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Abstract: Software-defined networking is one of the progressive and
prominent innovations in Information and Communications Technology.
It mitigates the issues that our conventional network was experiencing.
However, traffic data generated by various applications is increasing day by
day. In addition, as an organization’s digital transformation is accelerated, the
amount of information to be processed inside the organization has increased
explosively. It might be possible that a Software-Defined Network becomes
a bottleneck and unavailable. Various models have been proposed in the
literature to balance the load. However, most of the works consider only
limited parameters and do not consider controller and transmission media
loads. These loads also contribute to decreasing the performance of Software-
Defined Networks. This work illustrates how a software-defined network can
tackle the load at its software layer and give excellent results to distribute the
load. We proposed a deep learning-dependent convolutional neural network-
based load balancing technique to handle a software-defined network load.
The simulation results show that the proposed model requires fewer resources
as compared to existing machine learning-based load balancing techniques.

Keywords: SDN; software-defined networks; load balancing; performance
enhancement

1 Introduction

In today’s era, traditional networks are unable to provide new services and fast innovation. Apart
from this, the complexity of the network increases, which makes it harder to manage, and the data
plane and control plane are coupled with each other as in router or switches. Software is deployed on
dedicated hardware and, therefore, vendor-specific. Adding new Services requires costly new hardware.
So, there is a need for a new approach to solving the issue discussed earlier. Therefore, a Software-
defined Network (SDN) solves these problems, decoupling the control plane and information plane,
making the network more agile, automated, open to all, and reducing business costs. However, today,
the world is generating many data, it might be possible that the SDN network may get flooded with
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packets, and networks become congested and bottleneck. So, there is a need to balance the load in
SDN [1]. Let us discuss the architecture of SDN. In SDN, a logically centralized controller controls
several routing devices, as shown in Fig. 1 [1–3]. An important function of SDN architecture, given in
Fig. 1, are as follows:

• Information Plane: Switching devices such as routers, switches, etc., are part of the information
plane. It is responsible for processing and forwarding the packets as per the rules defined in the
forwarding table.

• Controller plane: It is also known as “NETWORK BRAIN” and consists of controllers. It
takes a decision where a packet is to be forwarded. The control plane’s functions are system
configuration, management, and routing table information exchange. It can be deployed in a
different geographical area.

• Management plane: It is used for management and configure as per user’s demand.

Figure 1: Software-defined architecture

Still, there was a problem with a standard protocol that helps communication between the
information plane and controller plane. The OpenFlow protocol was created in 2008 to address the
problem [4]. The Main Building blocks of Openflow are as follows:

• Flow table: It is the important component of OpenFlow switches/routers. When a packet arrives
at a particular switch, the header field of the packet must match with flow table entries (shown
in Fig. 2, which includes various phases, layers, and its header description [5].

• Port: Openflow characterized ports are capable of forwarding the packets to the controller,
flooding, etc.

• Messages: The OpenFlow controller and switch represent messages that exchange between
the OpenFlow controller and switches. Messages can be symmetric messages, asynchronous
messages, or initiated by the controller. For example, PACKET IN, ECHO, PORT STATUS
message.
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Figure 2: Structure of flow table

As illustrated in this manuscript, load-balancing is required through smart and intelligent algo-
rithms that can tackle the load at its software layer and give excellent results to distribute the load.
We propose a deep learning-dependent convolutional neural network (CNN)-based load balancing
technique to handle the load in SDN. Further, we compare the test results with existing machine
learning-based load balancing techniques.

An issue with SDN is that its controller can be overloaded by traffic. Therefore, we will discuss
load balancing in the controller using a load balancer in SDN in a later section.

2 Load Balancing Fundamentals

It is a procedure that is utilized to distribute the load among servers or any other computing device.
Maximum throughput, minimum response time, maximum utilization of resources, avoiding overload,
and avoiding crashing are the main objective of load balancing. Load balancing can be performed by
hardware, software, or a combination of both. Dedicated software load balancers are manufacturer-
specific and are costly. It can run on the hardware or virtual machine, as shown in Fig. 3. In our
proposed methodology, we deal with the issue of load balancing.
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Figure 3: Load balancer

Intelligent Load balancing

In today’s world, due to the huge increase in traffic, the demand of users, complexity of the
application. Therefore, the business model needs to a robust, reliable, scalable, less complex, and
adapt to new challenges with reduced cost. Hence there is a need for an intelligent load balancer.
An intelligent load balancer distributes the packet or provides the optimized path considering various
parameters. An intelligent load balancer can be achieved using Machine learning techniques. There
are various machine learning techniques available, out of which we have taken a CNN to build our
model.

