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Abstract: Latest advancements in the integration of camera sensors paves a
way for new Unmanned Aerial Vehicles (UAVs) applications such as analyzing
geographical (spatial) variations of earth science in mitigating harmful envi-
ronmental impacts and climate change. UAVs have achieved significant atten-
tion as a remote sensing environment, which captures high-resolution images
from different scenes such as land, forest fire, flooding threats, road collision,
landslides, and so on to enhance data analysis and decision making. Dynamic
scene classification has attracted much attention in the examination of earth
data captured by UAVs. This paper proposes a new multi-modal fusion based
earth data classification (MMF-EDC) model. The MMF-EDC technique
aims to identify the patterns that exist in the earth data and classifies them
into appropriate class labels. The MMF-EDC technique involves a fusion
of histogram of gradients (HOG), local binary patterns (LBP), and residual
network (ResNet) models. This fusion process integrates many feature vectors
and an entropy based fusion process is carried out to enhance the classification
performance. In addition, the quantum artificial flora optimization (QAFO)
algorithm is applied as a hyperparameter optimization technique. The AFO
algorithm is inspired by the reproduction and the migration of flora helps
to decide the optimal parameters of the ResNet model namely learning rate,
number of hidden layers, and their number of neurons. Besides, Variational
Autoencoder (VAE) based classification model is applied to assign appropriate
class labels for a useful set of feature vectors. The proposed MMF-EDC model
has been tested using UCM and WHU-RS datasets. The proposed MMF-
EDC model attains exhibits promising classification results on the applied
remote sensing images with the accuracy of 0.989 and 0.994 on the test UCM
and WHU-RS dataset respectively.
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1 Introduction

With the growth of earth observation technology, a combined space air ground global observation
was progressively determined. The framework is comprised of ground sensor networks, satellite
constellations, and unmanned aerial vehicles (UAVs), with high resolution satellite remote sensing
system as the major roles. Consequently, it has complete abilities for observing the earth have attained
remarkable levels [1,2]. The attained remote sensing (RS) images are growing significantly based on
variety, volume, value, and velocity. The RS images contain huge features of big data and other
complex features like non-stationary (RS images attained at distinct times differ in their features),
higher dimension (higher spectral, spatial and temporal resolution), and multiple scales (multiple
temporal and spatial scales). It efficiently extracts the beneficial data from huge RS images residues a
problem which should be tackled immediately. The RS image classification is procedure where every
pixel/area of an image is categorized based on specific rules to a classification based on spatial and
spectral structural features, and so on.

The RS image classification uses visual interpretation that has comparatively higher accuracy
however it contains higher manpower cost, and therefore, it could not encounter the quick processing
requirement for huge volumes of remote sensing data from big data era. It has a combination of shallow
machine learning (ML) approaches for RS image classification [3]. These techniques convert the new
information to several characteristics like time series composite, texture, and colour space. But, with
an increased data volume and dimension, the implied connection among a huge amount of data bands
is highly abstract, that creates it complex for designing optimized/effective characteristics for RS image
classification. Therefore, the classification accurateness isn’t reasonable. To adapt remote sensing big
data, image classification methods should be automated, real-time, and quantitative. Thus, computer
based automated classification methods are increasingly become conventional in addressing the RS
image classification.

Aerial imagery classification of scenes classifies the acquired aerial images to sub regions by
covering many ground objects and land cover to numerous semantic kinds. In addition, for several real-
time applications of remote sensing’s, such as management of resources, urban planning, and computer
cartography aerial image classification is very important [4]. The common method is to create a holistic
scene depiction for classifying the scene. In remote sensing community, bag of visual words (BoVW)
can resolve scene classification problems. These methods generate feature representation in the middle
format for certain limit. Henceforth, high demonstrative abstraction is required to classify the scene
that will increase lower level features, and establish higher discrimination. The Deep learning (DL)
methods are highly beneficial to resolve traditional issues such as natural language processing (NLP),
speech recognition, object recognition and detection, many real time applications. In several areas, this
method is highly efficient compared to typical processes and gained more attention in educational and
industrial groups. The deep learning (DL) technique attempts to derive general hierarchical feature
learning regarding several abstraction levels. The convolution neural network (CNN) is one of the
popular techniques of DL method. Nowadays, this method is familiar and effective in numerous
recognition and detection processes, producing optimum outcomes on several datasets. In image
classification, CNN was common as they permit higher classification accurateness.

