Computers, Materials & Continua & Tech Science Press

DOI: 10.32604/cmc.2022.024516
Article

An Evolutionary Normalization Algorithm for Signed Floating-Point
Multiply-Accumulate Operation

Rajkumar Sarma’', Cherry Bhargava’ and Ketan Kotecha™*

'Department of Electrical & Electronics Engineering, Faculty of Engineering & Technology, Jain
(Deemed-to-be-University), Ramanagar, 562112, Karnataka, India
2Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
3Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International (Deemed University), Lavale, Pune, 412115,
India
*Corresponding Author: Ketan Kotecha. Email: head@scaai.siu.edu.in
Received: 20 October 2021; Accepted: 22 December 2021

Abstract: In the era of digital signal processing, like graphics and computation
systems, multiplication-accumulation is one of the prime operations. A MAC
unit is a vital component of a digital system, like different Fast Fourier Trans-
form (FFT) algorithms, convolution, image processing algorithms, etcetera.
In the domain of digital signal processing, the use of normalization architec-
ture is very vast. The main objective of using normalization is to perform com-
parison and shift operations. In this research paper, an evolutionary approach
for designing an optimized normalization algorithm is proposed using basic
logical blocks such as Multiplexer, Adder etc. The proposed normalization
algorithm is further used in designing an 8 x 8 bit Signed Floating-Point
Multiply-Accumulate (SFMAC) architecture. Since the SFMAC can accept
an 8-bit significand and a 3-bit exponent, the input to the said architecture
can be somewhere between —(7.96872), to + (7.96872),y. The proposed
architecture is designed and implemented using the Cadence Virtuoso using
90 and 130 nm technologies (in Generic Process Design Kit (GPDK) and
Taiwan Semiconductor Manufacturing Company (TSMC), respectively). To
reduce the power consumption of the proposed normalization architecture,
techniques such as “block enabling” and “clock gating” are used rigorously.
According to the analysis done on Cadence, the proposed architecture uses
the least amount of power compared to its current predecessors.

Keywords: Data normalization; cadence virtuoso; signed-floating-point
MAC; evolutionary optimized algorithm; block enabling; clock gating

1 Introduction to Multiply & Accumulate (MAC) Architecture

In digital signal processing, the MAC operation is considered a significant and critical operation.
The Digital Signal Processing (DSP) algorithms execute many mathematical calculations repeatedly
and rapidly on various data sets. DSP algorithms can be effectively executed by the majority of

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2022.024516
mailto:head@scaai.siu.edu.in

482 CMC, 2022, vol.72, no.1

operating systems and general-purpose microprocessors. Unfortunately, DSP algorithms have energy
efficiency issues while operating with portable devices such as Personal Digital Assistants (PDAs)
and mobile phones. Considering delay and power optimization, the exponential growth of portable
electronics has imposed a major challenge to Very Large-Scale Integration (VLSI) design engineers.
A MAC unit is a vital component of any digital system, such as various FFT algorithms, convolution
etc. The actual MAC block is not just limited to the fixed-point number system. For audio and image
processing applications, floating-point MAC architecture is much needed. MAC’s simple operation
is to multiply two variables (X; and Y;) and add the product to the last cycle’s output. Therefore, the
MAC architecture includes the key operational blocks of a multiplier, adder, and register/accumulator
[1-14]. The multiplier multiplies the two input operands; the adder attaches the multiplier’s output to
the previous cycle’s result, and the register or accumulator preserves the final addition output. Fig. 1
shows the generalized block diagram of N x N bit MAC.

N-Bit Inputl IN-Bit Input

N-Bit Multiplier

2N-Bit Output

¥

2N-Bit Register

2N-Bit Output |

(2N+1)-Bit Adder

A 4

(2N+1)-Bit Register

(2N+1)-Bit Output

r

Figure 1: Generalized block diagram of N x N bit MAC

The popularity of portable devices and the requirement to limit the power consumption (and there-
fore heat dissipation) in heavily-dense VLSI chips have resulted in rapid advances in low-power design
over the past few years. Mobile applications necessitating low-power dissipation and high throughput,
let us say notebook Personal Computers (PCs), mobile communication devices, and PDAs, are the
driving forces behind these innovations. In most cases, low power consumption requirements need
to be met along with equally challenging targets of high chip density and high speed. Therefore,
the low-power IC design surfaced as a beneficial and fast-developing area of Complementary Metal
Oxide Semiconductor (CMOS) circuit design. Usually, the restricted battery life places very stringent
demands on the portable system’s overall power requirements. New types of rechargeable batteries,
say “Nickel-Metal Hydride (NiMH)” is being produced with better energy storage capacity than the
traditional “Nickel-Cadmium (NiCd)” batteries. Still, there is no prospect of a significant increase in
energy capacity in the foreseeable future. The energy density (the energy stored/unit weight) provided
by new advancements in technologies (such as NiMH) is approximately 30 Watt-hour/pound, which

CMC, 2022, vol.72, no.1 483

is quite lesser considering the growing applications of portable systems. Scaling down the energy
dissipation of Integrated Circuits (ICs) by improving functionality is, therefore, a significant task in
developing portable devices.

