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Abstract: Although Android becomes a leading operating system in market,
Android users suffer from security threats due to malwares. To protect users
from the threats, the solutions to detect and identify the malware variant are
essential. However, modern malware evades existing solutions by applying
code obfuscation and native code. To resolve this problem, we introduce
an ensemble-based malware classification algorithm using malware family
grouping. The proposed family grouping algorithm finds the optimal com-
bination of families belonging to the same group while the total number of
families is fixed to the optimal total number. It also adopts unified feature
extraction technique for handling seamless both bytecode and native code.
We propose a unique feature selection algorithm that improves classification
performance and time simultaneously. 2-gram based features are generated
from the instructions and segments, and then selected by using multiple
filters to choose most effective features. Through extensive simulation with
many obfuscated and native code malware applications, we confirm that it
can classify malwares with high accuracy and short processing time. Most
existing approaches failed to achieve classification speed and detection time
simultaneously. Therefore, the approach can help Android users to keep
themselves safe from various and evolving cyber-attacks very effectively.

Keywords: Android malware classification; family grouping; native code;
obfuscation; unified feature extraction

1 Introduction

With over 2 billion active Android devices worldwide [1,2], Android is considered as the worldly
most popular mobile operating system. The rising popularity of Android system is accompanied by the
increasing number of malwares that targets this system. As a result, there are many different kinds of
malware variance available on vast Android landscape. Android malware becomes one of the biggest
critical issues in Android system. According to [3], there are almost 8,400 malware applications were
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found daily and they target on Android device in order to steal the private information for malicious
activity. Although Google uses its own scanning tool, i.e., Play Protect security suite for years, malware
issues still exist. Recently, McAfee lab found out several obfuscated malwares in Google Store from the
same publisher [4]. Furthermore, ESET analyzer also found out that there are three specific malware
families can invade from Google Store detection [5]. Finally, there is also native malware that invade
Google Store [6] found by Fortinet analyzer.

To keep smartphone users safe from the threat of the malware, the solution to detect and identify
the malware variant is needed. Thus, many various approaches using static or dynamic analysis have
been proposed [7–12]. In traditional ways, malware developers use flaws of system permission [7–
9,13–17] to load malicious function in the malware. Recently, malware is evolving very fast in terms
of the total number and the sophistication level [1,4–6]. More seriously, modern malware evades
detection from most of the existing solutions by applying code obfuscation and native code [10,11].
Such techniques cause increased detection time or even detection failure for most existing anti-malware
solutions [8,9,14,15,18,19]. Thus, we need a new approach to overcome modern malwares.

Additionally, using the obfuscation technique, the malware developer easily generates multiple
variants of malware that can cause misdetection in most existing systems [10,11]. Malware developers
also manually make variants of original malwares and incapacitate anti-malware programs. Such
variants and original malwares can be categorized as the same family. However, most previous
literature only focuses on malware detection to inform the user whether it is benign or malware without
informing the malware family name.

Malware classification identifies the belonging malware family of the malware. Malware classifi-
cation has many advantages compared to malware detection [8,20]. First, it helps existing solutions to
detect a malware with higher accuracy. Existing detection technique extracts unique signatures from
each malware and use the signatures to detect it; thus, they have a high failure probability to detect
malware variants created manually or with code obfuscation [10,11]. If we know the family that existing
malwares belong to, we can build signature based on common features among malwares in the same
family. Such signatures are very robust against obfuscation or manual variations. Second, a family
name from classification is very helpful to decide how to deal with unknown malwares. From other
known malwares in the same family, we can use the same remedy to remove the malware and recover
the damaged system. Third, it also helps to prevent the system from malwares. It is very difficult to
configure security policies one-by-one for every single malware to protect the system for all malwares.
Instead, if we configure them according to each family, the configuration cost can be low and scalable.

However, most existing anti-malware approaches still focus on malware detection rather than
classification. To cope with the issue, we present a new solution based on unified static feature
extraction that can classify the malware application, which is not incapacitated to obfuscated and
native malwares. This study optimizes the feature set to the small size of the feature dimension. We also
suggest an efficient grouping technique for malware families. Additionally, we propose an ensemble
learning technique to classify malwares using results from different groups of malware families to
achieve high scalability in terms of accuracy and processing time.