DL methods include interrelated variables such as hardware operation, training methods, opti-
mizer design, network architecture, and so on [5]. Altering the module training hyper parameters
is essential factor of the design module. [6] presented a novel learning rate technique; rather than
fixed value, a cyclical learning procedure is set for the module being trained. The outcomes displayed
that this can efficiently decrease the number of trained iterations and enhance the accurateness of the
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classification. [7] later introduced a novel super convergence one cycle cyclical learning strategy and
recommended the utilization of a huge learning rate for training model that is based on them, could
enhance the model generalization ability. Presently, [8] examined the effect of distinct learning rates
on DL and institute that the lower and higher values of cyclical learning rate correspond with their
2 systems. In training, iteration approaches like GD learning method are generally utilized. Earlier
stopping is a technique frequently utilized in training to avoid overfitting. This technique computes
the accurateness of the testing datasets in training model.

This paper proposes a new multi-modal fusion based earth data classification (MMF-EDC) model
for scene classification in remote sensing earth science data. The MMF-EDC technique involves
two major phases namely feature fusion and classification. The MMF-EDC technique involves a
fusion of histogram of gradients (HOG), local binary patterns (LBP), and residual network (ResNet)
models by the use of entropy based fusion process are carried out to enhance the classification
performance. Besides, a quantum artificial flora optimization (QAFO) algorithm is employed to
adjust the hyperparameters of the ResNet model. Finally, Variational Autoencoder (VAE) based
classification model is applied to assign appropriate class labels for a useful set of feature vectors. The
experimental assessment of the MMF-EDC model is carried out on benchmark UCM and WHU-RS
datasets.

2 Literature Review

This section briefs the existing scene classification models developed for remote sensing images
and earth science data. Li et al. [9] examined the usage of CNN for classifying land utilization
from orthorectified, visible band multispectral imagery and very higher spatial resolution. Enduring
business and mechanical applications have determined the group of a huge measure of higher spatial
resolution images in the detectable red, green, blue (RGB) spectral band group and examined the
significance of DL efficiency to utilize this imagery for programmed land utilize or land cover (LULC)
feature. Zhang et al. [10] presented Joint Deep Learning (JDL) module that integrates CNN and
multilayer perceptron (MLP) and is performed by a Markov process comprising iterative refreshing.
Prathik et al. [11] presented a new technique for soil image segmentation depending upon region
and color and deliberated several spatial databases for connection analyses. The 3 entryways are
utilized for controlling the data, produce and upgrade of the long short term memory (LSTM) module
for optimisation. Kampffmeyer et al. [12] presented a CNN for urban land spread classification
that could inset every accessible training module from hallucination network. Interdonato et al. [13]
introduced the primary DL engineering for investigating data, which combined CNN and RNN
methods for exploiting their complementarity. The CNN and recurrent neural network (RNN) catch
serval portions of the data, a combination of the 2 modules will give a gradually assorted and
whole depiction of the information for hidden land spread classification process. This displays the
effectiveness of utilizing ensemble modules in land cover classification and RF and RNN module is
utilized in this research. Murugan et al. [14] analyzed and proposed the ML methods and optimization
module for huge quantities of information. Wang et al. [15] used a time series classification data
extraction module that is long-term using bi-directional long term and short term memory networks
(Bi-LSTM).