In high-performance digital systems, such as microprocessors-microcontrollers, DSPs, etc., the
need for low-power circuit development is also becoming a significant concern. Targeting higher chip
density and higher processing speed contributes to developing a high-clock rate in very complex
circuits. If the chip’s clock speed rises, then the chip’s energy dissipation, thereby increasing the
temperature linearly. As the dissipated heat has to be efficiently removed to maintain the chip’s
temperature at an optimum level, the packaging cost, cooling, and heat extraction become important
aspects. A few elite microchips structured in the mid-1990s (such as Intel Pentium, Digital Equipment
Corporation (DEC) Alpha, PowerPC) which operates in a frequency ranging from 100-300 MHz, and
the total average power is ranging from 20-50 W. VLSI’s reliability is one more critical factor to look
after for the design engineers, as it emphases to the demand for energy-efficient design. There is a near
connection between electronic circuit maximum power-dissipation and reliability concerns like electro-
migration and system degradation caused by the carriers. Additionally, the thermal stress caused by
chip heat dissipation is also a significant issue to look after in terms of reliability. As a consequence,
increasing power consumption is also critical for improving performance. The procedures used
in digital systems to achieve low-power consumption vary from device to device, technology to
technology or algorithm to algorithm level. The standard system features (say threshold voltage),
device dimension and interconnection properties are essential factors in reducing power consumption.
Circuit level approaches such as a careful selection of circuit design logic family, decrement in the
total number of voltage transitions, and clocking approaches can be used to minimize transistor-
level energy dissipation. Measures at the architecture level include intelligent power management of
different system components, pipeline and concurrent usage, and bus layout design.

In recent years, different researchers have done several works [2-3,5-21]. Reference [22] proposes
a high throughput MAC architecture that promises the optimized area in 2007. To maximize speed,
it employs 4:2 compressor circuits. Reference [23] in 2012 suggests a novel multiplier architecture.
Reference [12] proposes a novel architecture based on a transformed “Wallace tree multiplier” in 2013.
The architecture is 64-bit compatible. Reference [24] uses an updated Braun Multiplier to create a MAC
unitin 2013. NCSim and RTL Compiler are used in the implementation. In the year 2014, reference [9]
proposes a “low-power Baugh-Wooley multiplier-based MAC” unit. A pipelined-based architecture
has been proposed in this work. Reference [25] explains a split MAC architecture in 2009. To increase
the speed of operation, even more, a strategy to compact the “partial product using interleaved
adders” and a “modified hybrid partial product reduction tree (PPRT)” scheme is proposed. A double
carry-save addition algorithm is proposed in [26], where its prototype is also verified on a six-input
Look-up Table (LUT) based Field Programmable Gate Array (FPGA). In 2016, an “embedded logic
full adder (PRO-FA)” was presented in [14], which offers better improvements on the basic design
constraint. In 2019, a “low-complexity asynchronous pipelined adder” that guarantees significant
energy saving & latency is proposed [27]. At the same time, a Pro-LA architecture is proposed in [2§]
that targets error-tolerant applications. Reference [29] proposes an optimizing approach for “gripper
mechanism” using appropriate bi-algorithms in a separate approach. An optimization technique
for a “dragonfly-inspired compliant joint” is proposed in [30], whereas reference [31] proposes an
optimization technique for a “linear compliant mechanism of nanoindentation tester”.

As shown in Fig. 1, the multiplier block collects and multiplies two n-bit inputs and results in
2N-bit output, further processed to the register/accumulator unit. The register cum accumulator
temporarily stores the data and sends the data to the adder as an input. The adder sums up the

484 CMC, 2022, vol.72, no.1

register unit output together with the accumulated value resulting from the previous cycle. Thus,
the MAC unit’s overall output is taken from the accumulator register output. Hence, the MAC
architecture consists of an “N-bit multiplier”, “2N bit register”, “(2N+1) bit adder”, and two
“(2N+1)-bit accumulators/registers” (one for storing the output value and the other for reading the
previous output). As shown in Fig. 1, the conventional MAC architecture is capable of performing
MAC operation on the unsigned fixed-point numbers only. At the same time, today’s digital systems
demand floating-point signed operation. In the case of floating-point arithmetic, the conventional
adder/subtractor or multiplier algorithms cannot be applied directly because of the presence of
the decimal point in the inputs. Therefore, to standardize the floating-point inputs, normalization
operations are essential. Normalization means standardization where the decimal point location of
the mantissa part is fixed & the exponent value is varied in a particular range based on the shifting
of the decimal point. This paper proposes a multiplexer-based normalization architecture that can
execute MAC operations on signed floating-point inputs. A unique input data format is created that
accepts 9-bit binary data and 4-bit exponential input to perform the same. As a result, the new input
data format is 13 bits (it also includes the MSB bits reserved as the sign bit for the mantissa and
the exponent). Exponent-Comparator-Circuit (ECC) and Exponent-Shifter-Circuit (ESC) are the two
main algorithms in the proposed normalization architecture.