In summary of our proposed approach, this study makes the following contribution to state of
the art malware classification for Android.

• High accurate group-based classification: This study introduces an efficient way to group the
malware families by applying Boosted Random Forest (BRF) to a dataset and recursively
combining the largest family with the smallest one. Such a grouping technique greatly helps
to increase the classification performance and reduce processing time.
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• Ensemble machine learning: We thoroughly analyze 28 malware families including various
obfuscated and native code malwares. Based on the result, we determine the size of groups
and design the optimal ensemble learning technique with multiple Random Forests (RFs). It
provides high classification accuracy compared to latest solutions.

• Lightweight and unified feature selection: This study unifies the feature extraction to seamlessly
process both bytecode and native code. After obtaining initial features, it selects only best
features by intersecting the initial features. Since the classification results depend on feature
selection, we propose a very practical feature extraction and selection algorithm, and therefore,
achieving a good performance with a large scale dataset.

• Robust malware classification: Although many existing works fail to detect or classify modern
malwares using code obfuscation and native code, our algorithm provides classification results
with high accuracy. To achieve this performance. We gathered various malware applications
from many available sources that include traditional, obfuscation, and native malware for
analysis. Based on the result, we elaborately design our algorithms such as predefined irrelevant
features and 2-gram based features to achieve high classification accuracy regardless of malware
types.

The rest of our paper is organized as follows. We present some selected related work in Section 2.
We introduce and describe our proposed system in Section 3. We analyze evaluation results in Section
4 and conclude it in Section 5.

2 Related Work

In the state-of-art Android malware analysis, it can be classified into two categories: Malware
detection and Malware classification. Malware detection is the technique that focuses only on two
target classes whether the application is benign or malware. On the other hand, Malware classification
looks deeper into each malware characteristics to identify belonging family of malware application.
As the result, malware classification provides a more scalable solution to malware analysis on specific
malware over malware detection.

For better understanding, this study, we will first discuss related work on the techniques that only
focus on detecting malware in Android. We also discuss on the signature-based and machine learning
based techniques that use to detect malware application. We then cover about the techniques that
focus on malware classification. We also look at ensemble classification and random feature ensemble
technique that are used to classify the malware.

2.1 Malware Detection

There are two popular techniques to detect the malware. The first technique is signature-based
malware detection; the technique solely depends on a specific pattern such as Control Flow Graph
(CFG) [9,21,22] or known malicious functions used in malicious applications. The second technique
is machine learning [13,15,16] based malware detection that trains feature set extracted from malware
applications with recent machine learning algorithms to detect the malware.

2.1.1 DroidNative

DroidNative [9] is the system that focuses on detecting native malware application. DroidNative
generates the Annotated Control Flow Graph (ACFG) [23] and Sliding Window of Difference
(SWOD) using Malware Analyze Intermediate Language (MAIL) [24]. It compares generated ACFG
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with the built model to identify the malware. Furthermore, it reduces the comparison time using
similarity comparison based on machine learning. DroidNative can effectively detect native malware
and traditional malware applications. However, DroidNative has no mention of obfuscated malwares;
thus, the system may be vulnerable to obfuscated malwares. Furthermore, DroidNative can only
perform the detection not classification. Since DroidNative uses CFG, it can detect only pre-existing
malwares in the trained model.

2.1.2 DroidSieve

DroidSieve [13] is one of unique systems that can detect obfuscated malware. It uses only static
analysis to extract the feature from the application. DroidSieve extracts all possible features for
malware analysis, including bytecode, strings, and resource files. Then, it selects only fine-grained
features for malware detection. It can easily detect obfuscated malware as well as other traditional
malware. It also argues that it can handle native malware. However, it only relies on metadata to detect
native one, and therefore it cannot robustly detect native malware applications.

2.2 Malware Classification

The fundamental techniques for classifying malware are literally the same with detecting malware
but using the technique without any consideration for classification characteristics achieves usually low
accuracy. To increase the classification accuracy, many approaches have been proposed: the random
feature set ensemble [25], ensemble different classification algorithms [7], and ensemble supervised
model with un-supervised model [8]. However, each literature has its own limitation on malware
classifications.

