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Abstract: Cryo-Electron Microscopy (Cryo-EM) images are characterized by
the low signal-to-noise ratio, low contrast, serious background noise, more
impurities, less data, difficult data labeling, simpler image semantics, and
relatively fixed structure, while U-Net obtains low resolution when downsam-
pling rate information to complete object category recognition, obtains high-
resolution information during upsampling to complete precise segmentation
and positioning, fills in the underlying information through skip connection to
improve the accuracy of image segmentation, and has advantages in biological
image processing like Cryo-EM image. This article proposes A U-Net based
residual intensive neural network (Urdnet), which combines point-level and
pixel-level tags, used to accurately and automatically locate particles from
cryo-electron microscopy images, and solve the bottleneck that cryo-EM
Single-particle biological macromolecule reconstruction requires tens of thou-
sands of automatically picked particles. The 80S ribosome, HCN1 channel
and TcdA1 toxin subunits, and other public protein datasets have been trained
and tested on Urdnet. The experimental results show that Urdnet could reach
the same excellent particle picking performances as the mainstream methods
of RELION, DeepPicker, and acquire the 3D structure of picked particles with
higher resolution.

Keywords: Deep learning; convolutional neural network; particle picking;
cryo-electron microscopy; single-particle reconstruction

1 Introduction

Cryo-EM has become an essential structural biology technology. It freezes the sample and keeps
it in the microscope at a low temperature. Subsequently, the highly coherent electrons, used as a light
source, illuminate from above and are scattered by the sample and the nearby ice layer. The scatter
signal is then imaged and recorded using a detector and a lens system. Finally, signal processing is
performed to obtain the structure of the sample, which is a valuable means of understanding the
mechanism of biochemical reactions. Just as the catalytic sites of some proteins are known through
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structures, inhibitors can be designed to deactivate these proteins, and drugs can be screened with these
proteins as targets.

The other two leading technologies are X-ray crystallography and nuclear magnetic resonance
(NMR), which can analyze the structure of a biomacromolecule to understand its function. For
decades, X-ray crystallography has been the dominant technology for obtaining high-resolution
structures of biomacromolecule. In recent years, with the improvement of cryo-EM [1,2] and the
latest technological advances in sample preparation, calculation, and instrumentation, the structural
analysis of protein complexes has undergone a considerable breakthrough [3] that the resolution of
the large protein 3D structure increased to 3 Å [4,5].

The cryo-EM image contains 2D projections of the particles at different angles. Due to the
similarity of the sample density of the protein to its surrounding solution, and the limited electron
dose used in data collection, the cryo-EM image has a low SNR, low contrast, uneven background
intensity, and irregular internal grain texture. Besides, bad particles that do not meet the requirements
for 3D reconstruction emerged, which is caused by image impurities such as frozen liquids, carbon
film, and stacked or dissociated particles. To obtain a high-resolution 3D structure, tens of thousands
of projection images are typically required. Thus, particle picking is the first step toward the 3D
reconstruction of macromolecules, including the particle recognition in micrograph and localization
of the particle region, rather than the noise region and impurity region.

Existing methods for particle picking often use low-resolution 2D particle templates for template
matching, where templates are generated from the clustering projections of manually selected particles.
The basic idea of it is that the micrograph region has high cross-correlations with popular particle
templates [6]. RELION [7] is a cryo-EM structure determination software that uses a template
matching framework to select particles [8]. In the software, the user manually picks approximately
1000 particles from a few micrographs. These picked particle images are two-dimensionally classified to
produce a small number of template images for automatically selecting particles from all micrographs.
One problem with the approach is that it is susceptible to reference dependency biases resulting in high
error detection rates.

In addition to RELION, many tools include automatic or semi-automated particle picking steps,
such as PICKER [9], EMAN2 [10], XMIPP [11], cryoSPARC [12], most of which are based on
traditional computational vision algorithms, such as edge detection, feature recognition, and template
matching aforementioned. These methods are not entirely suitable for processing cryo-EM images with
poor contrast and low SNR, for they do not take full advantage of the inherent and unique particle
features. Moreover, their performance degrades significantly as the quality of the microscopic image
decreases. Consequently, it is significant to develop an efficient, fully-automated, template-free method
for particle picking.