3 Related Work

This section looks at the research that has been published in the literature. It includes pros and
cons, as well as the parameter they used for load balancing. Tab. 1 summarizes the algorithm used and
the basis of the decision.

Table 1: Related work on SDN load balancing

Sn Year Author name Algorithm
used

Basis of
decision

Advantages Disadvantages

1 2014 Chou et al. [6] Load
balancing
genetic
algorithm

Coefficient of
variation

Avoid
bottleneck
save cost

High complexity
and
computation
time scalability
issues

2 2014 Zhang et al.
[7]

Hybrid
routing

Increase
throughput
reduced
TCAM

Latency is not
considered

(Continued)



CMC, 2022, vol.72, no.1 1413

Table 1: Continued
Sn Year Author name Algorithm

used
Basis of
decision

Advantages Disadvantages

3 2014 Zhou et al. [8] Dynamic and
adaptive
algorithm

Average
message
arrival rate
RTT

Improved
throughput
reduce the
overhead of
exchanging
messages

Selection of
threshold

4 2015 Wang et al. [9] Based on
distributed
architecture

Adjustment of
traffic flow
efficiently
consumption
over-head
decreases

Communication
overhead

5 2016 Sufiev et al.
[10]

Dynamic
cluster

Decreases
latency super
regulator
independent
of slave
controller

Single point of
failure issues of
scalability

6 2016 He et al. [11] Swarm
optimization

Decrease
latency
increased QoS

Security issues
energy
consumption

7 2016 Yong et al. [9] SDN-based
load
balancing
technique

Hashed based High
throughput

Scalability
problem
availability
issues

8 2017 Hu et al. [12] Switch-
migration-
based decision
making
(SMDM)

# of packets
in messages

Low response
time

9 2017 Zhong et al.
[13]

Load
balancing
based on
server
response time

Response time Easy to
implement
low response
time

Low availability
low scalability
system
bottleneck

10 2017 Rangisetti et
al. [14]

QoS aware
load
balancing
algorithm
(QALB)

Improved
GBR
satisfaction
better QoS
data rates

Improved GBR
satisfaction
improved QoS

(Continued)
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Table 1: Continued
Sn Year Author name Algorithm

used
Basis of
decision

Advantages Disadvantages

11 2018 Filali et al.
[15]

Optimization
algorithm

Response time
resource
utilization

Minimize
latency
between SDN
controller and
switches

Jitter
throughput is
not considered

12 2019 Aly et al. [16] Controller
adaptive load
balancing

# of requests
on controller
# of flow
table entries.

Throughput
in-creased to
12% response
time increased
to 9%

Single point of
failure Low
availability

13 2019 Rupani et al.
[17]

Back-
propagation
artificial
neural
network

Bandwidth
ratio, latency,
packet loss
rate, # of
hops, node
utilization

It predicts the
effective load
on all the
shortest paths.

Highly
complexity

14 2020 WilsonPrakas
et al. [18]

Dynamic
agent-based
load
balancing

CPU
utilization,
memory
utilization and
the response
time

Latency and
migration
time and
provide a
better result.

Complex and
high
computation
time

The details of Tab. 1 are described as follows: Li-Der Chou et al. presented an algorithm based
on genetics, and a coefficient is utilized to assess the performance of the algorithm. They have selected
the roulette-wheel selection, single-point cross-over, and single-point mutation and compared it with
the round-robin algorithm [6].

Zhang et al. presented a strategy called Hybrid Routing. It uses both destination and explicit
routing. In this methodology, the intricacy of the explicit routing diminishes, and the performance of
the methodology is enhanced [7].

Zhou et al. proposed DALB (dynamic and adaptive algorithm) algorithm having distributed
controller. This takes O(n) as overhead. It is tested on attributes such as throughput and average arrival
time of the packet [8].

Wang et al. presented a load balancing methodology. The proposed model has three standard
parts: a load collector, load balancer, and switch migrator. The load collector (Cbench) diverts the
traffic to the controller. A controller has the threshold of the 70% of the controller information
transmission [9]. At the point when the controller beats the threshold, the load balancer picks the
controller (lightest weight).