This manuscript is divided into six subsections: Section 2 explains the Exponent-Comparator-
Circuit (ECC) & its operation. Section 3 describes the Exponent-Shifter-Circuit (ESC) & its operation.
Section 4 describes the proposed SFMAC architecture using ECC & ESC architectures. Section 5
explains the comparison of the proposed SFMAC with the existing one. At last, the conclusions and
future work are explained in Section 6.

2 ECC Block

The product of the input exponents and the previous cycle’s output exponent are used as inputs
to the ECC (Exponent-Comparator-Circuit). The most important thing to remember here is that
difference between two ECC block’s input is calculated as arithmetic difference, if both of the ECC
block’s input terms have the same sign. On the other hand, if both inputs have separate signs, the
difference between the two is equal to the arithmetic sum of the two inputs. Fig. 2 shows the flowchart
of the ECC block.

Multiplexers are used in the architecture to compare the inputs. The ECC operation generates a
5-bit output used to execute binary shifts (as shown in Fig. 3). The MUX-based architecture of the
ECC block is shown in Fig. 3. The Multiplexer based design of the ECC block is as follows:

i) The ECC’s inputs are expressed in 2’s complement form depending on the input sign bits.
ii) The operation of the ECC is further segregated based on the sign bits of the inputs as follows:

a. If both the sign bits are different, then add the inputs of the ECC to produce a 4-bit output
(i.e., discard the carry bit) but introduce the 5th bit as ‘1’ if the product of the exponents of
the inputs is negative, but the previous exponent is positive. Make the 5th bit as ‘0’ in the
other circumstances.

b. If both the sign bits of the inputs to the ECC are the same, then find out the input which
is higher among the two and find the difference between the inputs as per the following
procedure:

o To find the higher number, compare both the numbers bit by bit, i.e., start comparing
MSB to LSB, as shown in Fig. 4.

CMC, 2022, vol.72, no.1

485

e For finding the difference, use the 2’s complement approach. The difference pro-
duces a 4-bit output (i.e., discard the borrow bit) but introduces the 5th bit as ‘0’ if
the product of the exponents of the inputs is higher than the previous cycle exponent.
Make the 5th bit as ‘1’ in the other circumstances.

e In this architecture, multiplexers are used to compare the inputs.

iii) This method yields a 5-bit output that is utilized to do binary shifts in the ESC block.

READ the product of the exponents i.e. the EA
output & the output exponent of the previous cycle

v

Based on the sign bit, the inputs to the ECC are
represented in 2°s complement form

If the sign bits of
the inputs to the
ECC block are

YES same

The product of the
exponents of the
inputs is negative
but the previous

exponent is positive

YES NO

NO

hd

For finding the input which is greater among
the two & to find the difference between the
inputs follow the following procedure:

Add the inputs of the
ECC to produce a 4-bit
output (i.e. discard the

Add the inputs of the
ECC to produce a 4-bit carry bit) but
output (i.e. discard the introduce the 5th bit as
carry bit) but introduce <

|

For finding the greater number,
compare both the numbers bit by bit
starting from MSB to LSB

v

the Sth bit as “1°

For finding the difference, use the 2’s
complement approach. The difference produces
a 4-bit output (i.e. discard the borrow bit) but
introduce the 5th bit as ‘0’ if the product of the
exponents of the inputs is greater than the
previous cycle exponent. Make the 5th bit as 0’
in the alternate circumstances

Figure 2: ECC flowchart

486 CMC, 2022, vol.72, no.1

A (Exp of product of current inputs) B (Exp of previou

*A MuX / A MuX

Sign bit of A Sign bit of B
(MSB) (MSB)

ycle output)

2's Complement

[o] AB (4 bit) 1] AB@bin |
Exponent Comarator
Circuit with both exponents
positive or negative

Sign bit of A
(MSB)
I I Sign bit of B

(MSB)

XOR Gate

RES (5 bit)

Figure 3: MUX based ECC architecture

3 ESC Block

The ESC (Exponent-Shifter-Circuit) block is in charge of shifting the smaller number by an
amount of the difference between the exponents of the product of the 8-bit inputs and the previous
cycle MAC output (preceding output). The ECC block’s 5-bit output, a 16-bit product of the inputs,
and the previous cycle’s 16-bit output (preceding output) are the ESC block’s inputs. The multiplexer-
based design of the ESC block is shown in Fig. 5. The following is the step-by-step procedure:

1. Based on the ECC result, the smallest number is identified (5-bits). If the MSB of the ECC
block output is 1, the product of the inputs is moved to the right by the corresponding decimal
value of the ECC block output’s remaining 4-bit binary. If the MSB of the ECC block output
is 0, the preceding output is moved to the right by the corresponding decimal value of the ECC
block output’s remaining 4-bit binary.

2. The MSB of the ECC block output also identifies the input to the ESC block, which does not
need shifting. If the MSB of the ECC block output is 1, the previous output is retained (not
shifted). If, on the other hand, the MSB of the ECC block output is 0, the product of the inputs
is passed in its entirety (not shifted).

