have an impact on detection performance. Another issue is the lack of publicly available real datasets
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for researchers to validate their approaches due to privacy concerns. Some proposed work provides
promises performance results, but their approaches performed on outdated dataset which is limited to
specific types of attacks and not including sophisticated cyberattacks such as botnet. Another issue is
that some proposed techniques in the literature have a relatively high false alarm rate; they rely on a
single method, which may have an impact on detection effectiveness.

3 Proposed Method

Fig. 1 illustrates the proposed anomaly detection framework for IoT, which comprises three
phases: the preprocessing phase, the feature selection phase, and the classification phase. In this
subsection we illustrate the three phases of the anomaly detection framework.

Figure 1: The proposed anomaly detection framework for IoT

3.1 Preprocessing Phase

The cleaning and data standardization stages are the most significant parts of the preprocessing
phase. Data cleaning is important; it guarantees that the data used to generate the models are of higher
quality. As part of the data cleaning process, duplicates were removed, missing data were replaced,
structural errors were fixed, and unnecessary (possibly noisy) observations were removed. After the
data have been cleaned, they will be standardized by using the following expression:

x(i)
std = x(i) − μx

σx

(1)

where x represents the data value, μ represents the data mean, and σ represents the data variance.

3.2 Feature Selection Phase

The data feature is the most critical step in identifying and detecting anomalies. To build an
effective, efficient, lightweight detection model, it is necessary to choose the most distinctive features.
The best selected representation of features leads to build a useful predictive model. The goals of the
selected features are to reduce overfitting data, improve detection accuracy, and minimize detection
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time, as such a robust prediction model should rapidly detect attacks before they further damage the
system. In addition, IoT devices have limited computational resources, which requires a lightweight
anomaly detection technique. Therefore, we employ a collaborative machine learning model to select
the most relevant features for our detection techniques. Our approach utilizes a group of machine
learning models that cooperate in selecting the best distinctive features and eliminating the useless
ones to predict attacks effectively and efficiently with higher accuracy and lower detection time. We
utilize four machine learning techniques: Decision Trees (DT), Extra Trees (ET), Random Forest (RF),
and XGBoost (XGB). Each feature selection method nominates best features independently based on
their detection performance; features that achieve high scores are added to the optimal feature set,
which is then utilized in the detection stage.

3.2.1 Decision Trees

A DT is a tree structure that looks like a flowchart, with an internal node representing a feature
(or attribute), a branch representing a decision rule, and each leaf node reflecting the outcome. In
a decision tree, the root node is the uppermost node and learns to divide based on an attribute’s
value. Recursive partitioning is a method of recursively splitting a tree. This flowchart-like form, which
closely reflects the human thought process, aids in decision-making. DT takes less time than the other
techniques to train data, and the number of records and characteristics in the provided data determine
the temporal complexity of the decision trees. DT is a non-parametric or distribution-free approach
that does not rely on probability distribution assumptions. The following is the core principle behind
every decision tree algorithm:

� To separate the records, choose the best attribute using Attribute Selection Measures (ASMs).
� Break the dataset into smaller subgroups by making that attribute a decision node.
� Start tree construction by recursively repeating this method for each child until one of the

following three conditions matches:
o The tuples are all associated with the same attribute value.
o There are no more characteristics available.
o There are no more examples.

Attribute selection measures are heuristics for determining the optimum splitting criterion for
partitioning data. Because they assist us in determining breakpoints for tuples on a particular node,
they are also known as splitting rules. By describing the provided dataset, an ASM assigns a score to
each feature (or attribute). As a dividing attribute, the best scoring attribute will be chosen (Source).
Split points for branches must also be defined in the case of a continuous-valued property.

The Gini technique is used to produce split points in the decision tree algorithm [30].