Hadar Sufiev proposed a multi-regulator load adjusting model referred to as dynamic routing.
Two sorts of controllers are the Super regulator and Regular regulator in the model. The load balancing
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occurs at two levels, one at the Super controller and the second at the Regular Controller. The super-
controller continuously checks the gathering whether they have passed the threshold or not. On the
off chance that when load passes the limit, at that point, the segment calculation runs [10].

He et al. combined fog computing with software-defined networks. Internet of Vehicles is
integrated with Fog Computing-Software defined technology. The proposed methodology increases
the QoS and reduces latency [11].

Hu et al. presented a load balancing technique called switch migration algorithm(SMDM).
SMDM can be divided into three phases. At that point, it predicts migration costs and migration
efficiency. It decides whether to carry out migration movement activities or not [12].

Zhong et al. introduced a methodology called Load Balancing Server Response Time (LBBSRT).
It first gathers every server’s reaction time at that point, picks the server, which has a steady reaction
time. The proposed methodology is simple and efficiently balances the load among the controller and
low response time [13].

Rangisetti et al. presented a combined version of Long-Term Evolution (LTE) Radio Access
Network (RAN) and SDN and came up with a QALB algorithm. The algorithm calculates the
neighboring cell’s load, the user’s QoS profile Equipment, and estimated throughput to balance the
load. For more than 80 percent of the cell. The proposed algorithm provides a better QoS data
rate [14].

Aly provided a load balancing methodology called controller adaptive load balancing (CALB).
In this methodology, the super controller and slave controller are connected and, in turn, connected
with n switches. It is used for both load balancing and fault tolerance [16].

Wilson Prakash et al. proposed an approach called Dynamic Agent-based load balancing
(DALB), which is based on Backpropagation artificial neural network (BPANN) [15]. BPNN is
integrated into the Controller agent. The BPNN takes the three inputs: CPU utilization, Memory
utilization, and response time [18].

We propose an intelligent load balancing model (CNN 1D) for a software-defined network that
takes 16 parameters, as discussed in the latter part of the section, including backward and forward
parameters. We have used a convolution neural network that is less complex and takes less time than
existing researcher models and machine learning models trained using KMeans. Let us discuss each
element of the proposed model in detail.

4 Proposed Methodology

Based on the previous work, we conclude that for load balancing, researchers take the load of
the controller or take the load of transmission media. One thing common in both of them is that
they have taken two or three-parameter for decision making. Nevertheless, not considered a load
of transmission media and controllers load simultaneously. However, in our proposed methodology,
we have considered both the loads and based on a CNN, we have used TensorFlow and Keras to
implement the model. CNN is used because it is less complex and gives accurate results than other
machine learning techniques.

Our main goal is to suggest a strategy for the Software-Defined System that considers all of the
various parameters. The architecture of the suggested model is based on the dataset taken from the
kaggle.com of Universidad Del Cauca Popayan, Colombia [19].
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Clients send a request for a specific service to the server under our proposed method. It first
passes the software load balancer, where the algorithm is implemented. Using CIC Flowmeter, the
first algorithm will acquire flow statistics such as IP addresses, ports, inter-arrival periods, and so
on. Based on these features, it determines the cluster value of the request and sends it to the relevant
servers. In the following papes, we will go through each point in detail.

4.1 Process Flow of the Controller for SDN Traffic

In the proposed model, when a client sends a particular server service, it initially sends it to the
controller. The load balancer checks the packet size of the packet and according to the flow statistics
of both backward and forward direction of the flow captured using CIC Flowmeter. It will send to a
router (server) based on the optimized results obtained through the CNN model and threshold of the
router (server). Here, an important point to be considered is that the threshold of the router (server) is
based on how many bytes per second it can process and the total number of the packet it can handle
at any instance of time shown in Fig. 4. Let us examine the dataset used in the model in the following
segment.

Figure 4: Proposed solution for software-defined network load balancing
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4.1.1 DataSet from Kaggle

We used the dataset provided by Zhao et al. [19]. Fundamentally, it was caught from the
Universidad Del Cauca, Popayan, Colombia United States of America. These data are from the
TCP/UDP traffic caught at various hours on various days during the morning and evening of 2017.
There is an aggregate of 3577296 packets. Out of these, 100000 packets are used to train our machine.
This dataset has 87 features. We have taken 16 parameters to train and test the model, as shown in
Tab. 2.