CMC, 2022, vol.72, no.1

[o] AB@bin | il BA@bio |

N1 0
A(0).B(0) -_ . /

’00000 ' ||;|| A-B (4 bif) | |1| B-A (4 bit) |
A(0) xnor . i
B‘_“’ \ MUX / ' '
p : 1 0/
A(1).B(1) MUX

A1) xmor B \ ! 0

IOI A-B (4 bit) I Ill B-A (4 bit) I

A(2).B(2) 1 0

' ' Lol AB@biy | [1] B-A@bi |
A(g mor .) '
Bb_‘x MUX /
A(S).B(J)'._ 1 - /
0

N |

A-B =A+(2's complement of B) A(3) xnor 1

=4 bit result (discarding the carry) B(3 MUX
B-A =B+2's complement of 4)

=4 bit result (discarding the carry)

RES (5bif)

Figure 4: MUX based ECC with same sign bit

4 SFMAC Architecture

487

To represent positive and negative numbers, the architecture employs sign-magnitude and 2’s
complement representations. Signed magnitude form is used to describe SFMAC input-output, but
these inputs are converted to 2’s complement form for the internal calculations. The proposed MAC

architecture’s final output (MAC output) has 17 bits, including one sign bit.

The SFMAC’s inputs are two 8-bit binary numbers formatted as shown in Fig. 6. Each SFMAC
input is 13 bits long, with two bits set aside for the number’s and exponent’s sign bits. Depending on
whether the number is positive or negative, the sign bit might be 0 or 1. The remaining eleven bits are
utilized to indicate an 8-bit binary representation and a 3-bit binary exponent. One important thing to
remember is that the 3rd bit of the exponent in binary representation is set to 0 by default since 2-bit

binary takes 3 bits to be represented in 2’s complement form.

Add 15-bit 0" to theMSB of Prev_Outpat’ RIS
Add 14:bit 0" to the MSB of ‘Prev_Output’ mmimiiiieees

Add 13-bit "0 to the .\tSBnl'Pm'_Odrpnl'*
Add 12-bit ‘0" to the MSB of Prev_Outpat’ pimiiime
Add 11-bit ‘0" to the MSBof 'Prev_Outpat’ pmmimiiime:
Add 10-bit'0' to the MSBof "Prev_Orutput’ pmmimiiimes

Add 9-bit 0" to the MSBof Prev_Output’ i
Add 8-bit 0" to the MSB of ‘Prev_Output’ EEENISe:

Add T-bit 0" to the MSB of "Prev_Output’ i
Add 6-bit "0’ to the MSBof Prev_Cutput’ IR
Add 5-bit'0' to the MSB of "Prev_Output’ Emmme
Add 4-bit 0" to the MEB of ‘Prev_Outpot’ sl
Add 3-bit 0" to the MSBof "Prev_Outper’ IS
Add 2-bit 0" to the MSB of "Prev_Output’ mummiiimss:
Add 1-bit 0" to the MSBof ‘Prev_Output’ mmmiies:

Pass Prev_Output'as itis [

16:1
MUX

Add 15-6it 0" to the MSB of 'NUM' SEESERISS-
Add 14:bit 0" to the MSBof'NUM MR-
Add 13-5it 0" to the MSB of 'NUM e
Add 12-bit'0' to the MSB of 'NUM: mmmmfiiiime-
Add 11-bit'0' to the MSB of 'NUM IEEENNNwe:
Add 10:5it "0’ to the MSB of 'NUM NS

Add 9-bit '0' to the MSB of 'NUM' ubmiiiwes-
Add 8-bit 0" to the MSB of 'NUM' miiimene:

Add T-bit '0' to the MSBof 'NUM' e
Add 6:bit 0" to the MSBof 'NUM' RSe-
Add 5-bit 0" to the MSB of 'NUM' ESNNe-
Add d-bit 0" to the MEBof 'NUM' -
Add 3-bit 0" to the MSBof 'NUM' mmmfiises:
Add 2-bit'0' to the MSB of'NUM' mmiiiimms
Add 1bit'0' to the \ISB of 'NUM' MEEERNNNS=-

16:1
MUX

NUM —

"Prev_Output’ m—

Pass NUM asitis pmimes

RES[3]
RES[2]
RES[1]
RES[0]

CMC, 2022, vol.72, no.1

0
g 'NUM' or
s Prev_Output
1
RES[4]
0
- Shifted "NUM' or
2 'Prev_Outpat'
2
1
RES[4]

Figure 5: MUX based ESC architecture

CMC, 2022, vol.72, no.1 489

3-BIT

'