In Shi et al. [16], a hierarchical multi view semi supervised learning framework with CNN
(HMVSSL) is presented to remote sensing image classification. Initially, a super pixel based sample
enlargement technique is projected to raise the amount of trained instances in every view. Dong
et al. [17] presented spectral spatial weighted kernel manifold embedded distribution alignment
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(SSWK MEDA) for remote sensing image classification. The presented technique employs a new
spatial data filter to efficiently utilize comparison among adjacent sample pixels and avoids the impact
of non-sample pixels. Later, a complex kernel integrating spectral and spatial kernels with distinct
weights is created for adaptive manner to balance the relative significance of spatial and spectral data
of the remote sensing image. Lastly, they employ geometric structure of features in manifold space for
solving the problem of feature distortion of remote sensing data in TL scenario.

In Uddin et al. [18], linear and non-linear variants of principal component analysis (PCA)
were examined. The top changed features have been picked out by the accumulation of difference
for other feature extraction techniques. Zhang et al. [19] proposed a novel weight feature value
convolutional neural network (WFCNN) for performing fine remote sensing image segmentation and
extract enhanced land utilize data in remote sensing imagery. It contains 1 classifier and 1 encoder.
The encoder attains a group of spectral features and 5 levels of semantic features.

3 The Proposed Model

The proposed MMF-EDC model aims to identify and classify the scenes that exist in the remote
sensing data, which is helpful for several real time applications. The workflow involved in the proposed
MMF-EDC model is illustrated in Fig. 1. The presented MMF-EDC model operates on two major
stages namely fusion of features and classification. At the first stage, the HOG, LBP, and QAFO-
ResNet models are fused by the use of entropy technique. Next, in the second stage, the VAE model
is applied to categorize the scenes based on the fused feature vectors. The detailed working of these
modules is given in the succeeding sections.

Figure 1: Working process of MMF-EDC model
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3.1 Fusion of Feature Extraction

Initially, the remote sensing input images are fed into the feature extraction module to generate
a useful set of feature vectors. In this study, HOG, LBP, and ResNet models are applied as feature
extractors. Then, the resultant features are fused by the use of entropy technique.

3.1.1 HOG Features

A key factor in HOG feature can keep the local occurrence of objects and describe the invariance
of object conversion and illumination state as edge and data about gradient is calculated with many
coordinate HOG feature vectors. Initial, a gradient operator N was employed for determining the
gradient measure [20]. The gradient point of mammogram image is introduced as G and image frame
is displayed in I. A general equation utilized in estimating gradient point is demonstrated by Eq. (1):

Gx = N ∗ I(x, y) and Gx = NT ∗ I(x, y) (1)

The image detection window endures classification as different spatial regions which are so called
cells. Thus, the magnitude gradient of pixel is designed with edge orientation. Consequently, the
magnitude of gradients (x, y) is provided by Eq. (2).

Gx(x, y) =
√

Gx(x, y)
2 +

√
Gy(x, y)

2 (2)

The edge orientation of point (x, y) is implied by Eq. (3):

θ(x, y) = tan−1 Gy(x, y)

Gx(x, y)
(3)

where Gx denotes horizontal direction of gradient and Gy represents vertical direction of gradient. In
event of improved noise and illumination, a normalization function is processed when finishing the
histogram measure. The establishment of normalization is utilized conversely and local histogram is
authenticated. In many coordinates of HOG, four different methods of normalization are employed
such as L1-norm, L2-norm, L1-Sqrt, and L2-Hys. In relation to normalization, L2-norm is given an
optimum task in cancer forecast. The segment of normalization in HOG is given by Eq. (4).

L2 − norm : f = h√||h||2
2 + e2

(4)

where e denotes smaller positive value utilized in regularization, f denotes feature vector, h indicates
non-normalized vector, and ||h||2

2 so-called 2-norm of HOG normalization.