Table 2: Parameters of the dataset

Sr. no. Parameters Explanation

1 Source.IP IP address of the source
2 Destination.Port The destination port number
3 Flow.duration Total flow duration (millisecond (ms))
4 Total.Fwd.Packets Total packets that move from source to

destination
5 Total.Backward.Packets Total packets that move from destination

to source
6 Flow.Bytes.s Bytes per second of the flow
7 Flow.IAT.Mean Average inter-arrival time of the packets
8 Flow.IAT.Std Standard deviation inter-arrival time of

the packets
9 Fwd.IAT.Mean Average inter-arrival time from source to

destination
10 Fwd.IAT.Std Standard deviation inter-arrival time

from source to destination
11 Bwd.IAT.Mean Mean inter-arrival time from destination

to source
12 Bwd.IAT.Std Standard deviation inter-arrival time

from destination to source
13 Fwd.Packets.s Packets per second from source to

destination
14 Bwd.Packets.s Packets per second from destination to

source
15 Average.Packet.Size Mean size of packets
16 Server The server IP address

Visualization of the dataset is summarized in Fig. 5 [6]. Fig. 5 shows the correlation among the
parameters and calculated using the Pearson correlation coefficient. In Fig. 6, all the parameters are
taken on the x-axis and y-axis, generating correlations for exploratory analysis.

We took some parameters to visualize using the Seaborn module in Fig. 5. All the above statistics
are helpful to perform Exploratory data analysis. In the following section, we will examine Data
preprocessing.
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Figure 5: Correlation among the parameters in the dataset

4.1.2 Data Preprocessing

Data preprocessing is the procedure to process the raw information with the goal that it tends to be
utilized effectively with the three phases as Data Cleaning, Data Transformation, and Data Reduction

We first check the missing and boisterous information in our dataset, just as information sort
of every parameter. These are accomplished by the panda’s module, the Seaborn module of Python.
Whatever we get the result, we performed hashing on this dataset. To standardize information, with
the goal that it can lie somewhere in the range of 0 and 1. One of the famous and vital techniques to
normalize the dataset is Min-Max scaling.

Min-max scalar formula is as follows:

z = x − min (x)

max (x) − min (x)
(1)

where x is the ith value, max (x) and min (x) are maximum and minimum points in the particular
column of a dataset, respectively, and z is the normalized value that lies between 0 to 1. This can be
obtained by sklearn.preprocessing.MinMaxScaler class.

4.2 Convolutional Neural Network (CNN or ConvNets)

A CNN is a subset of deep learning which is inspired by biological processes where connectivity
between neurons is similar to that of the animal cortex. Commonly used CNN is CNN 1D and
CNN 2D.



CMC, 2022, vol.72, no.1 1419

Figure 6: Dataset analysis

COMMON LAYERS are: let us take an example of our model by running a CNN 1D on 16
features.

Input Layer: It contains input data of different dimensions and is based on CNN 1D, CNN 2D, etc.

Convolution Layer: The primary function detects the feature and yields the output by calculating
the multiplication between filters and data size (in matrix form) as Fig. 6. Then slightly move the filter
based on the stride size and perform the same operation. This process continues till we are at the end



1420 CMC, 2022, vol.72, no.1

of the image. The output volume of the convolutional layer can be measured as:

n[l] =
[

n[l−1] + 2p[l−1] − f [l]

s[l]
+ 1

]
(2)

where nl = Output dimension of lth layer, nl−1 = Output dimension of (l − 1)th layer, s[l] = Stride used
in the layer, f[l ] = Size of the filter, p[l−1] = Padding added of the l − 1 layer, As shown in Fig. 7 there
is images of size nh × nw be 6 × 6 and the size of filter (f) = 3, stride (s) = 1 and padding (p) = 0.We
overlap the filter to the information, perform component-wise multiplication, and add the outcome.
Move the filter according to the stride and perform the same calculation until it reaches the end of the
image.

Figure 7: Convolutional layer

Activation Function Layer: The activation function is applied to each element of the previous layer
output. Examples are RELU. Sigmoid. Tanh, Leaky RELU, etc. The output remains unchanged. Here
we have used RELU and Sigmoid function

Pooling Layer: The main objective is to diminish the size of the previous convolutional layer
output, which makes the estimation fast, diminishes memory. There are two types of operation: max
pooling and average pooling. It has three parameters, i.e., size, stride, and type of operations. An
example of the Average pooling layer and Max pooling layer is shown in Fig. 8. Max pooling is a
pooling activity that chooses the most significant component from the district of the element map
secured by the filter. Average pooling registers the normal of the components present in the highlighted
map area secured by the channel. Along these lines, while max-pooling gives the most conspicuous
component in a specific fix of the element map, normal pooling gives the normal of highlights present
in a fix.