2.2.1 Ensemble Clustering and Classifier

To mitigate the classification issues, ensemble clustering and classifier (EC2) [8] proposed a
way to ensemble the results from clustering and classifying processes. EC2 aims to understand the
characteristics of the malware family, making more robust on malware’s signatures. It uses static and
dynamic analyses to extract the feature for the malware classification. Static analysis in EC2 extracts
activities, services, and other metadata, whereas dynamic analysis extracts read and write states, SMS,
and network. It ensembles six different algorithms including three clustering algorithms and three clas-
sification algorithms to obtain the final result. However, EC2 does not include any information about
malware variants using obfuscation and native code. Therefore, it can be vulnerable to obfuscated and
native malwares. Furthermore, clustering can cause huge overheads to the processing performance of
the overall system.

2.2.2 RevealDroid

RevealDroid [7] extracts all possible features from malware applications using only static analysis
method. RevealDroid extracts application programming interface (API), native code executable and
linkable format (ELF), and Android metadata as feature sets from malwares. Thus, it is able to detect
obfuscated or native malwares. RevealDroid builds multiple classifiers according to the number of
targets. For example, if the model contains five target families, then RevealDroid will generate five
classifiers to detect each family whether it corresponds to the target family. The system focuses on
selecting the fine-grained features from the dataset for better scalability and performance.



CMC, 2022, vol.72, no.1 385

2.2.3 IagoDroid

IagoDroid [25] is the extended study of RevealDroid that focuses on malware classification.
IagoDroid selects random features from the original feature set, and then uses multiple RevealDroid
classifiers to classify the random malware on each random feature set. Each classifier uses each own
disjoint feature set, and IagoDroid ensembles the results from the classifiers to generate the final
result. Then, it compares the ensembled result with the original RevealDroid result to finalize the
classification. However, IagoDroid only focuses on reducing misclassification more than increasing
the accuracy of the overall system. Thus, it is limited for practical deployment in the real system.

3 Proposed Algorithm

They still have much room for improvement in terms of classification detection and run-time
although many malware classification algorithms have been proposed so far. Currently, no systems are
available to classify obfuscated malwares. For native malwares, only a few systems exist but they also
fail to achieve a high classification accuracy. We note that most approaches do not rely on application
code but non-application code such as metadata. The code of the application contains plenty of
information which can be directly used for classifying malwares. However, extracting features from the
application code is time-consuming [25,26]. Moreover, native malware contains bytecode and native
code together, we need to process bytecode and native code, separately. Such an approach makes the
classification process more complicated and slower. Therefore, in this study, we focus on unifying
separate feature extractions for both bytecode and native library code by converting everything into a
native binary. Android Runtime (ART) [25,27] makes it possible to achieve unifying feature extraction
since ART can convert Android bytecode into native binary code; thus, we can perform feature
extraction using only native code. It will greatly simplify the feature extraction process, and it makes
malware classification more efficient in terms of speed and accuracy.

For better classification, some previous literatures on malware classifications use ensemble
techniques [7, 8,14]. The ensemble is the process that combines the many algorithms or model to find
out the best result for each feature set. However, it has some issues such as insufficient accuracy or long
processing time. To cope with the issues, this study proposes a different way to generate the ensemble
model for boosting the performance of the classification system. We build groups of the malware based
on each label using BRF for the entire dataset then train it using BRF for each group separately. We
will explain each procedure in more detail.

3.1 System Overview

Fig. 1 shows the overview of the proposed approach. It consists of four phases: Data Preprocess-
ing, Feature Engineering, Family Grouping, and Ensemble Model Generation. In data preprocessing,
application bytecode and native library are converted into native binary code using ART and
disassembly [11,16,28]. In Feature Engineering, we perform feature extraction from the applications
converted in the pre-processing. We then remove the irrelevance features and perform multiple feature
selections to choose common features from the feature sets. We intersect the multiple filter-method
based-feature selections together to obtain the finely chosen features set. Then, we categorize malware
families into small groups with different characteristic based on the result of BRF. Lastly, we ensemble
each result of BRF for each group to obtain the result for the target family. Now, we will explain each
step in detail.
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Figure 1: Overview of building the classification model for our proposed approach

3.2 Data Preprocessing

In the preprocessing stage, we first extract bytecode and native library from the Android malware
applications. Starting from Lollipop, Android introduced a new function called ahead of time (AOT)
compilation at the installation time [26]. Using Android runtime (ART), we convert extracted bytecode
into native binary code. As a result, ART makes it possible for the system to unify the process of feature
extraction. The system disassembles native code obtained from both bytecode and native library into
a readable assembly text file for feature extraction.