3.1.2 LBP Features

LBP module is employed in image processing applications [21]. In LBP, the histogram is integrated
into a separate vector and consider a pattern vector. In other applications, the combination between
LBP texture feature and Self-Organizing Maps is utilized to identify the module performance. It is
determined as the operator to texture definition that is based on the sign of differences between central
and neighbor pixels. The major technique of LBP operator employs the measure of centre pixel as
threshold for 3×3 neighbour pixels. The threshold process can improve binary pattern which displays
texture features. The operation of LBP is represented by

LBP(uc, vc) =
7∑

n=0

2ng(In − I(uc, vc)) (5)
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LBP(uc, vc) determines LBP value at intermediate pixel (uc, vc). In and I(uc, vc) represents values of
nearby and central pixels respectively. Index n denotes index of neighbour pixel. The function g(u) will
be zero if u < 0 and g(u) = 1 when u ≥ 0. The contiguous pixel will be zero if the values are smaller
than threshold. On the other hand, it would be one, if the neighbour pixel is greater when compared to
threshold. The LBP value is defined by scalar multiplication between the binary and weight matrices.
Later, the association of multiplication outcome was employed for denoting LBP value.

3.1.3 Deep Features Using ResNet Model

ResNet is one of the popular DL models which is designed with the application of residual
elements. All remaining units can be given by:

yl = h(xl) + RF(xl, wl) (6)

xl+1 = f (yl) (7)

where RF represents the residual function, f denotes ReLU function, wl indicates weight matrix, and
xl and yl represents inputs and outputs of l-th layer [22]. The efficiency of h is assumed to be an identity
mapping as follows:

h(xl) = xl (8)

The residual function RF is given by:

RF(xl, wl) = wl. σ(B(w′
l) · σ(B(xl)) (9)

where B(xl) denotes batch normalization, “ · ” indicates convolution and σ(x) = max (x, 0). The
fundamental proposal of residual learning is emerging several branches of paths which results in
gradient propagation. For CNN, it was employed that equivalent path has occurred in inception
methods. The residual network can distribute smaller identities together with high networks such as
shortcut links and remaining blocks. However, the last outcome of all paths existing with the highway
scheme can be handled by gating operation which is learned at the time of training phase. In this study,
ResNet-101 model is employed.

3.1.4 Parameter Optimization Using QAFO Algorithm

During the parameter optimization process, the hyperparameters in the ResNet model such as
learning rate, number of hidden layers, and their number of neurons are optimally decided by the
QAFO algorithm. The AFO [23] is mainly stimulated by the migration and reproductive behavior
of flora. In the AFO, the raw plants are produced primarily and they disperse seeds called offspring
plants to a particular distance. It can be mathematically defined as follows. At the beginning stage, the
initial population is arbitrarily created with N actual plants.

Xi,j = r × D × 2 − D (10)

where the input plants’ position is denoted by Xi,j, i and j are dimensions and plant count, and r denotes
an arbitrary number in the range (0, 1). Afterward, the propagation distance Dj is determined for all
the plants. The dispersion distance of the plant is based on the dispersion distance of the preceding
two rounds.

Dj = D1j × r × c1 + D2j × r × c2 (11)
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where D2j and D1j indicates the spreading distances parent and grandparent plants, c1 and c2 are the
learning coefficients. The dispersion distance of the new grandparent plant can be defined as follows.

D
′
1j = D2j (12)

Besides, the new parent propagation distance can be equated using Eq. (13):

D
′
2j =

√∑N

i=1 (Xij − X ′
ij)

2

N
(13)

The position of the offspring plant over the input plant is determined using Eq. (14):

X
′
i,j×m = Rij×m + Xi,j (14)

where X ′
ij is the position of the offspring plant, m indicates offspring count for every plant, and Ri,j×m

is a usually distributed random number with mean 0 and variance Dj. Few of the produced offsprings
survive and few of them do not survive, which can be computed using the survival probability
depending upon proportionate-based selection.

p =
∣∣∣∣∣∣
√

F(X ′
ij×m)

F max

∣∣∣∣∣∣ × Q(j×̇m−1) (15)

where the selective probability is denoted by Q(j×m−1) and its value is between 0 and 1, F max represents
the upper fitness of every offspring, and the fitness of every offspring plant is F(X ′

i,j×m).