In cryo-EM image analysis, many machine learning algorithms are widely used from support
vector machines to convolutional neural networks. In the past few years, deep learning has proliferated.
It can be superior to lots of traditional algorithms in computer vision by generating hierarchical
features from big data analysis with deep neural networks [13,14]. Besides, some deep learning
applications are robust to low SNR images [15]. As the cryo-EM image set continues to grow, and
the SNR of the microscopic image is still low, deep learning seems to be very suitable for processing
cryo-EM data. Inspired by some successful applications, we seek to apply deep learning methods to
cryo-EM particle picking.

In this paper, an improved U-Net-based residual dense neural convolutional network, Urdnet,
is proposed to select the cryo-EM particles accurately and automatically. The method introduces a



CMC, 2022, vol.72, no.1 1595

learning method combining point-level and pixel-level labels, which significantly saves the time of
manual labeling and improves the efficiency and accuracy of particle picking.

2 Related Work

DeepPicker [16], a fully automatic particle selection method based on deep learning, applied the
convolutional neural network to the particle picking task for the first time. Before the advent of
DeepPicker, semi-automatic solutions such as RELION and EMAN2 were used to pick particles.
DeepPicker converts particle picking into an image classification problem; it crops the microscopic
images through a sliding window and classifies the sub-images into particles or backgrounds. Con-
sidering the lack of training data, DeepPicker uses a novel cross-molecular training strategy to train
networks. However, the disadvantage is the long processing time, and the average particle picking speed
is 1.5 min/mrc (mrc is a format for cryo-EM images).

DeepEM [17] uses an eight-layer convolutional neural network to recognize single particles of
noisy cryo-EM micrographs and to achieve automated particle picking, selection, and verification
in an integrated manner. DeepEM increases particle images through image rotation to augment the
training set, but still requires manually selecting thousands of particles to train the data.

FastParticlePicker [18] is based on the object detection algorithm, Fast R-CNN, which includes a
“region-of-interest proposal” network and a classification network. However, the FastParticlePicker
crops the microscopic image with a sliding window instead of selecting the area of interest in
the microscopic image. Therefore, its performance mainly depends on the classification network.
The classification network has three types of objects, particles, ice, and background, which reduces
the false-positive results caused by ice.

FCRN [19] is also an automatic particle picking method based on deep learning. It proposes
a Fully Convolution Regression Network (FCRN) mapping particle images to continuous distance
maps to recognize particles from different data sets. Experimental results on EMPIAR data show that
FCRN achieves better particle picking performance than Faster-RCNN and RELION.

crYOLO [20] is based on the YOLO9000 algorithm to achieve particle detection. For small
particles, crYOLO achieves higher precision than the original YOLO network. It achieves a processing
speed of up to 6 mrcs/s and can be extended to other biomacromolecules outside the training set.
Despite the modifications to the original YOLO model, the experiment did not mention how crYOLO
detects particles of different sizes and aspect ratios.

Topaz [21] is an efficient and accurate particle selection method based on deep learning. Unlike
other methods, it uses a positive unlabeled (PU) learning framework to reuse the remaining unlabeled
particles to train neural networks of a small number of labeled particles. Even for the challenging
dataset of rod-like particles with low SNR, the experimental results are superior to the general PU
learning method.

PIXER [22] is an automatic particle picking method based on image segmentation using deep
neural networks. To adapt to the low SNR, it uses a segmentation network to convert the microscopic
image into a probability density map to detect the particles. A grid-based local maximum method is
proposed to locate the particles from the probability density map. Compared to mainstream methods,
PIXER can achieve as good results as the semi-automatic methods RELION and DeepEM.

Compared with natural images, cryo-EM images have the following characteristics: (1) The
semantics of the images are relatively simple, and the structure is fixed. Therefore, high-level semantic
information and low-level features are both important. U-Net’s skip connection and U-shaped
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structure are quite suitable to deal with our scenario. (2) Few sources of data and the difficulty of
image labeling lead us to design a model that should not be too large. If parameters of the model
are excessive, it will easily lead to overfitting. (3) Compared with natural images, cryo-EM images
have a higher signal-to-noise ratio (SNR), higher complexity, a larger grayscale, and more unclear
boundaries. U-Net obtains low-resolution information during down-sampling to recognize different
objects and obtains high-resolution information during up-sampling to achieve segmentation and
positioning of objects. In the meantime, it fills in the underlying information through skip-connections
to improve segmentation accuracy. Simple CNN cannot achieve the global feature fusion of U-Net,
that is, it cannot connect shallow features and deep features. Therefore, direct training of CNN is often
suitable for a large number of datasets, while U-Net with a U-shaped network uses skip-connection
to reduce the time of feature extraction so that the entire network can better remember the overall
picture information. In addition, the goal of this article is not only to use CNN feature extraction
to detect cryo-EM particles but to obtain high-quality particle images for the three-dimensional
reconstruction of biological macromolecules. In addition to identifying particles, it is necessary to
accurately segment artifacts to avoid picking out defective low-mass particles. However, the efficiency
of U-Net in biomedical image segmentation is well known [23].