Gini(D) = 1 −
∑m

i=1
Pi2 (2)

The chance that a tuple in D belongs to class Ci is given by Pi. For each attribute, the Gini Index
analyzes a binary split. You may compute a weighted sum of each partition’s impurity. If data D are
partitioned into D1 and D2 as a result of a binary split on attribute A, the Gini index of D is [30]:

GiniA(D) = |D1|
|D| Gini(D1) + |D2|

|D| Gini(D2) (3)

When a discrete-valued property is chosen, the subset that yields the lowest Gini index is picked
as a splitting attribute. When dealing with continuous-valued characteristics, the method is to choose
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each pair of nearby values as a candidate splitting-point, with the point with the smallest Gini index
chosen as the splitting point.

ΔGini(A) = Gini(D) − GiniA(D). (4)

The attribute with the lowest Gini index is picked as the dividing attribute [30].

3.2.2 Extra Trees

Extremely randomized trees (ET) is a type of learning method that generates a classification result
by aggregating the results of many decorrelated decision trees gathered in a “forest,” except for how
the decision trees in the forest are built. In the ET decision, the original training sample is used to
build all the trees. The tree is then given a random sample of k features from the feature set at each
test node, from which it must select the best feature to divide the data according to a mathematical
criterion (typically the Gini index) [31]. This random sample of attributes is used to build several
decorrelated decision trees. As the forest is constructed, the computed normalized reduction will be
used in the feature decision (Gini index is utilized in constructing the forest) is computed for each
feature to perform feature selection utilizing the above forest structure. The feature’s Gini importance
is the name given to this value [31]. To conduct feature selection, each feature is ranked in descending
order by Gini importance, and the user selects the top k features depending on their preferences [31]:

Gini = 1 −
C∑

i=1

(pi)
2 (5)

where C is the total classes and Pi is the probability that an element will be classified as belonging to
a specific class.

� Larger partitions are preferred.
� The percentage of classes is squared.
� If the element is perfectly categorized, the Gini index would be 0.
� 1 – (1/# Classes) would be evenly distributed.
� You are looking for a variable split with a low Gini index.
� 1 – (P(class1)2 + P(class2)2 + . . . + P(classN)2) is the algorithm.

3.2.3 Random Forest

The RF model generates a collection of decision trees from a random sample of the training
data [32]. It is made up of a collection of DT created from a randomly chosen training set, which
then collects votes from numerous decision trees to arrive at the final prediction. To assess feature
importance, the decrease in node impurity is weighted by the chance of achieving that node. The node
probability is calculated by dividing the number of samples that arrive at the node by the total number
of samples. The greater the score, the more important the trait [32]. For estimating the significance of
each node in a decision tree utilizing Gini importance [33], under the assumption that there are only
two child nodes (binary tree),

nij = wjCj − wleft(j)Cleft(j) − wright(j)Cright(j) (6)
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� nij node j’s importance
� wj number of samples reaching node j, weighted
� Cj node j’s impurity value
� left(j) child node from node j’s left split
� right(j) child node from node j’s right split

3.2.4 XGBoost

The XGBoost provides a split-finding method for optimizing trees, as well as built-in regular-
ization to prevent overfitting. In general, XGBoost is a faster and more accurate form of gradient
boosting. The basic assumption of the XGBoost technique is to train an ensemble (group) tree model
progressively with a penalty parameter.

3.2.5 Proposed Feature Selection Method

Given a classification task and a set of training examples (xi, yi) in which xi ∈ R
n is the input

example and yi ∈ {−1, 1} is the corresponding class and 1 ≤ i ≤ n, our main task is to choose a set
of features fk, such that k ≤ n, based on finding a classifier with a decision function f (X , θ) such that
the labeling class vector Y is a function Y = f (X , θ) and θ is a set of parameters that are determined
according to some classifier ∈ {DT , ET , RF , XGB}. To determine local importance of a variable for
a feature, the parameters are of the utilized classifier is estimated and the overall importance for a
feature is applied. In the feature selection phase, a set of machine learning techniques are utilized in
order to identify the best features from the given dataset. In this stage, we have proposed a new way
to select the most important features which contain the important information that can be used to
construct the anomaly detection model. We applied each machine learning techniques (DT, ET, RF,
XGB), and then we select the features with the best triple performances (Ac, Pr, Fs) using the following
equation.