In this study, we use the disassembly technique proposed by [29]. First, the system decodes
everything on the native binary into an assembly including data as well as code. We should note that
it may generate incorrect instructions especially when we try to disassemble data. Second, we decode
everything on the native binary into assembly without the data. This process can sometimes fail to
find valid embedded machine instructions in data. Thus, we combine the first and the second assembly
techniques to remove the data by comparing the instructions between both assemblies.
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3.3 Feature Engineering

We remove the irrelevance instructions [9] from the dataset obtained from the data preprocessing.
Irrelevance instructions mean instructions used too widely or used for only specific purposes, so they
are not regarded as ones used for malware operation. For example, INVD is the instruction used to
invalidate internal caches, consequently, inappropriate for malware analysis. During the preprocessing
process, we remove such irrelevance instructions to increase the performance and reduce overall feature
dimension in feature extraction.

In this study, the proposed system uses 2-gram, i.e., ‘pair of segment and instruction’ or ‘consec-
utive instructions’ to generate the feature set. In addition, we use all loadable code segments [30] to
generate the features. Using all the segments is essential to analyze all operations of a target application.

Tab. 1 shows all segments used for feature extraction in this study. All loadable code segments
include .rodata, .oatexec, and .oatdata. In original ELF, .rodata contains read-only data without
any machine instruction; however, .rodata in Android ELF contains two sub-segments: .oatexec and
.oatdata [30], which are able to embed machine instructions. Thus, we should include segments such
as .rodata in our feature extraction process.

Table 1: List of segments used to generate features on the proposed system

Segment Description

.rodata Read-Only data: In traditional ELF, it contains only the string without any
instructions. Android ELF .rodata contains .oatexec and .oatdata that include the
instruction of embedded library.

.text Code part: It contains all the code instructions of the application.

.dynstr Dynamic string: It holds strings needed for dynamic linking. They represent the
names associated with symbol (dynsym) table entries.

.dynsym Dynamic symbol: It holds the dynamic linking symbol table. It includes string data
used in an application linked in .dynstr.

.hash It holds a symbol hash table.

.oatdata It contains OAT headers and embedded original Dalvik executable file (DEX) file.

.oatexec It contains generated native codes.

Let us take an example as Fig. 2. Assuming that we have .rodata and .text segments in disassembled
binary first, our system selects .rodata and removes irrelevance instructions from this segment, i.e.,
wbinvd. Then, the system starts to count the instruction in .rodata segment; there are two ‘add’
instruction in this segment, and it counts that instruction by combining it with the segment as
‘rodata_add:2’. After counting all the instruction in the segment, it starts to combine instruction with
instruction; if the subsequence instruction of previous ‘add’ is ‘pop’, the system counts sequence of the
combined instructions as ‘add_pop:1’. Once all the subsequence instructions in .rodata are counted,
the system continues the same process with the next segment .text. The last instruction from .rodata is
used to combine with the very first instruction of .text segment. From previous work, it is known that
there are instruction combinations mainly used only in malicious applications. By using information
about these combinations as features, normal apps and malicious apps can be distinguished. Long
n-gram are mainly used in existing studies, but short n-grams are used in the proposed method. When
code obfuscation is applied to malicious applications, the order of the instructions is changed severely,
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which makes features based on long n-gram not working well. On the other hand, the proposed method
uses short n-gram, making the features based on short n-grams robust even for code obfuscation. Fig. 2
illustrates the feature extraction in our proposed system.

add    
pop
wbinvd
add      

Segment .text:

text_add, text_pop, add_pop, pop_add
2, 1, 1, 1

2-gram

Figure 2: Example of 2-gram based feature generation using segments and instructions

To increase the classification accuracy and reduce the overall feature dimension size, the system
applies feature selection to the obtained dataset [31]. We decided to use a filter-method to select the
features since it chooses features depending on the general characteristics of the data independent
of any dataset without involving any training model [32]. Thus, it leads to a faster feature selection
pipeline. Each filter-method selects a different dimension of feature set; thus, to obtain the final feature
set, we intersect the feature sets together to get the final feature set.