For the shortcomings of the above methods, Combine the advantages of U-Net, we developed an
accurate and fully automatic particle picking approach, Urdnet, based on deep learning. Among it,
the pertinent data preprocessing raised the quality of the raw Cryo-EM images. The image annotation
method that combines with multiple labels significantly reduced time and effort for manually building
a training dataset. Urdnet can thoroughly learn the features of particles with different particle sizes
and aspect ratios via a small amount of training data. The connected component analysis is performed
on the pixel map predicted by Urdnet to locate the candidate particles, which avoided selecting most
of the false-positive particles. Moreover, experimental results show our method can apply to multiple
types of micrographs from different cryo-EM detectors and has superior particle detection precision
compared to the DeepPicker method [24–26]. Compared with the semi-automatic picking of RELION,
our method resulted in a 3D single-particle structure with a higher resolution. More details of our
proposed method will be introduced next.

3 Proposed Method
3.1 Data Preprocessing
3.1.1 Intensity Adjustment

Particle picking is significantly dependent on the intensity of the grayscale cryo-EM image. Due
to the low-dose electron microscopy imaging mode, the randomly distributed particle and thin ice in
high defocus areas are exposed to extremely the low-intensity beam, and low-contrast cryo-EM images
are collected in that imaging mode. To alleviate this problem, we applied a contrast enhancement
method to adjust the global image intensity and improve the SNR of cryo-EM images [27,28]. The
steps are as follows: (1) calculate two segmentation thresholds xl and xh according to a percentage of
pixel saturation of 1%, respectively indicating that the number of pixels less than xl and more than xh

both accounts for 1%; (2) the gray value in [xl, xh] of the original image is linearly mapped to [0, 1], as
shown in Eq. (1), where x is a pixel value of the original image, and xf is the new pixel value after the
mapping.

xf = 1
xh − xl

(x − xl) (1)
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Fig. 1 shows the raw cryo-EM image, the intensity-adjusted image, and their corresponding
histograms. (c) has higher contrast than (a), and correspondingly, (d) has a wider range of pixel
distribution than (b).

Figure 1: (a) is a cryo-EM image of the TcdA1 toxin subunit; (b) is the histogram of (a); (c) is the
intensity-adjusted image of (a); (d) is the histogram of (c)

3.1.2 Noise Suppressing

Cryo-EM images tend to be so noisy and blurred that proteins and solvents are visually similar
since low-electron dose imaging only produces a small number of available signals of the taken images.
Hence, we apply image restoration to improve image quality. For the Gaussian noise in the cryo-EM
image, we choose the Wiener filter [29] to reduce the noise of the blur area and improve the sharpness
of the defocused phase-plate cryo-EM image. Wiener filtering is a method of filtering the noise-mixed
signal by minimizing the overall mean square error at the inverse filtering and noise smoothing. Its
mathematical expression is as in Eq. (2) Where H(f) is the Fourier transform of h in the frequency
domain f, SNR(f) is the SNR, and ∗ represents the complex conjugate.

G(f) = H ∗ (f )

|H(f )|3 + 1
SNR(f )

(2)

Fig. 2 shows the intensity adjusted cryo-EM image in Section 3.1.1 and its Wiener filtered image,
where PSNR stands for Peak Signal-to-Noise Ratio, which is a widely used index for evaluating image
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quality and signal restoration. The index is calculated by the mean square error (MSE). The MSE is
calculated by Eq. (3). I and K are images of size m ∗ n, which represent respectively the raw cryo-EM
image and the processed cryo-EM image. The peak signal-to-noise ratio is defined as Eq. (4), where
MAXI represents the maximum pixel value of the image.