fr = max(Ac, Pr, Fs)C(i)

r i=1...N (7)

where

� N number of classifiers
� Ac accuracy value
� Pr denote for precision value
� Fs indicate the F1-score
� C (i) set of utilized classifiers

Applying the proposed criterion, we guaranty that the best features will be selected, and the
dimension of the input data will be reduced; indeed, the proposed criterion is used as dimension
reduction technique. Following that, the selected features will be entered to the ensemble learning
model to determine whether a given flow of traffic is normal or indicates an attack.

Here is the complete algorithm:

Input:

a dataset (X , Y) in which the matrix Xn x m is the input and the vector Y is the output; and in each
training example (xi, yi), xi ∈ R

n and yi ∈ {−1, 1}
C is the set of the employed classifier, C ∈ {DT , ET , RF , XGB}
Output:
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A set of features F = {f1, f2, . . . , fk}, k = 1 . . . n

For each of classifier C, apply its learning algorithm to estimate the parameter θ :

Choose the best important features Fc = {f1c, f2c, . . . , frc| 1 ≤ r ≤ n } such that redundant or
non-informative predictors are eliminated and according to the Eq. (7).

Applying Eq. (7) for the given set of features will result in the addition of chosen features to the
output pool Fc to help the detection model effectively predict IoT traffic.

3.3 Classification Phase

In the classification phase, we apply ensemble techniques to determine whether a given flow of
traffic is normal or indicates an attack. Ensemble learning involves a collection of models cooperating
to solve a shared issue. Rather than relying on a single model for the optimal decision, ensemble
learning utilizes multiple diverse techniques to compensate for each model’s particular flaws. The
resultant collection should be less prone to errors than a single model. Compared with a single
decision tree classifier, ensemble techniques aggregate many decision tree classifiers to provide higher
prediction performance. The ensemble model’s basic premise is that a number of weak learners join
forces to produce a strong learner, enhancing the model’s performance results. In general, decision
trees are employed with ensemble learning because they are a dependable technique for achieving
regularization. As the number of levels in a decision tree grows, the model becomes more susceptible
to high variance and may overfit (resulting in high error on test data). To perform regularization and
avoid overfitting, we employ ensemble methods with broad principles (rather than very specialized
rules). The aggregate of several versions of a projected model is known as bagging (a method of
parallel ensemble), also known as bootstrap aggregating. Each model is trained separately before it
is merged through an averaging procedure. The goal of bagging is to achieve less variance than that
of any particular model. Parallel techniques suit the different considered learners separately from one
another, allowing them to be trained at the same time. Bagging seeks to create an ensemble method
which is more resilient than the individual models it comprises. Bagging is a basic concept: we wish to
fit multiple separate models, then “average” their predictions to get a model with reduced variance. In
practice, however, we cannot fit entirely independent models, which would require far too much data.
To fit models which are nearly independent, we rely on the good “approximate features” of bootstrap
collections (representatively and independence).

To begin, we construct several bootstrap samples, each of which acts as a separate (nearly)
independent dataset derived from the real distribution. Then, for each sample, we may train a weak
learner and aggregate the samples, then “average” their outputs and produce an ensemble model
with less variance than its elements. The learned base models are quasi-independent and identically
distributed (i.i.d.), as are the bootstrap samples. Then, “averaging” weak learners’ outputs does not
improve the anticipated response, however, it does minimize the variance (averaging i.i.d. random
variables preserves predictable value but reduces variance).

Assume that we have L bootstrap samples of size B (approximations of L independent datasets).