21,3
?
:
;

o

.|B1|B;|B3|B4|Bs|Bg|B;|Bsg E; | Eo

m
5

THE NUM BER
EXPONENT
EXPONENT IN BINARY
REPRESENTATION

RESERVED FOR 2'S COMPLEMENT
REPRESENTATION FOR -VE

SIGN BIT OF THE NUMBER
DECIMAL POINT
2,
SIGN BIT OF THE EXPONENT OF

Figure 6: Input format representation of SFMAC

As a result, the exponent term in this architecture will vary from ‘—4’ to ‘4+-3’. The input numbers
will range from —(0.11111111), x 2% to +(0.11111111), x 23 & hence the new SFMAC architecture’s
inputs range from —(7.96872),, to +(7.96872),,. Furthermore, the SFMAC architecture’s inputs
can only be entered in fractions. For instance, the numbers (001), & (010), should be entered as
(0.00100000), x 2™ & (0.0100000), x 27 respectively as the inputs to the SFMAC. Similarly, (101),
& (10), should be represented as (0.10100000), x 2+* & (0.10000000), x 27 respectively to process it
through the SFMAC. The 8-bit multiplier, 16-bit register, 16-bit adder, 2:1/4:1 multiplexer of various
sizes, and Exponential Adder are the main building blocks of the SFMAC architecture (other than
the Exponent Comparator Circuit (ECC) and Exponent Shifter Circuit (ESC) explained earlier).
SFMAC’s overall architecture is depicted in Fig. 7.

CMOS technologies are used to develop and execute the overall SFMAC architecture. A thorough
study is carried out using the Cadence Virtuoso. To limit the power consumption, the architecture
employs a “clock gating scheme” and a pipeline mechanism. The clock pulse pipeline system is ensured
by triggering successive blocks after a predetermined period.

The SFMAC architecture is implemented in 90 and 130 nm CMOS technology (GPDK and
TSMC, respectively). Tab. | compares the influence of the SFMAC architecture in various CMOS
technologies for a particular input vector. Cadence Spectre Tool is used to measure the power usage
of the implemented designs. The average power (P) s calculated over a simulation time (7,,) of
40 ns and at a clock frequency (f.;) of 83.33 MHz, while the static power is evaluated for a 2 V supply
voltage (V,p). Since the transistor sizing is greater in 130 nm technology, the average power (P y.ue)
consumption in 130 nm (TSMC) is higher than 90 nm (GPDK) as it affects the load capacitance Cj,,,.
In the same way, device geometry affects static power consumption. As a result, a circuit with a larger
device dimension can consume more static power. If o, is the activity factor, then CMOS dynamic
power is calculated as Eq. (1):

P Average = aT . C/oad . VDD2 -/;l/\' (1)

Tab. 2 shows a comparison of the proposed SFMAC architecture and existing MAC architectures
in terms of power consumption. Since most of the available architectures in the literature use an
HDL-based approach, comparing the proposed SFMAC architecture to those already present in the
literature is difficult. On the other hand, the proposed architecture is implemented in a Cadence

490 CMC, 2022, vol.72, no.1

Virtuoso 90 or 130 nm technologies. Furthermore, almost all of the architectures described in the
literature do not support signed operations & floating-point designs.

Sign | Exponent 1 (3-bit) Sign | Exponent 1 (3-bit)
Bit Bit

) - B (Exponents of
4-Bit Exponential Adder A (Product of the exponents the previous
T of the inputs) output)
Product of the exponents of the inputs l
(A in 5 bits; MSB is the sign bit) Y
I Exponent Comparator Circuit
Sign | input 1 (8-bit) SiEN | Input 2 (8-bit)
Bit Bit RES Output (5-Bit)

Previous Output

v Y A J L]

. . pr NUM
XOR Gate 8-Bit Multiplier — | |

Exponent Shifter Circuit

16-Bit Register

Shifted NUM or Previous Actual NUM or Previous
Qutput Output
¥
| 2’s Complement 2's Complement
Product of the sign bits 1! | 1 1
(PDT_SIGN)
51 2:1 MUX 2:1 MUX 52
c2 0 -ve/+ve re p:| :nnntion of -vef+ve rvpru: :naticn of Actual PDT_SIGN
[Pre'vious; Shifted NUM or Previous Output NUM or Previous Output
¥ ¥ 52
C2
—1 "
PDT_SIGN c[:’:'i';' 16-Bit Adder (Previous)
RES [5] RES [5]
y
Carry (C1 7
= 2:1 MUX
PDT_SIGN Yy l A 4
- S 00 01 0 11
c2 " }' 4:1 MUX
(Previous)
4:1 L J
MUX > 2 2 1
(Next) 16-Bit Register
Carry (C1)
L J
MAC
" outpu
C2 (Previous)

PDT_SIGN

Figure 7: SFMAC architecture using ECC & ESC blocks

CMC, 2022, vol.72, no.1 491

Table 1: Performance of SFMAC at 90 and 130 nm CMOS technologies (GPDK and TSMC
respectively)

Architecture Pgpicat Vpp=2V P jroraee at Vpp=2V and Transistor count
T.,=40ns

SFMAC at 90 nm 476.94 uW 7980 uW 25783

(GPDK)

SFMAC at 130 nm 2398.76 uW 25990 uW 25783

(TSMC)

Although there are architectures that use clock signals just for data accumulation (in the register or
accumulator), most of the architectures in the literature do not use any clocking signals. Asynchronous
circuits do not have real-time applicability. As a result, the architecture’s functional applicability must
be further investigated. The architecture shown in [32] is designed for floating-point operation (signed),
whereas most of the reported architectures, as discussed in Tab. 2, are dedicated to implementing fixed-
point Multiply-Accumulate (unsigned) operation.