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

‖I(i, j) − K(i, j)2‖ (3)

PSNR = 10 · log10

(
MAX 2

I

MSE

)
(4)

Figure 2: (a) is a cryo-EM image of the TcdA1 toxin subunit (EMPIAR-10089); (b) is Wiener filtered
image of (a)

As shown in Fig. 2, the PSNRs of the intensity-adjusted image aforementioned, and its noise
suppressed image were calculated. Comparing the two PSNR values, 22.60 of Fig. 2a is higher than
17.00 of Fig. 2b, which indicates that the Wiener filter has a direct noise suppression effect on the cryo-
EM images. Compared with Figs. 2a and 2b makes it easier to distinguish the particle boundaries.

3.2 Combination of Point Annotation and Per-Pixel Annotation

Various weak annotation forms have been explored in weakly supervised annotation methods for
semantic segmentation of natural scene images, such as image-level labels (like classification labels)
[30–32], extreme points [33], graffiti [34] and bounding boxes (like detection labels) [35]. The point
form is the most straightforward and simplest of all weak annotation forms [36]. Since a cryo-EM
image often contains a large number of particles, we proposed an annotation method of point labeling
of particle center for cryo-EM particle picking to reduce the burden of manual annotation greatly.
We divide objects into two classes: particles and artifacts. Artifacts are usually areas of cryo-EM
impurities. We annotate the particles as points so that they are only associated with several pixels.
The number of artifacts is much smaller than particles, and artifacts are particularly large in the
cryo-EM images. To prevent the bad particles in the artifact from being selected, the artifacts are
labeled at the pixel level like fully supervised segmentation labels, and the remaining unlabeled pixels
are automatically classified as the background. Hence, we combine different forms of annotation to
label particles and artifacts in a cryo-electron image. Fig. 3b shows the label image of an 80S ribosome
cryo-EM image.
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Figure 3: (a) is a cryo-EM image of the 80S ribosome; (b) is a label image of (a), the red region is the
artifact’s label, and the green points are the particles’ labels

3.3 Convolutional Neural Network Design

U-Net [37] has achieved excellent results in medical image segmentation. Its most significant
advantage is that it combines shallow and in-depth features and can reach high segmentation precision
with a small training dataset. In the particle picking task, the precision of artifact segmentation affects
the quality of picked particles. Imprecise artifact segmentation can easily lead to selecting false-positive
particles. To improve the precision of artifact segmentation, we embedded the residual dense block
(RDB) [38] in the overall model of improved U-Net, as shown in Fig. 4 when designing the Urdnet
model. As shown in Fig. 5, we add two convolution layers as the input port to the basic RDB structure
for local shallow feature extraction. RDB mainly integrates the residual block (Eq. (5)) [39] and the
dense block (Eq. (6)) [40]. The residual block short circuits the output layer with the previous input
layer by adding the feature vectors. The dense block concatenates each middle layer with all previous
layers in the channel dimension to implement feature multiplexing. Combining the advantages of both,
RDB performs not only local residual learning but also strengthens local feature fusion. Accordingly,
it can effectively alleviate gradient vanishing, enhance feature propagation and reduce the number
of parameters. RDB was proposed for processing image restoration, image super-resolution, and
denoising tasks at first. Consequently, RDB is well suited for processing low-SNR and low-resolution
cryo-EM images. To the best of our knowledge, our work is the first to combine U-Net with RDB to
solve cryo-EM particle picking tasks.

xl = f(xl−1) + xl−1 (5)

As shown in formula (5), the output xl of the residual block is defined as the addition of f(xl−1) ,
the output of xl−1 after multiple convolutions and activations and xl−1, the output of the l − 1 layer.

xl = Hl([x1, x2 . . . xl−1]) (6)

As shown in formula (6), the lth layer receives the feature matrix x1, x2 . . . xl−1 from all previous
layers as input, and [x1, x2 . . . xl−1] is the connection feature vector of all previous layers, Hl(.) represents
the amount of a single vector after convolution, activation, and other operations.
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Figure 4: Structure of the Urdnet. The hyperparameter f1:64 indicates the vector channels number of
the input and output of the RDB is 64, f2, f3, and f4 are the same. Different colored arrows indicate
different operations on the feature vector, and the numbers above the blue vectors indicate the number
of channels