Fully-Connected Layer: It is a deep neural system layer that takes contribution from the past layer
and registers the class scores, and yields the 1-D cluster of size equal to the number of classes as
shown in Fig. 9. All the layer that has been discussed with their output is shown in Fig. 10. In the
proposed model, we have used two Convolution layers: conv1d 1 and conv1d 2. The output is obtained
using Eq. (2). Here MAX POOLING is used(as depicted max pooling1d 1). Then we flatten the result
obtained using MAX POOLING LAYER (shown as flatten) 1. We have used four dense layers (shown
as dense 1, dense 2, dense 3, dense 4) and get the output in dense 4 layers (all the layers shown in Fig. 10.
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Figure 8: Pooling layer

Figure 9: Performance of convolutional neural network model
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Figure 10: Elbow method in KMEANS
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5 Training Model

The Convolution neural network is trained on the training data for 30 epochs to get an accuracy of
98.94 percent, and testing is performed on 20 percent of the data. Here we have used the loss function
as Binary cross entropy [20], while the Accuracy and Confusion matrix is used as a metric to test the
model’s accuracy. Now the forward and backward flow features (16 parameters) are used to obtain
optimized results.

5.1 Training Results of CNN Model

We tested the model on 43000 packets, out of which 20 percent are used for testing purposes,
and the remaining 80 percent are used for training. The output has been shown in Figs. 10 and 11.
In contrast, the performance has been illustrated in Fig. 10. A total of 9 layers are used to train the
proposed model. We used 90, 60 filters in the convolution layer with a kernel size of 2, and in the
pooling scenario, a pool size of two is used. The results are summarized in Tab. 3 and also shown in
short form in Fig. 11.

Figure 11: (Continued)
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Figure 11: KMeans method in KMEANS (a) KMean results for n = 1000 pkts (b) KMean results for
n = 5000 pkts (c) KMean results for n = 10000 pkts

5.2 Comparison

We have our compared model with the Machine learning model trained using KMeans. It is tested
on 5000, 10000, 20000, 50000 packets (shown in Figs. 10 and 11 First, in a machine learning model
trained using KMeans, the elbow method is used to find an optimal number of servers (as shown in
Fig. 10). The trained machine requires four servers to balance the load as concluded from the elbow
method, and in Fig. 11, color legends show that numbers of servers and particular requests will go to
the particular server.

The primary objective of any machine learning model is the efficiency parameters or performance
parameters. The Tab. 3 illustrates the accuracy of the system is 98.94% while the validation accuracy
for the system is more than 99%, i.e., 99.22%. It illustrates the correctness of the system. In terms of
the loss percentage which is very important parameter specially for the loadbalancing techniques for
software defined network. This loss parameter is 3.61% and therefore the final parameter is validation
loss which is 2.52%. The clustering details are illustrated Figs. 10 and 11. The Fig. 10 is illustrating the
elbow method to validate the number of clusters while the Fig. 11 is illustrating the clusters formed
during the loadbalancing process. The system is tested for 1000, 5000 and 10000 packets respectively
but the clutering is showing good in figure.

Table 3: Result of proposed convolutional neural network model

Sr no Parameter Percentage

1 Accuracy (acc) 98.94
2 Validation accuracy (val

acc)
99.22

3 Loss (loss) 3.61
4 Validation loss (val loss) 2.52

From this, we conclude that it requires four servers to balance the load obtained using KMeans,
whereas our model can give optimized results on two servers only.
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6 Conclusion

Load balancing is an essential and crucial mechanism for distributed computing-based technology
in current network administration and application. A software-defined network is a technology to
monitor and manage distributed computing requirements through various network management
approaches, such as layered architecture, network virtualization, and orchestration. As the load is
changed, the technique to handle this issue is also required to change. Therefore, we detailed the
dynamic and intelligent method to handle load balancing for SDN in this work. The proposed
techniques are based on deep learning, i.e., in particular, convolution neural networks. The proposed
system is tested for an increasing load. The simulation results show that the proposed model performs
better than the literature’s existing static load balancing methods. We will plan to embed the code for
the proposed technique through the SDN load balancer at the control plane.
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