Assume that we have two feature sets A and B selected from an original feature set using filter-
methods A and B, respectively. Both filter-methods can result in different feature dimension sizes. For
example, feature set A contains “pushf_add, add_add, add_pop, pop_pushf, pushf_add, pop_add”
while feature B contains “add_add, add_pop, pop_add, mov_call, call_lret”. The system starts to
intersect two feature sets by keeping only the same features that exist in both feature sets. After
intersection, final features, i.e., “add_add, add_pop, pop_add” are used to train the model. Fig. 3
shows how the feature set is intersected.

pushf_add, add_add, add_pop, 
pop_pushf,pushf_add,pop_add

Filter -Method A Feature Set

add_add, add_pop, 
pop_add,mov_call,call_lret

Filter -Method B Feature Set

Intersect add_add, add_pop, pop_add

Intersected Feature Set

Figure 3: Filter-method based feature set intersection process

3.4 Family Grouping

To group malware families, we can consider two different techniques. The first technique is
to cluster the whole instance using k-means algorithm. The algorithm uses unsupervised learning
to group the instance with similar characteristics together using centroid. However, this technique
causes the performance overhead to the classification system, thus we do not consider this clustering
technique.
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The second technique is to group the families based on both the family size and the misclassified
results of each family from BRF. We group the malware dataset based on family size since it has less
overhead compared to the clustering technique. Before the grouping process, we obtain classification
results using BRF model trained with all families, and initially, each family corresponds to each group.
In the grouping process, the system selects the largest and smallest groups. For the largest group, the
system checks whether the most misclassified group is the same as the smallest in the BRF applied
classification results. If it is the same, it tries to the same procedure with the next smallest group. If it
differs, the two groups are merged into a larger group. This process is repeated until the total family
size in the largest group reaches to the predefined maximum family size in a group. If it reaches to the
maximum size, the system selects the next largest group and repeats the grouping procedure. Fig. 4
shows the overall grouping process.

Figure 4: Malware family grouping process, where fi is the set of the i-th malware family that includes
all malwares belonging to the family as elements, Gmax is the maximum number of families in a group,
and |·| is the cardinality of the set

For a better explanation for the grouping process, we assume that we have eight malware families
as shown in Tab. 2, where the maximum family size in a group is four. The system selects geinimi and
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boxer as the largest and the smallest groups, respectively. However, the most misclassified family of
geinimi is boxer, and thus, the system cannot merge geimini with boxer. The system chooses the next
smallest group, i.e., Fakerun and merges it with geinimi. On the other hand, boxer will be merged with
the next largest group, i.e., Fakeinst. This step is repeated until each group contains four families. Tab. 3
shows the result of the example dataset in Tab. 2.

Table 2: Example of malware families for grouping

Family name Size The largest misclassified family based on BRF

Fakeinst 200 Zitmo
Fakerun 20 Adrd
Tigerbot 100 Yzhc
Zitmo 70 Adrd
Adrd 30 Zitmo
Boxer 15 Fakerun
Geinimi 300 Boxer
Yzhc 19 Adrd

Table 3: Final grouping results for the example dataset in Tab. 2

Group 1 Group 2

Geinimi Fakeinst
Zitmo Tigerbot
Fakerun Adrd
Yzhc Boxer

Through experiments, we can see that the classification performance of BRF can be changed
according to the number of families in the training dataset. Thus, the number is an important factor
of the proposed algorithm. In addition, which families are included in the training dataset can affect
performance. If the dataset is composed of very similar families, the classification accuracy will
be inevitably low. To avoid this situation and improve the classification performance, the proposed
method allocates malware families which have low mis-classification rate into the same training
dataset, called group.

3.5 Ensemble Model Generation

We train an RF model with each group. RF is a well-known ensemble model of decision tree where
every tree is built with randomly selected features of the dataset [33]. RF has a unique capability to
train a large-scale dataset with a high training speed. Therefore, we choose RF to trains each group
malware families to build the model. For simplicity, we use the same settings for all model. The features
and the number of trees for training model in BRF are the same for each model. We use 10-fold cross-
validation in every model.