Figure 5: RDB of Urdnet

The network of Fig. 4 consists of 49 convolution layers, four max-pooling layers, four up-sampling
layers, and four feature concatenations. In the encoder, i.e., feature extraction part, the first convolution
layer learns the shallow global features, then followed by four RDBs for deep feature fusion. Each
RDB consists of 8 standard convolution layers and one 1∗1 convolution layer. In an RDB, the
number of filters in the first two convolution layers and the last 1∗1 convolution layer is determined
by the external hyperparameters, such as 128 for the second RDB, and the number of filters of the
remaining six convolution layers is fixed at 64, and the dashed arrows in Fig. 5 refer to the six standard
convolution layers. The decoder combines the global context features with four times of upsampling
and four feature concatenations, and finally restores the feature vector to the input vector size. We
input a 512 × 512 2D cryo-EM image into Urdnet and apply three 1∗1 convolution filters to output
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the feature map onto three channels, to obtain a softmax function (Eq. (7)) score map of 512 × 512 ×
3 where 3 indicates the number of object classes. While testing, the Arg max function gets the class of
the highest score at each coordinate of the score map [40] and finally outputs the predicted pixel map
(background: black, grain: green, artifact: red).

f(xl)i = exl
i∑C

j=1 exl
j

(7)

The softmax function is shown in formula (7), xl is the output feature map of the lth network
layer, e is the natural constant, exl

i represents the output value on the ith channel, C is the number of
network categories, and the softmax score vector for each pixel is calculated by the formula (7).

3.4 Particle Picking Via Connected Component Analysis

We input the micrographs into the trained Urdnet model to output the prediction results of
particles and artifacts. The prediction map is then binarized as shown in Figs. 6a and 6b, and the
foreground data only contains pixels labeled as “particles,” i.e., green pixels of Fig. 6a. Next, the
foreground data is analyzed as the connected component [41], and the positions of the centroids of each
connected component are taken as the particle positions. Using the connected component analysis, we
can reduce interference from false-positive particles and locate the particles more accurately where the
particles are close to each other. To weaken the impact caused by false positives, we remove the particles
whose connected components are smaller than 30% of the mean component area. As shown in case 1
of Fig. 6, the dissociated particle in the red circle in Fig. 6c will not be picked for its small connected
components. Where the bounding boxes of two particles overlap in a range of 30% area or more, the
particles are considered to be stacked particles. In case 2 of Fig. 6, we reject the two particles in the
red circles, since the overlapping area of them exceeds the prescribed threshold.

Figure 6: Particle picking workflow. (a) represents the prediction map, (b) is the corresponding binary
image of (a), and (c) represents the particle picking result, where the green circle indicates the selected
particles and the red circle indicates the rejected particles

4 Results and Discussion
4.1 Datasets

EMPIAR, the Electron Microscopy Public Image Archive, is a public resource for raw 2D
electron microscopy images. Our experimental data includes cryo-EM images of three proteins from
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EMPIAR, 80S ribosomes [42] (EMPIAR-10153), HCN1 channel [43] (EMPIAR-10081), and TcdA1
toxin subunit [44] (EMPIAR-10089). The three protein datasets from EMPIAR are new datasets
released in the last three years. Besides, we test the common benchmark dataset, KLH (Keyhole limpet
hemocyanin) [45] collected in 2004 to validate the performance of our automatic particle picking
algorithm. Since structural analyses of viruses and large, well-ordered molecules with high point-
group symmetry have been well known, and particle picking of them is relatively simple tasks, our
experimental data mainly focuses on the new three datasets of small and medium protein molecules
with no or low symmetry.

Human 80S ribosomes are used to synthesize proteins in cells and have complex molecular
structures. The diameter of the 80S ribosomes is between 25 nm and 30 (250–300 Å), and its molecular
mass is 3.9–4.5 MDa. The micrographs of EMPIAR-10153 were collected with low defocus and
volta phase plate (VPP) [46]. VPP improves the phase contrast and SNR in the low-frequency
range by introducing an additional phase shift in the unscattered beam. However, VPP not only
enhances the contrast of the particles of interest but also the contrast of all weak phase objects,
including contamination, ice dregs, carbon film, which increases the difficulty of accurately selecting
the particles.