Although there are architectures that use clock signals just for data accumulation (in the register
or accumulator), the majority of the architectures in the literature do not use any clocking signals.
Asynchronous circuits don’t have real-time applicability. As a result, the architecture’s functional
applicability must be further investigated. The architecture shown in [32] is designed for floating-point
operation (signed), whereas most of the reported architectures, as discussed in Tab. 2 are dedicated for
implementing fixed-point Multiply-Accumulate (unsigned) operation.

Tab. 2 reveals that the architectures in [12,33,34] consume considerably higher static and average
power (in mW) than the proposed SFMAC architecture. The architectures in [35,36] are examined for
16-bit operations at 1 V and 8-bit operations at 1.8 V in 90 and 180 nm technologies. Even though
the existing work described in [35,36] requires less power than the proposed SFMAC (the existing
circuit’s performance analysis is done with a supply voltage less than 2 V, while the SFMAC uses
a supply voltage of 2 V), these two existing implementations can only execute MAC operations on
unsigned fixed-point numbers. As a result, the MAC architectures in [35,36] have a restricted scope.
Although the architecture defined in [37] is implemented in 180 nm technology with a 1.8 V supply
voltage for 16-MAC operation, it consumes substantially more power than the SFMAC architecture.
The implementation of the architecture listed in [38] is for 1-bit unsigned fixed-point MAC operation
in 32 nm CMOS & CNTFET technology, so a comparison with an 8-bit SFMAC is meaningless.
Despite the fact that the architecture described in [32] is the only existing MAC architecture capable
of performing on signed floating-point operations, a comparative study with the proposed SFMAC
reveals that SFMACs efficiency in terms of power consumption is much better.

492 CMC, 2022, vol.72, no.1
Table 2: Proposed SFMAC vs. already reported architectures
Serial Proposed Detalils Tool/HDL Power dissipation
number architecture used
1 SFMAC Signed floating-point MAC Cadence Pgiic P iverage
architecture in 90 nm tech., 2 Vat virtuoso 90
83.33 MHz & 8 x 8 bit operation nm CMOS
0.476 mW 7.98 mW
Serial Already Description Tool/HDL Power dissipation
number reported used
1 [33] Pipelined multiply accumulate Cadence 50.26 mW
unit (fixed-point) in 180 nm Virtuoso
technology, 1.8 V at 83.3 MHz &
8 x 8 bit operation
2 [12] Multiply Accumulate Unit Verilog HDL 177.732 mW
(fixed-point) in 180 nm
technology, 1.8 V at 217 MHz &
64 x 64 bit operation
3 [34] Pipelined multiply accumulate VHDL 8.2 mW
unit (fixed-point) in 65 nm
technology, 1.1 V at 591 MHz &
16 x 16 bit operation
4 [35] Multiply accumulate unit HDL in 1.506 mW
(fixed-point) in 90 nm Cadence’s
technology, 1 V at 100 MHz & HSPICE
16 x 16 bit operation simulator
5 [36] Pipelined multiply accumulate HDL in Pssic Poyuamic
unit (fixed-point) in 180 nm Synopsys
technology, 1.8 V & 8 x 8 bit Design
operation Compiler
2.010 mW 3.627 mW
6 [37] Multiply accumulate unit Verilog HDL MAC using MAC
(fixed-point) in 180 nm booth using
technology, 1.8 Vat 5 MHz & Vedic
16 x 16 bit operation
493.648 mW 1765.241
mW

(Continued)

CMC, 2022, vol.72, no.1 493

Table 2: Continued

Serial Proposed Details Tool/HDL Power dissipation

number architecture used

7 [38] Multiply accumulate unit _ CMOS tech CNTFET
(fixed-point) in 32 nm CMOS & tech
CNTFET technology & 1 x 1 bit
operation

0.9902 mW 0.6335
mW
8 [32] Fixed/floating-point multiply VHDL 14.07 mW
accumulate unit in 90 nm
technology for 16-bit
half-precision multiplication

5 Conclusion

A novel approach for performing normalization is explained in this paper. The proposed nor-
malization operation is categorized into Exponential Comparator Circuit (ECC) & Exponential
Shifter Circuit (ESC). The ECC block performs a comparison between the exponents; at the same
time, ESC is responsible for shifting the smaller number by the amount of difference between the
exponents of the inputs. Further, a signed floating-point MAC architecture is also proposed using the
novel normalization architecture. For design & implementation, the Cadence Spectre tool is used at
CMOS 90 nm and TSMC 130 nm technologies. The results have proved that the proposed SFMAC
architecture has used the least power than its recent counterpart & therefore, has applicability in low-
power DSP architectures.

Funding Statement: This work was supported by Research Support Fund (RSF) of Symbiosis
International (Deemed University), Pune, India

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[11 A.K.Dhindsa and R. Sarma, “Pipelined and clock gated MAC architecture design and implementation,”
Far East Journal of Electronics and Communications, vol. 16, no. 1, pp. 607-621, 2016.