{z1
1, z1

2, . . . , z1
B}, {z2

1, z2
2, . . . , z2

B}, . . . , {zL
1 , zL

2 , . . . , zL
B} zl

b ≡ b−th observation of the l−th bootstrap sample

(8)
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We can nearly fit L as a self-contained weak learner:

w1(.), w2(.), . . . , wL(.) (9)

Then, we can combine them in an averaging procedure to obtain an ensemble model with less
variance. We may, for example, define our strong model in such a way that

sL(.) = argk max[card(l|wl(.) = k)] (simple majority vote, for classification problem) (10)

There are some options for aggregating the numerous models that were fitted in simultaneously.
The classification method was used in this study. In a classification scenario, each model’s output class
may be viewed as a vote, with the ensemble model returning the class with the most votes to produce
the prediction result. Fig. 2 depicts the architecture of the proposed detection model.

Figure 2: The architecture of the proposed ensemble learning model

4 Experimental Results and Discussion

This section aims to evaluate our proposed approach by performing the experimental results on
a real-time dataset as a benchmark. We validated our anomaly detection model with both large-
and small-scale data and obtained the performance results. As an important part in evaluating the
proposed model, we have obtained the performance results by measuring different important metrics
as follows:

Accuracy is computed by dividing the number of accurately estimated values by the total number
of all values. The accuracy metric equation is shown in Eq. (11).

Accuracy = TP + TN
TP + TN + FP + FN

(11)

Precision, also known as Positive Predictive Value (PPV), determines how accurate the model is
at recognizing events as positive. The precision metric equation is provided below.

Precision = TP
TP + FP

(12)
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Recall, also known as sensitivity, measures the number of corrected positive instances divided by
the number of all positive instances. The recall equation is shown below:

Recall = TP
TP + FN

(13)

Negative Predictive Value (NPV) means that when the test is negative, there is a good chance of
no abnormality being present. The NPV metric equation is shown in Eq. (14).

Negative predictive value = TN
TN + FN

(14)

The Matthews Correlation Coefficient (MCC) is a metric for assessing the quality of classification
by taking into account TP, FN, TN, and FP. The MCC metric appears below.

Matthews correlation coefficient = TN × TP − FN × FP√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(15)

The F1-score measures a classifier performance. It is a function calculated from precision and
recall of the tested model. The equation for the F1-score metric is shown in Eq. (16).

F1 − score = 2 ∗ TP
2 ∗ TP + FP + FN

(16)

4.1 Dataset

Choosing a suitable dataset containing real-time IoT traffic from various devices is an important
step in validating our anomaly detection approach. Furthermore, a wide range of IoT attacks, both
rudimentary and advanced attacks, should be considered when validating such a detection approach.
We use the Aposemat IoT-23 dataset, a publicly available dataset published in January 2020 [34].
The dataset includes 23 various IoT network traffic scenarios, of which three captured scenarios
belong to benign IoT devices and twenty malware captured scenarios have been executed in IoT
devices. The dataset provides massive real IoT traffic that is labeled either benign or malicious. The
23 malicious scenarios were each executed with a different type of malware, including more advanced
and sophisticated attacks. Tab. 1 provides additional information about the Aposemat IoT-23 dataset.

Table 1: Description of features including in the Iot-23 dataset

Feature name Description

fields-ts Indicate flow starting time
uid Stand for unique Identification
id_orig_h IP address
id_orig_p Source port
id_resp_h Destination IP address
id_resp_p Destination port
proto Transaction protocol

(Continued)
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Table 1: Continued
Feature name Description

service Type of service: http, ftp, etc.
duration Total time
orig_bytes From source to destination
resp_bytes From destination to source
connt_state Connection status
local orig Sender address
local resp Recipient address
missed_bytes lost bytes
History orig_pkts Source flow history
tunnel-parents Flow tunnel
orig_ip_bytes Source flow destination
resp pkts Recipient traffic
resp_ip_bytes Recipient flow bytes
label Benign or malicious

4.2 Experiment Result Analysis

Two experiments have been performed on the IoT-23 dataset. The first experiment was carried
out on a total of 266,910 data, which were divided into 75% for training and 25% for testing. In the
second experiment, the data were split into 10% for training and 90% for validation to determine
whether the proposed detection method can accurately and quickly identify abnormal data when the
data is relatively small. As assessment measures, accuracy, precision, recall, NPV, MCC, and F1-score
[35,36] are used to evaluate and analyze the effectiveness of the proposed method. Additionally, the
training and testing time has been evaluated.