To improve the performance of the AFO algorithm, quantum computing (QC) concept is
integrated into it and derived from the QAFO algorithm. Quantum computing is a current technology
that is interested in quantum computers by phenomena of quantum mechanics like quantum gate, state
superposition, and entanglement [24]. The basic data unit in quantum computing is the Q bit. A Q bit
might be in the state |0〉, in the state |1〉 or from superposition of the states |0〉 and |1 > concurrently.
Based on Dirac notation, the Q bit is denoted by the integration of the states |0 > and |1 > is given
by:

|Q〉 = α|0〉 + β|1〉 such that |α|2+|β|2 = 1 (16)

where α and β represents complex number. |α|2 (resp. |β|2) indicates likelihood for finding Q bit in
state zero (represented in state 1). A quantum register of size n is later established from a set of nQ
bits. It denotes a superposition of nQ bits, especially, it has up to 2n probable values consecutively. A
quantum register is denoted as:

Ψ =
2n−1∑
x=0

CX |X〉 (17)

The amplitudes CX fulfill the succeeding equation:
2n−1∑
x=0

|CX |2 = 1 (18)

The state of a Q bit is altered by a quantum gate (Q-gate). A Q gate represents reversible gate
and unitary operator U act on the Q bit bases state fulfilling U+U = UU+, whereas U+ indicates
Hermitian adjoint of U . It consists of various Q gates, like Hadamard gate, NOT gate, rotation gate,
controlled NOT gate, and so on.
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3.1.5 Fusion Model

In this study, data fusion is employed to fuse the features from three models. The fusion feature is
a significant process that integrated several feature vectors. The proposed method is depending upon
fusion feature using entropy.

The 3 vectors are given by:

fHOG1 × n = {HOG1×1, HOG1×2, HOG1×3, . . . , HOG1×n} (19)

fLBP1 ×p = {LBP1×1, LBP1×2, LBP1×3, . . . , LBP1×n} (20)

fRes191×m = {RES1911×1, RES1911×2, RES1911×3, . . . RES1911×n} (21)

Furthermore, feature extraction is combined in an individual vector.

Fused (features vector)1×q =
3∑

i=1

{fHOG1 × n, fVRES191×m, fLBP1 ×p} (22)

where f denotes fused vector (1 × 1186). The entropy is employed on the feature vectors for selecting
optimum features depending upon score [25]. The FS task is scientifically described by Eqs. (19)–(22).

BHe = −NHeb

n∑
i=1

p(fi) (23)

Fselect = BHe(max(fi, 1186)) (24)

In Eqs. (23) and (24), p denotes feature likelihood and He indicates entropy. The lastly selected
feature is provided for the VAE classification model to distinguish the remote sensing images.

3.2 VAE Based Scene Classification

During the classification process, the fused features are fed into the VAE model to allot the proper
class labels. Autoencoder (AE) is one of the initial generative modules trained for recreating/repro-
ducing the input vector x. The AE is consisting of 2 major frameworks: encoder and decoder, that
is multilayered (NN) parameterized using ϕ and θ , correspondingly. The initial portion encodes the
input data x to a latent depiction z using encoder function = fϕ(x), where the next NN decodes this
latent depiction to X = h(z) that is a reconstruction/approximation of the novel data.

The variant form of the AE turns into a common generative module with the combination of
Bayesian inference and effectiveness of the NN is to attain a non-linear low dimension latent space
[26]. The Bayesian inference is attained with other layers utilized to sample the latent vector z with
previously stated distribution p(z), typically consider to be a regular Gaussian N (0, I), whereas I
denote identity matrix. Every element zi of the latent layer is attained by:

zi = μi + σi.e (25)

whereas μi and σi represents ith component of the standard deviation and mean vectors, e indicates
arbitrary parameter succeeding a regular Normal distribution ( e ∼ N(0, 1)). Contrasting the AE, that
produces latent vector z, the VAE produces vector of means μj and standard deviations σi. This permits
to have additional continuousness in the latent space compared to original AE. The VAE loss function
is denoted in Eq. (26) contain 2 expressions. The initial term Lrec represents recreation loss function
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(Eq. (27)), that enables minimizing the variance among input and output samples. Fig. 3 showcases
the architecture of VAE.