[2] N. J. Babu and R. Sarma, “A novel low power multiply-accumulate (MAC) unit design for fixed point
signed numbers,” Advances in Intelligent Systems and Computing, vol. 394, no. 1, pp. 675-690, 2016.

[3] A. V. Ananthalakshmi and G. F. Sudha, “A novel power efficient 0.64-GFlops fused 32-bit reversible
floating point arithmetic unit architecture for digital signal processing applications,” Microprocessors and
Microsystems, vol. 51, no. 1, pp. 366385, 2017.

[4] M. Jayaprakash, A. Shanmugam and M. Mohamed, “Design and analysis of low power hybrid adder,”
Journal of Theoretical and Applied Information Technology, vol. 58, no. 3, pp. 618-622, 2013.

[S] R.Sarma, C. Bhargava and S. Jain, “A MUX based signed-floating-point MAC architecture using UCM
algorithm,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 68, no. 4, pp. 835-844, 2020.

[6] R. Sarma, C. Bhargava, S. Dhariwal and S. Jain, “UCM: A novel approach for delay optimization,”
International Journal of Performability Engineering, vol. 15, no. 4, pp. 1190-1198, 2019.

494

[7]
(8]
]

[10]

[13]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

CMC, 2022, vol.72, no.1

S. Shanthala and S. Y. Kulkarni, “VLSI design and implementation of low power MAC unit with block
enabling technique,” European Journal of Scientific Research, vol. 30, no. 4, pp. 620-630, 2009.

R. V. K. Pillai, D. Al-Khalili and A. J. Al-Khalili, “Low power architecture for floating point MAC fusion,”
in Proc. IEEE Proc.-Computers and Digital Techniques, San Jose, CA, USA, pp. 288-296, 2000.

R. Warrier, C. H. Vun and W. Zhang, “A Low-power pipelined MAC architecture using baugh-wooley
based multiplier,” in Proc. IEEE 3rd Global Conf. on Consumer Electronics (GCCE), Tokyo, Japan, pp.
505-506, 2014.

R. Sarma, C. Bhargava, S. Jain and V. K. Kamboj, “Application of ameliorated harris hawks optimizer for
designing of low-power signed floating-point MAC architecture,” Neural Computing and Application, vol.
33, pp. 8893-8922, 2021.

P. A. Patil and C. Kulkarni, “A survey on multiply accumulate unit,” in Proc. Fourth Int. Conf. on Computing
Communication Control and Automation (ICCUBEA), Pune, India, pp. 1-5, 2019.

P. Jagadees, S. Ravi and K. H. Mallikarjun, “Design of a high-performance 64-bit MAC unit,” in Proc. Int.
Conf. on Circuits, Power and Computing Technologies, Nagercoil, India, IEEE, pp. 782-786, 2013.

R. Sarma, S. Dhariwal and S. Jain, “Design and analysis of a novel 8 x 8 bit signed/unsigned synchronous
MAC architecture using clock gating scheme for fixed-point arithmetic,” in Proc. 2nd Int. Conf. on
Intelligent Circuits and Systems, Punjab, India, pp. 423-429, 2018.

W. P. du Plessis, “Optimal MAC structures in an FPGA,” in Proc. IEEE AFRICON 6th Africon Conf. in
Africa, IEEE, George, South Africa, pp. 333-336, 2002.

D. 1. Jeon, K. B. Park and K. S. Chung, “HMC-MAC: Processing-in memory architecture for multiply-
accumulate operations with hybrid memory cube,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp.
5-8, 2017.

K. Chen, L. Chen, P. Reviriego and F. Lombardi, “Efficient implementations of reduced precision
redundancy (RPR) multiply and accumulate (MAC),” IEEE Transactions on Computers, vol. 68, no. 5,
pp. 784-790, 2018.

S. Ryu, N. Park and J. J. Kim, “Feedforward-cutset-free pipelined multiply—accumulate unit for the machine
learning accelerator,” IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 27, no. 1,
pp. 138-146, 2018.

R. D. Rose, P. Romero and M. Lanuzzaa, “Double-precision dual mode logic carry-save multiplier,”
Integration, vol. 64, no. 1, pp. 71-77, 2019.

V. M. Senthilkumar, S. Ravindrakumar, D. Nithya and N. V. Kousik, “A vedic mathematics-based
processor core for discrete wavelet transform using FinFET and CNTFET technology for biomedical signal
processing,” Microprocessors and Microsystems, vol. 71, no. 1, pp. 16-32, 2019.

H. Zhang, D. Chen and S. Ko, “New flexible multiple-precision multiply-accumulate unit for deep neural
network training and inference,” IEEE Transactions on Computers, vol. 69, no. 1, pp. 26-38, 2019.

C. W. Tung and S. H. Huang, “A high-performance multiply-accumulate unit by integrating additions and
accumulations into partial product reduction process,” IEEE Access, vol. 8, pp. 87367-87377, 2020.

A. Abdelgawad and M. Bayoumi, “High speed and area-efficient multiply accumulate (MAC) unit for
digital signal processing applications,” in Proc. IEEE Int. Symp. on Circuits and Systems, New Orleans,
LA, IEEE, pp. 3199-3202, 2007.