Different models have been employed as baseline algorithms to evaluate the performance results
against our proposed method. These include bagging, ET, gradient boosting, and RF, all of which are
frequently utilized in anomaly detection techniques. As Tab. 2 shows, the classification results indicate
that our proposed method achieved good performance results with an accuracy rate of 99.984%, while
bagging and RF models achieved similar accuracy results with 99.957% and 99.955% respectively. The
gradient boosting model obtained an accuracy rate of 99.919%, considered the lower performance
results of all models used. The proposed method also outperforms other models in terms of precision
and recall, with 99.982% and 99.984%, respectively, whereas ET and RF obtained similar results
for precision with 99.950% and 99.956%, respectively, and for recall measure ET and RF obtained
99.949% and 99.955%, respectively. The gradient boosting model obtained lower performance results
of all models in terms of precision and recall measures with 99.920% and 99.919%, respectively. In
the case of NPV, the proposed method obtained 99.98%, whereas bagging, ET, and RF achieved
similar performance results with 99.95%, 99.94%, and 99.93, respectively. We have also evaluated
the proposed method in terms of MCC, which is used to measure the quality of the classification.
The proposed method obtained an MCC rate of 99.89%, considering the higher MCC value of all
models used. The ET and RF had similar performance results of 99.79% and 99.74%, respectively.
However, the gradient boosting model obtained an MCC rate of 99.48%, considered to be the lowest
MCC performance of all models utilized. In terms of training and testing time, the proposed method
performed well and obtained 3.9 s for training and 0.2 s for prediction, while ET and RF obtained
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23.6 and 21.0 s respectively for training and 1.4, 1.1 s respectively for testing. The gradient boosting
performed worst in terms of training time (591.54 s) and prediction time (2.49 s). Fig. 3 shows the
graphical representation of the proposed method with the baseline algorithms in terms of accuracy
and precision rates, recall, and F1-score.

Table 2: Performance results of proposed method with other models in the first experiment

Model Accuracy Precision Recall F1-score NPV MCC Training time Prediction time

Bagging 99.957 99.956 99.957 99.956 99.95 99.71 6.539 0.249
Extra trees 99.949 99.950 99.949 99.949 99.94 99.79 23.631 1.468
Gradient boosting 99.919 99.920 99.919 99.919 99.86 99.48 591.539 2.493
Random forest 99.955 99.956 99.955 99.955 99.93 99.74 21.084 1.190
Proposed method 99.984 99.982 99.984 99.983 99.98 99.89 3.985 0.218

Figure 3: Comparison of the proposed method with other models in the first experiment

The proposed method was also used to evaluate the performance of attack detection in for multi-
class classification, and was compared to other machine learning models such as bagging, ET, gradient
boosting, and RF. As Tab. 3 shows, the proposed method can predict different types of attacks with
a higher performance results; our proposed method obtained a detection rate of 100% in many types
of attacks, such as C&C-FD, C&C-HB, C&C-HB-Att, C&C-HB-FD, C&C-HPS, C&C-Torri, Okiru,
and HorizPortSc-Att, whereas the lower detection rate of 83.33% was obtained in the FD attack.
The RF and ET models achieved a similar detection rate in most cases; however, the RF model had
a significantly lower detection rate than the ET model of 50.00% in the event of a HorizPortSc-Att
attack. The bagging model performed well in some types of attacks, such as C&C-FD, C&C-HB,
C&C-HB-Att, and C&C-HB-FD; however, it obtained lower detection rates in the case of C&C Torii
and HorizPortSc-Att attacks, with 80.00% and 50.00%, respectively. The gradient boosting model
obtained a lower detection rate when compared with other models; such a model completely failed to
detect C&C-HB-FD and FD attacks. Fig. 4 shows the graphical representation of proposed method
for multi-class classification in the first experiment.
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Table 3: Performance results of different types of attacks in the first experiment