Both negative expected log probability (for example the cross entropy function) and mean
squared error (MSE) are utilized. While the sigmoid function is utilized in the output layer, the
derivative of MSE and cross entropy could contain equivalent formations. The next term Lkl (Eq. (28))
equivalent to the KullbackLiebler (Dkl) divergence loss term which forces the generation of latent
vector with the stated Normal distribution. The Dkl divergence is a theoretic measure of proximity
among 2 densities q(x) and p(x). It is asymmetric (Dkl(q||p) �= Dkl(p||q)) and non-negative. It is reduced
when q(x) = p(x). Therefore, the Dkl divergence terms measure the conditional distribution density
qϕ(z|x) of encoded latent vector is from the desired Normal distribution p(z). The value of Dkl is 0 if
2 likelihood distributions are similar, that forces the encoder of VAE qϕ(z|x) for learning the latent
parameter which follows a multivariate normal distribution on a k dimension latent space.

L = Lrec + Lkl (26)

Lrec = −Eqϕ(z|x)[logpθ (x|z)] (27)

Lkl = Dkl(qϕ(z|x)||p(z)) (28)

4 Performance Validation

This section validates the performance of the presented model on two datasets namely UCM and
WHU-RS dataset [27]. The proposed model is simulated using MATLAB. The details compared to
the dataset are provided in Tab. 1. The first UCM dataset holds a set of 100 images with 21 classes and
the WHU-RS dataset holds a total of 950 images with 19 classes.

Table 1: Dataset details

Parameter UCM dataset WHU-RS dataset

Classes 21 19
Image count 100 950
Pixel sizes 256 × 256 600 × 600

A detailed comparative results analysis of the MMF-EDC model with other models on the
applied UCM dataset is given in Tab. 2 and Fig. 2. The experimental results showcased that the
proposed MMF-EDC model accomplished maximum classification outcome under varying amounts
of training data.

Table 2: Result analysis of various training size on proposed MMF-EDC model on UCM dataset

Training (%) MMF-EDC ResNet-VAE LBP-VAE HOG-VAE

Precision

X = 40 0.9706 0.9506 0.9206 0.8706
X = 50 0.9892 0.9292 0.9092 0.8892

(Continued)
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Table 2: Continued
Training (%) MMF-EDC ResNet-VAE LBP-VAE HOG-VAE

X = 60 0.9943 0.9243 0.9043 0.8143
X = 70 0.9855 0.9755 0.8955 0.8455
X = 80 0.9782 0.9520 0.9120 0.8620

Average 0.9836 0.9463 0.9083 0.8563

Recall

X = 40 0.9856 0.9456 0.9056 0.8456
X = 50 0.9965 0.9465 0.8865 0.8665
X = 60 0.9795 0.9595 0.9195 0.8795
X = 70 0.9930 0.9330 0.8130 0.7430
X = 80 0.9971 0.9371 0.8971 0.8671

Average 0.9903 0.9443 0.8843 0.8403

F-score

X = 40 0.9788 0.9688 0.8788 0.8588
X = 50 0.9892 0.9392 0.8692 0.8292
X = 60 0.9932 0.9400 0.9100 0.8900
X = 70 0.9815 0.8915 0.8315 0.7515
X = 80 0.9937 0.9437 0.8537 0.8337
Average 0.9873 0.9366 0.8686 0.8326

Accuracy

X = 40 0.9863 0.9303 0.9163 0.8863
X = 50 0.9880 0.9640 0.8240 0.7740
X = 60 0.9949 0.9349 0.8649 0.7649
X = 70 0.9960 0.9704 0.8954 0.8854
X = 80 0.9798 0.9318 0.8718 0.8118