HCN1 channel is a hyperpolarization-activated cyclic nucleotide-gated ion channel that underlies
the control of rhythmic activity in cardiac and neuronal pacemaker cells. Moreover, it forms a structure
of the channel tetramer in a ligand-free state with a molecular weight of ∼74.6 kDa. Due to its small
size, the number and quality of picked particles will affect the final resolution of 3D reconstruction.

KLH, a highly immunogenic protein macromolecule, is used as a carrier protein for the prepara-
tion of immunogens, which has a molecular weight of 7.9 Mda and a D5 point-group symmetry with a
size of ∼40 nm. There are two main types of projection views of the KLH particles, the side view, and
the top view. We select both views when picking particles. In addition to the particles of both views, the
micrographs consist of clearly overlapping KLH particles and broken particles that make it difficult
to extract unbroken single KLH particles.

Each protein dataset has different parameters such as electronic dose, defocus value, pixel size,
and particle size. The main difference between the four datasets is that they have different defocus
ranges and electronic dose. The SNRs of the 80S ribosome and KLH are higher for their lowest or
none electron dose and low defocus value, and those of the TcdA1 and HCN1 channel are quite low
for their higher electron dose and broad defocus range. The specific parameters of these data sets are
listed in Tab. 1.

Table 1: Experimental datasets

Sample Detector Voltage (kV) Electronic
dose
(e/Å∗∗2)

Defocus
(μm)

Pixel size
(Å)

Particle size
(pix)

80S
ribosome
(EMPIAR-
10153)

GATAN K2
SUMMIT
(4k × 4k)

300 1.03 0.5 1.09 420

(Continued)
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Table 1: Continued
Sample Detector Voltage (kV) Electronic

dose
(e/Å∗∗2)

Defocus
(μm)

Pixel size
(Å)

Particle size
(pix)

HCN1
channel
(EMPIAR-
10081)

GATAN K2
SUMMIT
(4k × 4k)

300 1.26 1.5∼3.3 1.30 256

TcdA1 toxin
subunit
(EMPIAR-
10089)

FEI
FALCON II
(4k × 4k)

300 2.5 1.3∼4.5 1.14 352

KLH CCD Tietz
camera (2k
× 2k)

120 — 0.6∼1.5 2.22 272

4.2 Model Training

Our experimental hardware for model training is equipped with NVIDIA GeForce GTX 1080
Ti graphics, 64 GB RAM, and Intel Core i7 8700 K CPU. We trained the original U-Net and
Urdnet models on the EMPIAR datasets of three proteins using the deep learning library Keras
based on the Tensorflow backend. The data used for training and testing included 71 human 80S
ribosomal micrographs, 30 HCN1 micrographs, and 24 TcdA1 micrographs, and each protein contains
approximately 2,000–4,000 particles. We set 20% of the training set for validation. To reduce the risk of
overfitting training, we augmented the training images by horizontal flip, rotation, width shift, height
change, cropping, zooming, and filling, expanding one image to 32 images. The batch size was set to 2,
the model optimizer is Adam [47], and the loss function is cross-entropy. The initial learning rate was
set to 1E-4; as training progresses, the learning rate gradually decreases. To obtain a generic model for
particles of different scales and aspect ratios, we added 16 KLH micrographs to the training dataset
and separately trained Urdnet with the raw data and preprocessed data of the four proteins. The loss
and accuracy of all trained models are shown in Tab. 2.

Table 2: Model training results

Data Network Loss Accuracy

80S ribosome U-Net
Urdnet

0.0929
0.0126

0.8647
0.9570

HCN1 channel U-Net
Urdnet

0.1324
0.0247

0.8473
0.9336

TcdA1 toxin subunit U-Net
Urdnet

0.1428
0.0521

0.8070
0.9166

Four proteins (raw)
Four proteins (preprocessed)

U-Net
Urdnet

0.1729
0.0832

0.7822
0.9080
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After being trained 40 epochs, all Urdnet models’ losses are less than 0.1, which are lower than
those of U-Net, and their accuracies are higher than those of U-Net. It sufficiently proves that the
Urdnet model has better classification accuracy than the U-Net model when processing the same
protein data. Furthermore, the training loss of the Urdnet generic model is shown in Fig. 7. The
loss of preprocessed images is always lower than the raw images, indicating the importance of image
preprocessing in Section 3.1. For the preprocessed data, the Urdnet generic model has a model loss
of less than 0.1 and an accuracy of higher than 0.9, as shown in Tab. 2, which indicates that the
Urdnet generic model also has excellent performance when dealing with different biomacromolecules.
To a certain extent, it reveals the possibility of generalizing the Urdnet generic model to unknown
biomacromolecules if more protein data of different particle shapes and sizes are trained.