Attack class Bagging Extra trees Gradient
boosting

Random forest Proposed
method

C&C 99.889 99.908 99.911 99.944 99.982
C&C-FD 100 100 100 100 100
C&C-HB 100 99.988 100 99.976 100
C&C-HB-Att 100 97.368 100 99.552 100
C&C-HB-FD 100 100 0.00 100 100
C&C-HPS 96.000 94.258 100 96.875 100
C&C-Torii 80.000 100 90.909 100 100
DDoS 99.992 100 99.984 99.984 99.992
FD 100 80.000 0 75.000 83.333
Attack 99.911 99.874 99.276 99.955 99.914
Okiru 100 100 100 100 100
HorizPortSc 99.936 99.944 99.839 99.960 99.968
HorizPortSc-Att 50.000 100 100 50.000 100
Benign 99.889 99.944 99.936 99.928 99.992

Figure 4: Graphical representation of different attack detection in the first experiment

In the second experiment, different models must learn from a small training data set and examine
their abilities in predicting attacks accurately. As Tab. 4 shows, our proposed method outperformed
other employed models with an accuracy rate of 99.918%. While the bagging, ET, and RF models
achieved similar accuracy rates (99.861%, 99.856%, and 99.887%, respectively), performance results
were lower for gradient boosting than for all other models used. As Tab. 4 shows, the proposed
method also outperforms other models in terms of precision and recall, with 99.982% and 99.984%,
respectively, whereas ET and RF obtained similar results for precision with 99.917% and 99.918%,
respectively, and for recall measure ET and RF obtained 99.949% and 99.955%, respectively. The
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gradient boosting model obtained lower performance results of all models in terms of precision and
recall measures with 99.591% and 99.610%, respectively. In the case of NPV, the proposed method
obtained 99.91%, whereas bagging, ET, and RF achieved similar performance results with 99.86%,
99.86%, and 99.88, respectively. The proposed method obtained an MCC rate of 99.65%, considering
the higher MCC value of all models used. The bagging and RF had similar performance results
of 99.4% and 99.43%, respectively. However, the gradient boosting model obtained an MCC rate
of 99.14%, considered to be the lowest MCC performance of all models utilized. Fig. 5 shows the
graphical representation of the proposed method with the baseline algorithms in terms of accuracy
and precision rates, recall, and F1-score.

Table 4: Performance results of proposed method with other models in the second experiment

Model Accuracy Precision Recall F1-score NPV MCC Training time Prediction time

Bagging 99.861 99.859 99.861 99.856 99.86 99.4 0.390 0.798
Extra trees 99.856 99.857 99.856 99.854 99.86 99.24 1.048 4.627
Gradient boosting 99.610 99.591 99.610 99.563 99.74 99.14 62.372 8.757
Random forest 99.887 99.891 99.887 99.880 99.88 99.43 1.495 4.204
Proposed method 99.918 99.917 99.918 99.917 99.91 99.65 0.360 0.628

Figure 5: Comparison of the proposed method with other models in the second experiment

The detection performance of different types of attacks for multi-class classification has been
evaluated in the second experiment, and was compared to other baseline algorithms such as bagging,
ET, gradient boosting, and RF. As Tab. 5 shows, the proposed method can predict different class of
attacks with higher performance results, our proposed method obtained a detection rate of 100%
in some types of attacks, such as C&C-FD, FD, and HorizPortSc-Att, whereas the lower detection
rates of 62.500% and 45.455% were obtained in the case of C&C-HB-FD and C&C-Torii attacks.
The RF and ET models achieved a similar detection rate in most cases; however, the RF model
had a significantly lower detection rate of 33.333% in the case of the FD attack. The bagging model
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performed well in some types of attacks, such as C&C, C&C-HB, C&C-HB-Att, DDoS, and C&C-
HB-FD; however, it failed to detect FD and HorizPortSc-Att attacks. The gradient boosting model
performed well in some types of attacks; however, it obtained a lower detection rate in other types of
attacks, such as C&C-HB-FD, FD, and HorizPortSc-Att (42.857%, 44.00%, and 20.00%, respectively).
Fig. 6 shows the graphical representation of proposed method for multi-class classification in the
second experiment.