Average 0.9890 0.9463 0.8745 0.8245

Simultaneously, the HOG-VAE model has attained minimum classifier results over the other
methods. Though the ResNet-VAE and LBP-VAE models have demonstrated moderate performance,
they failed to outperform the MMF-EDC model. For instance, the MMF-EDC model has offered
a higher average precision of 0.9836 whereas the ResNet-VAE, LBP-VAE, and HOG-VAE models
have exhibited lower average precision of 0.9506, 0.9206, and 0.8706 respectively. Additionally, the
MMF-EDC model has offered a higher average recall of 0.9903 whereas the ResNet-VAE, LBP-VAE,
and HOG-VAE models have exhibited lower average recall of 0.9443, 0.8843, and 0.8403 respectively.
Simultaneously, the MMF-EDC model has offered a higher average F-score of 0.9836 whereas the
ResNet-VAE, LBP-VAE, and HOG-VAE models have exhibited lower average F-score of 0.9873,
0.9366, and 0.8686 respectively. At last, the MMF-EDC technique has offered a higher average
accuracy of 0.9890 whereas the ResNet-VAE, LBP-VAE, and HOG-VAE models have exhibited lower
average accuracy of 0.9463, 0.8745, and 0.8245 respectively.
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Figure 2: Comparative analysis of MMF-EDC model on UCM dataset

A detailed comparative results analysis of the MMF-EDC model with other models on the applied
WHU-RS dataset is given in Tab. 3 and Fig. 3. The experimental results showcased that the proposed
MMF-EDC model accomplished maximum classification outcome under varying amounts of training
data. Likewise, the HOG-VAE algorithm has attained minimum classifier results over the other
methods. Though the ResNet-VAE and LBP-VAE models have demonstrated moderate performance,
they failed to outperform the MMF-EDC model. For instance, the MMF-EDC model has offered
a higher average precision of 0.9961 whereas the ResNet-VAE, LBP-VAE, and HOG-VAE models
have exhibited lower average precision of 0.9195, 0.8455, and 0.8255 respectively. Additionally, the
MMF-EDC model has offered a higher average recall of 0.9835 whereas the ResNet-VAE, LBP-VAE,
and HOG-VAE models have exhibited lower average recall of 0.9505, 0.8925, and 0.8545 respectively.
Simultaneously, the MMF-EDC model has offered a higher average F-score of 0.9806 whereas the
ResNet-VAE, LBP-VAE, and HOG-VAE models have exhibited lower average F-score of 0.9206,
0.8586, and 0.8466 respectively.
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Table 3: Result analysis of various training size on proposed MMF-EDC model on WHU-RS dataset

Training (%) MMF-EDC ResNet-VAE LBP-VAE HOG-VAE

Precision

X = 40 0.9992 0.9692 0.8692 0.7892
X = 50 0.9941 0.9301 0.8501 0.8001
X = 60 0.9931 0.9401 0.8901 0.8401
X = 70 0.9962 0.8702 0.7802 0.8602
X = 80 0.9977 0.8877 0.8377 0.8377

Average 0.9961 0.9195 0.8455 0.8255

Recall

X = 40 0.9660 0.9560 0.9160 0.8260
X = 50 0.9844 0.9644 0.8744 0.8744
X = 60 0.9959 0.9459 0.8959 0.8559
X = 70 0.9754 0.9654 0.8854 0.8354
X = 80 0.9959 0.9209 0.8909 0.8809

Average 0.9835 0.9505 0.8925 0.8545

F-score

X = 40 0.9789 0.9089 0.8689 0.8389
X = 50 0.9821 0.9621 0.9321 0.9221
X = 60 0.9625 0.9525 0.8325 0.7925
X = 70 0.9822 0.8922 0.8322 0.8222
X = 80 0.9973 0.8873 0.8273 0.8573

Average 0.9806 0.9206 0.8586 0.8466

Accuracy

X = 40 0.9967 0.9207 0.9007 0.8407
X = 50 0.9961 0.9505 0.8405 0.7905
X = 60 0.9899 0.9056 0.8656 0.8856
X = 70 0.9898 0.9308 0.8508 0.8408
X = 80 0.9975 0.9445 0.9345 0.8745

Average 0.9940 0.9304 0.8784 0.8464
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Figure 3: Comparative analysis of MMF-EDC model on WHU-RS dataset

At last, the MMF-EDC technique has offered a higher average accuracy of 0.9940 whereas the
ResNet-VAE, LBP-VAE, and HOG-VAE models have exhibited lower average accuracy of 0.9304,
0.8784, and 0.8464 respectively. A brief comparative results analysis of the MMF-EDC model with
other existing methods interms of accuracy is provided in Tab. 4 and Fig. 4. From the obtained results,
it is evident that the PlacesNet model has appeared as poor performance with the accuracy of 0.91
and 0.92 on test UCM and WHU-RS datasets. Then, the VGG-VD19 model has obtained slightly
enhanced outcome with the accuracy of 0.93 and 0.94 on test UCM and WHU-RS dataset.