Figure 7: The training loss of raw micrographs and preprocessed micrographs

4.3 Particle Picking

To evaluate the particle picking performance of Urdnet, we calculated the precision, recall,
precision-recall curve, and IoU (Intersection over Union) for the three proteins’ test data, and
compared them with the DeepPicker method. The results showed in Fig. 7 and Tab. 3. True Positive
means a positive sample predicted by the model as positive, and True Negative means a negative
sample predicted as negative. False Positive means a negative sample predicted to be positive, and
False Negative means a positive sample predicted as negative. Precision is the proportion of the
samples that are correctly predicted to be positive in all predicted positive samples (Eq. (8)). The
recall is the proportion of the correctly predicted positive samples in all real positive samples (Eq. (9)),
which indicates the ability of Urdnet to detect positive. Different precisions and recalls make up the
precision-recall curve by changing the threshold of the particle prediction. As the threshold increases,
the accuracy also increases, and the recall rate decreases. For the excellent performance of particle
picking, we have to pick out the threshold with the highest recall before the precision drops sharply.
We regard manually selected particles as Ground Truth. The mean IoU represents the accuracy of
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particle position, which defined the ratio of the intersection area of ground truth and the testing result
with their united area (Eq. (10)).

Precision = True Positive
True Positive + False Positive

(8)

Recall = True Positive
True Positive + False Negative

(9)

IoU = Testing Result ∩ Ground Truth
Testing Result ∪ Ground Truth

(10)

Table 3: Precision, recall, and IOU

Data Method Precision Recall IoU

80S ribosome DeepPicker
Urdnet

0.8424
0.8944

0.9313
0.9587

0.8740
0.9073

HCN1 channel DeepPicker
Urdnet

0.7638
0.8036

0.8445
0.8878

0.7970
0.8371

TcdA1 toxin subunit DeepPicker
Urdnet

0.7187
0.7524

0.8138
0.8386

0.7713
0.8112

As shown in Fig. 8, we find out Urdnet outperformed the DeepPicker at 80S ribosomes, HCN1
channels, and TcdA1 toxin subunits datasets. The 80S ribosome performs best on precision, recall,
and IoU for its highest SNR. The precisions of the three datasets are higher than 0.75, the recalls of
them are higher than 0.83, and the IoUs of them are higher than 0.81, which fully demonstrates the
high performance of our method in particle picking.

Figure 8: (Continued)
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Figure 8: The precision-recall curve of three protein EMPIAR datasets

To further evaluate the quality of the particles selected by Urdnet, we compared our method to the
semi-automatic selection method of RELION via the entire public datasets. 80S ribosomes (EMPIAR-
10153) contain 318 micrographs, HCN1 channel (EMPIAR-10081) is the largest dataset, including 997
micrographs, TcdA1 toxin subunit (EMPIAR-10089) contains 97 micrographs, and KLH consists of
82 micrographs from the US National Resource for Automated Molecular Microscopy (NRAMM).
2D classification in the RELION software worked on the picked particles to identify suitable 2D
average classes. Then, 2D average classes were further 3D classified using a low-resolution 3d map
as the initial model, and good templates after 3D classification were kept and refined to construct the
final 3D structure. We recorded the number of picked particles by the two methods, the “good” particle
number related to the 2D class average template and the final resolution of the 3D reconstruction
computed by the “gold standard” Fourier shell correlation [48]. The results are listed in Tab. 4.