Table 5: Performance results of different types of attacks in the second experiment

Attack class Bagging Extra trees Gradient
boosting

Random forest Proposed
method

C&C 99.813 99.869 99.826 99.874 99.808
C&C-FD 88.462 93.878 80.000 100 100
C&C-HB 99.875 99.888 95.935 99.931 99.928
C&C-HB-Att 97.418 94.052 99.604 98.406 98.820
C&C-HB-FD 100 83.333 42.857 55.556 62.500
C&C-HPS 95.732 90.034 99.654 94.643 99.373
C&C-Torii 66.667 100 86.207 100 45.455
DDoS 99.984 99.967 99.991 99.982 99.967
FD 0.00 100 44.000 33.333 100
Attack 99.313 99.523 99.882 99.728 99.882
Okiru 99.929 99.996 99.991 100 99.991
HorizPortSc 99.773 99.938 99.809 99.878 99.866
HorizPortSc-Att 0.00 0.00 20.000 100 100
Benign 99.909 99.876 99.895% 99.893 99.935

Figure 6: Graphical representation of different attack detection in the second experiment
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We have compared the proposed method’s performance with that obtained in previous studies
(see Tab. 6). Compared with Xu et al. [29], the proposed anomaly detection method improves the
accuracy rate by 8.69% while significantly enhancing the precision and recall rate by 7.9% and 9.34%,
respectively. The performance results of our anomaly detection method also outperform a recent
proposed work by Dutta et al. [28], who used the CNN technique as a single machine learning for
feature extraction and the LSTM method as the classifier model. The accuracy rate improves by
3.98%, while precision and recall were improved by 4.49% and 3.92%, respectively. We also evaluated
our proposed method by comparison with other techniques that used a hybrid deep learning model,
proposed by Sahu et al. [27]; the accuracy rate of our proposed anomaly detection improved by 0.02%,
while precision and recall were improved by 0.08% and 9.24%, respectively. Our anomaly detection
method employs a collaborative feature selection method for selecting the most valuable features,
reducing the dimension of the input data, and improving the detection performance by using multiple
classifiers to provide higher prediction performance with a reduced false alarm rate. Tab. 6 illustrates
the classification results of the proposed method with existing methods.

Table 6: Comparison of the proposed method with existing methods

Ref Accuracy Precision Recall F1-score

Dutta et al. [29] 91.29% 92.08% 90.64% 91.35%
Sahu et al. [28] 96.00% 95.49% 96.06% N/A
Ullah et al. [27] 99.96% 99.90% 90.74% 93.00%
Proposed method 99.984% 99.982% 99.984% 99.983%

5 Conclusion

In this paper, we propose an intelligent, effective, lightweight anomaly detection method to detect
several IoT attacks. For our proposed model, we have developed a collaborative feature selection
method that selects the best distinctive features and eliminates unnecessary features. For the detection
stage, we have also proposed an ensemble learning technique to successfully predict several different
types of IoT attacks. The experimental results show that our proposed model has achieved a higher
accuracy rate of 99.984%, a precision rate of 99.982%, a recall rate of 99.984%, and an F1-score rate
of 99.983%, compared with other existing models developed in recent studies. In future work, we will
explore the effectiveness of our method with more data sets. In addition, we will investigate more
learning techniques to improve our proposed method. We will perform more experimental evaluations
to enhance our methods of detecting different types of attacks.
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