Finally, we ensemble trained group models to finalize the result. The ensemble approach has
some variations. Some approaches ensemble the results from different learning algorithms while others
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ensemble results from different random feature sets. In this study, we ensemble results from each model
of groups with the same algorithms and the same feature set. We apply an application to all group
models, and then choose the family with the highest scores as the classification result. Fig. 5 shows
integrated procedures of building our classification machine-learning model.

Figure 5: Flowchart of the proposed system

4 Performance Evaluation
4.1 Evaluation Environment

To evaluate the performance of classification for our system, we conducted extensive experiments
to compare with existing work. First, we briefly explain the evaluation dataset for our experiment.
Second, we discuss metrics used to evaluate the system. Finally, we compare the result of our system
with previous literature. All evaluations were conducted in a desktop equipped with one Intel Core i7-
4790 K 4 GHz, 16 GB RAM, and two 256 GB SSDs configured to Redundant Array of Independent
Disks (RAID) 0.

The dataset for the experiment was gathered from many different sources: Marvin, Information
Security Centre of Excellence (ISCX), Drebin, and PRAGuard. There are three types of malware in
our dataset: Un-obfuscated, obfuscated, and native ones. The dataset contains originally 43 malware
families. However, very small families with one or two malwares only were removed since they have
too few samples to be applied for cross-validation. Finally, 28 families are contained in the dataset.
The whole dataset consists of 15,890 malware applications, where the sizes of obfuscated and native
malware are 7,560 and 1,390, respectively. We retained 70% of each dataset for training and 30% for
the testing procedures.

We compare the classification model in term of F-Score and run-time per sample. F-Score is
defined as the harmonic mean of precision and recall as shown in (1). The number of malware
application has been growing very fast; thus, it is critical to perform high-speed malware classification
with a large scale malware. Therefore, we also evaluate our system in term of run-time per sample.
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Run-time per sample is the time that system spent from feature extraction to identify the target, so it
is very important metric since it indicates the scalability of the system.

F-Score = 2.
Precision.Recall

Precision + Recall
, (1)

where Precision = True positive
True positive + False positive

and Recall = True positive
True positive + False negative.

4.2 Evaluation Results
4.2.1 Classification Accuracy

The main challenge for our proposed algorithm to increase the performance of malware clas-
sification is to determine that how many and which filter-method algorithms should be used. It is
also important to find how many families should belong to one group. To find such optimal values,
we tried on filter-method combinations as many as we can. We also measured the performance as
the number of families in a group increases. Through these experiments, we can find the best filter-
methods and the family number in a group. For filter-method, we considered six algorithms such as
Pearson Correlation, Spearman correlation, Mutual information, Kendall correlation [34], Fisher, and
Chi Square.

We measured the classification accuracy using F-Score as mentioned previously. The F-Score is
highest when the number of filter-methods and the number of families in a group are four and three,
respectively, as depicted in Fig. 6. The highest score is 97.16% and it is very high compared to existing
classification algorithms.

Figure 6: Comparison of F-Scores according to the number of filter-methods (NF) with the maximum
number of families in a group increasing (Gmax)

To ensure our system against malware classification in Android, we compared this study to two
previous literatures on malware classification: RevealDroid and IagoDroid. We decide to choose
RevealDroid and IagoDroid in our comparison because they are only practically available malware
classification systems that can detect and classify obfuscated and native malware [35].
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RevealDroid is the system that supports both malware detection and classification. RevealDroid
focuses on the manifest, library, API call, Reflective, and native call to extract all possible features from
every malware application. RevealDroid produces many classifiers to perform malware classification.
For example, if there are n-target families in the dataset, RevealDroid will produce n classifiers for
each target family. Thus, using our dataset, RevealDroid generates 28 classifiers based on a regression
tree for each family. However, RevealDroid was designed to focus on malware detection more than
classification thus it achieves moderate F-Score. Through the experiment, our system outperforms
RevealDroid in terms of F-Score, achieving around 16% higher score. Fig. 7 show the F-Score
comparison between our proposed and RevealDroid.

Figure 7: Comparison of the classification accuracy between our proposed algorithm and related work

IagoDroid is the extended version of RevealDroid; it was designed to support better malware
classification than RevealDroid. IagoDroid generates many RevealDroid classifiers by randomly
selecting the features among original features, and ensembles the result from multiple classifiers to
obtain the result. Since IagoDroid shows different F-Scores according to the number of classifiers,
we configured the number as the best value, i.e., four to achieve the highest F-Scores. However, we
outperform IagoDroid with the best number of classifiers roughly 10% in term of F-Score. Fig. 7 also
shows the F-Score comparison results between our proposed and IagoDroid.