Table 4: Particle auto-picking and 3D reconstruction results

Data Method Particles # Particles # after
2D-class

Resolution (Å)

80S ribosome RELION
Urdnet

20572
17612

15175
15219

3.92
3.85

HCN1 channel RELION
Urdnet

97921
71392

55815
54126

3.54
3.51

TcdA1 toxin
subunit

RELION
Urdnet

12834
11449

10267
10190

3.53
3.49

KLH RELION
Urdnet

1590
1517

1160
1014

21.10
21.65

As shown in Tab. 4, the particles’ number of 80S ribosomes, HCN1 channels, and TcdA1 extracted
by RELION was approximately 16.8%, 37.1%, and 12.1% more than those of Urdnet. Due to the small
number of the three protein particles used to train Urdnet, it picked fewer particles than RELION at
the start. Nonetheless, the number of “good”particles after 2D classification is close to that of particles
picked by RELION, i.e., the particles picked by two methods ultimately used for 3D reconstruction
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are quite close. It suggests that Urdnet can identify more true-positive particles and pick fewer false-
positive particles, which makes the final resolution of 3D reconstruction is slightly higher. We think
that the Urdnet, different from RELION’s semi auto-pick job by using the manually selected templates,
picked particles with broader angular coverage, which reflects that Urdnet can choose particles with
more angles and views. Especially for processing low-SNR and low-contrast datasets such as the
HCN1 channel and TcDA1, Urdnet can thoroughly learn the inherent and unique particle features and
avoid the dependency of users’ intervention. Besides, Urdnet can significantly improve the accuracy
of the picked particle. Since artifacts are labeled at the pixel level as a separate class, Urdnet avoids
selecting “bad” particles in large-area artifacts, substantially eliminating the infuences of ice dregs,
carbon films, and background noise. The gap between the reconstruction resolutions acquired by
Urdnet and RELION is small, which is probably because the reconstructions reached resolutions close
to those proteins’ theoretical resolution limit. Nevertheless, the particles picked by Urdnet achieved
higher resolutions of 3D reconstruction of the three protein data than RELION.

For KLH benchmark data, we find that the particles selected by RELION’s semi auto-picking
and the particles after 2D classification are slightly more than Urdnet, and its resolution of the final
3d reconstruction is higher than Urdnet. On the one hand, it is because a small number of KLH
particles are used in the experiment. The dataset contains 82 micrographs, and each micrograph only
has an average of about 25 particles, which results in little difference between the particles selected
by the two methods. On the other hand, in recent years, significant changes have taken place in the
imaging system of cryo-EM. Micrographs collected today (after 2012) are quite different from the
older ones. Old datasets like KLH usually have higher pixel size, higher SNR, and the molecular
weights of their particles are often enormous. Traditional methods, such as template matching, can
easily detect these large particles. However, as the quality of microscopic images decreases, their
performance dramatically decreases. Therefore, there is usually no one method to invariably get the
best performance in different data sets. We think our method is quite effective when the image quality
is mainly limited by low SNR, or the training data is insufficient.

4.4 Discussion

This paper proposes a residual dense convolutional network model based on multiple annotations
and improved U-Net for automatic particle picking of cryo-EM biomacromolecules. It can automat-
ically and accurately select particles from cryo-EM images and can reconstruct high-resolution 3D
structures of particles from different proteins. But meanwhile, there is still room for improvement in
our solution:

(1) Compared with other methods, it has little advantage in the resolution of 3D reconstruction
and is not highly applicable to proteins of different shapes. It is necessary to improve the
network model by increasing the types of protein training data.

(2) The image restoration performance of the residual intensive module is not further analyzed.
Setting up experiments to calculate image noise indicators is requisite to evaluate whether the
network has additional denoising effects after adding the RDB module.

Future work will focus on improving the performance of the Urdnet general model to achieve
the goal of automatically picking a variety of challenging biological macromolecule cryo-EM image
particles without retraining the model, deepening the research on image restoration issues to strive
to eliminate data pre-processing steps and enabling the network to autonomously achieve image
denoising to facilitate particle feature extraction.
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5 Conclusion

In this paper, we proposed an automatic particle picking method, Urdnet, based on the U-Net
architecture and residual dense block. We introduced a method of combining multiple forms of
labels to build training data, which significantly releases the burden of manual labeling and improves
annotation efficiency. Urdnet demonstrates its excellent performance on the public data of 80S
ribosomal, HCN1 channel, TcdA1 toxin subunit, and KLH that it can effortlessly process cryo-EM
particles from different proteins. Compared with the DeepPicker method, Urdnet achieves higher
precision, recall, and IoU in particle picking. Compared with RELION’s semi-automatic selection,
our method can achieve higher resolutions of 3D reconstruction at most data. In future work, we will
focus on improving the performance of the Urdnet generic model to pick new protein particles of
multiple morphologies without the need to retrain the model.
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