S. Deepak and B. J. Kailath, “Optimized MAC unit design,” in Proc. IEEE Int. Conf. on Electron Devices
and Solid State Circuit (EDSSC), Bangkok, Thailand, IEEE, pp. 1-4, 2012.

T. Francis, T. Joseph and J. K. Antony, “Modified MAC unit for low power high speed DSP application
using multiplier with bypassing technique and optimized adders,” in Proc. Fourth Int. Conf. on Computing,
Communications and Networking Technologies (ICCCNT), Tiruchengode, India, pp. 1-4, 2013.

B. J. Xia, P. Liu and Q. D. Yao, “New method for high performance multiply-accumulator design,” Journal
of Zhejiang University Science, vol. 10, no. 7, pp. 1067-1074, 2009.

U. Cini and O. Kurt, “A high performance multiply-accumulate unit with double carry-save scheme for 6-
input LUT based reconfigurable systems,” in Proc. 9th Int. Conf. on Electrical and Electronics Engineering
(ELECO), Bursa, Turkey, pp. 940-944, 2015.

CMC, 2022, vol.72, no.1 495

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

T. Y. Kuo and J. S. Wang, “A low-voltage latch-adder based tree multiplier,” in Proc. IEEE Int. Symp. on
Circuits and Systems, Seattle, WA, pp. 804-807, 2008.

M. J. Liao, C. F. Su, C. Y. Chang and A. C. H. Wu, “A Carry-select-adder optimization technique for high-
performance booth-encoded wallace-tree multipliers,” in Proc. IEEE Int. Symp. on Circuits and Systems,
ISCAS-2002, Phoenix-Scottsdale, AZ, USA, pp. 81-84, 2002.

T. V. Nguyen, N. T. Huynh, N. C. Vu, V. N. Kieu and S. C. Huang, “Optimizing compliant gripper mecha-
nism design by employing an effective bi-algorithm: Fuzzy logic and ANFIS,” Microsystem Technologies,
vol. 27, pp. 3389-3412, 2021.

N. L. Chau, T. P. Dao and V. T. T. Nguyen, “Optimal design of a dragonfly-inspired compliant joint
for camera positioning system of nanoindentation tester based on a hybrid integration of jaya-ANFIS,”
Mathematical Problems in Engineering, vol. 2018, pp. 1-16, 2018.

N. L. Chau, T. P. Dao and V. T. T. Nguyen, “An efficient hybrid approach of finite element method,
artificial neural network-based multiobjective genetic algorithm for computational optimization of a linear
compliant mechanism of nanoindentation tester,” Mathematical Problems in Engineering, vol. 2018, pp. 1-
19, 2018.

H. Zhang, H. J. Lee and S. B. Ko, “Efficient fixed/floating-point merged mixed-precision multiply-
accumulate unit for deep learning processors,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS),
Florence, Italy, IEEE, pp. 1-5, 2018.

S. Shanthala, C. P. Raj and S. Y. Kulkarni, “Design and VLSI implementation of pipelined multiply
accumulate unit,” in Proc. Second Int. Conf. on Emerging Trends in Engineering and Technology, Nagpur,
India, IEEE, pp. 381-386, 2009.

T. T. Hoang, M. Sjdlander and P. Larsson-Edefors, “A high-speed, energy-efficient two-cycle multiply-
accumulate (MAC) architecture and its application to a double-throughput MAC unit,” IEEE Transactions
on Circuits and Systems-1: Regular Papers, vol. 57, no. 12, pp. 3073-3081, 2010.

S. E. Esmaeili, A. J. Al-Kahliliand G. E. R. Cowan, “Low-swing differential conditional capturing flip-flop
for LC resonant clock distribution networks,” IEEE Transactions on Very Large-Scale Integration (VLSI)
Systems, vol. 20, no. 8, pp. 1547-1551, 2012.

N. Akbarzadeh, S. Timarchi and A. A. Hamidi, “Efficient multiply-add unit specified for DSPs utilizing
low-power pipeline modulo 2" + 1 multiplier,” in Proc. 9th Iranian Conf. on Machine Vision and Image
Processing, Tehran, Iran, Shahid Beheshti University, pp. 120-123, 2015.

A. Rahul Narasimhan and R. S. Subramanian, “High speed multiply-accumulator coprocessor realized
for digital filters,” in Proc. IEEE Int. Conf. on Electrical, Computer and Communication Technologies
(ICECCT), Coimbatore, India, pp. 1-4, 2015.

K. V. Karthikeyan, R. Babu, N. Mathan and B. Karthick, “Performance analysis of an efficient MAC
unit using CNTFET technology,” in Proc. Recent Advances in Nano Science and Technology, Chennali,
Tamilnadu, India, vol. 3, pp. 2525-2531, 2016.

	An Evolutionary Normalization Algorithm for Signed Floating-Point Multiply-Accumulate Operation
	1 Introduction to Multiply & Accumulate MAC Architecture
	2 ECC Block
	3 ESC Block
	4 SFMAC Architecture
	5 Conclusion