In addition, there are 4,767 obfuscated apps included in the test dataset. For obfuscated apps,
RevealDroid and IagoDroid have 77% and 81% on F-score, whereas the proposed method has 96%.
Therefore, it shows a tendency similar to the performance for the total test dataset.

Tab. 4 shows the best combination of filter-methods for intersection. For highest performance,
we choose four filter-method algorithms: Chi Square, Mutual information, Kendall correlation, and
Spearmen correlation. Tab. 5 also shows the name of families belong to each group when we achieve
the best score.
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Table 4: Intersected filter-methods when the F-Score is highest according to the number of filter-
methods

The number of filter-methods Intersected filter-methods achieving the best F-Score

1 Kendall
2 Mutual, Chi Square
3 Spearman, Mutual, Chi Square
4 Spearman, Mutual, Kendall, Chi Square
5 Pearson, Spearman, Mutual, Kendall, Fisher
6 Pearson, Spearman, Mutual, Kendall, Fisher, Chi Square

Table 5: Grouping result when the highest score is achieved

Group ID The list of family names belonging to each group

1 Fakeinst, Fakerun, Tigerbot
2 Droidkungfu, Smgreg, Batterydoctor
3 Plankton, Rootsmart, Lotoor
4 Opfake, Adrd, Boxer
5 Ginmaster, Yzhc, Kmin
6 Anserver, Imlog, Pjapps
7 Geinimi, Gappusin, Nickyspy
8 Mobiletx, Droiddreamlight, Zitmo
9 Basebridge, Sendpay, Iconosys, Golddream

4.2.2 Classification Time

The classification time is a very important metric since it determines whether the algorithm can
be used in a real environment. We also measured the classification time according to the number of
filter-methods and the number of families in a group, where filter-methods with the highest F-Score
are selected. As shown in Fig. 8, the time generally increases with the number of filter-methods and
the number of families in a group. It achieves moderate classification time when it achieves the best
F-Score, i.e., four filter-methods and three families in a group.

We also compared our algorithm with RevealDroid and IagoDroid in terms of the classification
time. Our system shows 6.5 times faster than RevealDroid, and 11 times faster than IagoDroid. Since
IagoDroid internally utilizes many RevealDroid classifiers and ensembles the result from multiple
classifiers, it shows the worst classification time. For our algorithm, it achieves fastest classification
though efficient feature selection algorithm. Fig. 9 show the classification time results between our
proposed algorithm and related work.
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Figure 8: Comparison of average classification time according to the number of filter-methods (NF)
with the maximum number of families in a group (Gmax) increasing

Figure 9: Comparison of average classification time between our proposed algorithm and related work,
where the total number apps is 15,890

Fig. 10 shows the total run-time according to the various filter-method numbers and the total
family numbers in a group. The run-time includes consumed time from feature selection, grouping,
learning, and classification with 15,890 applications. The run-time increases in proportion to the
number of families in a group. With three families in a group, we can achieve the best F-Score and
very short run-time.
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Figure 10: Comparison of the total run-times according to the number of filter-methods (NF) with the
number of families in a group (Gmax) increasing, where the run time includes learning and classification
time

5 Conclusion

Although Android malware is one of the most serious threats in Android landscape, it becomes
more difficult to classify recent obfuscate and native code malwares even with the latest solutions.
To overcome this issue, we developed malware type independent unified feature extraction, small but
effective feature selection, fast BRF based grouping, and accurate ensemble machine learning with
multiple RFs. These techniques are integrated into one high-performance classification algorithm
and it can classify Android malwares regardless they are obfuscated or native code-based malwares.
Through extensive simulation with many types of malware, we could prove its high performance such
as high accuracy and fast classification speed. Malware classification is known as more difficult than
malware detection. Thus, many existing works have not been able to improve the detection accuracy
and fast classification speed simultaneously. Due to such a high performance of the algorithm,
we expect that our approach can help Android users to keep them from various and evolving
cyber-attacks.
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