Table 4: Result analysis of existing with proposed MMF-EDC method in terms of accuracy

Methods Dataset

UCM WHU-RS

MMF-EDC 0.989 0.994
ORNBFE 0.980 0.980

(Continued)
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Table 4: Continued
Methods Dataset

UCM WHU-RS

DL-MOPSO 0.960 0.980
CCP-net 0.980 0.940
AlexNet 0.940 0.940
CaffeNet 0.940 0.950
VGG-F 0.940 0.950
VGG-M 0.940 0.950
VGG-S 0.950 0.950
VGG-VD16 0.940 0.940
VGG-VD19 0.930 0.940
PlacesNet 0.910 0.920

Figure 4: Result analysis of MMF-EDC model interms of accuracy

Afterward, the AlexNet model has attained further enhanced results with the accuracy of 0.94
and 0.94 on test UCM and WHU-RS datasets. Followed by, the CaffeNet, VGG-F, VGG-M, VGG-
VD-16, and VGG-S models have showcased moderately closer accuracy values on test UCM and
WHU-RS dataset. Simultaneously, the deep learning with multi-objective particle swarm optimization
(DL-MOPSO) model has exhibited slightly reasonable outcome with the accuracy of 0.96 and 0.98 on
test UCM and WHU-RS datasets. Concurrently, the ORNBFE model has resulted in a nearly accept-
able outcome with the accuracy of 0.98 and 0.98 on test UCM and WHU-RS datasets. Eventually,
the CCP-Net model has gained competitive performance with the accuracy of 0.98 and 0.94 on test
UCM and WHU-RS datasets. However, the proposed MMF-EDC model has accomplished superior
performance with the accuracy of 0.989 and 0.994 on test UCM and WHU-RS datasets.

A brief comparative outcomes analysis of the MMF-EDC model with other existing models with
respect to computation time (CT) is given in Tab. 5 and Fig. 5. From the attained outcomes, it can
be clear that the VGGNet technique is revealed as the worst performance with CT of 500 s and 560 s
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on test UCM and WHU-RS dataset. Then, the VGG-VD16 model has obtained slightly enhanced
outcome with the CT of 415 s and 480 s on test UCM and WHU-RS dataset. Later, the VGG-S model
has attained further enhanced results with the CT of 135 s and 156 s on test UCM and WHU-RS
datasets.

Table 5: Result analysis of existing with proposed MMF-EDC method in terms of computation
time (s)

Methods Dataset

UCM WHU-RS

MMF-EDC 59.00 62.00
ORNBFE 65.00 71.00
DL-MOPSO 69.00 78.00
CCP-net 72.00 80.00
AlexNet 85.00 90.00
CaffeNet 85.00 92.00
VGG-F 85.00 97.00
VGG-M 130.00 142.00
VGG-S 135.00 156.00
VGG-VD16 415.00 480.00
VGG-VD19 500.00 560.00
PlacesNet 87.00 91.00

Figure 5: Computation time analysis of MMF-EDC model

In the meantime, the VGG-M approach has resulted in a certainly increased result with CT of 130 s
and 142 s on test UCM and WHU-RS dataset. Followed by, the PlacesNet, AlexNet, CaffeNet, and
VGG-F techniques have depicted moderately closer CT values on test UCM and WHU-RS dataset.
Concurrently, the CCP-net model has exhibited slightly reasonable results with the CT of 72 s and
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80 s on test UCM and WHU-RS datasets. Concurrently, the DL-MOPSO model has resulted in a
nearly acceptable result with the CT of 69 s and 78 s on test UCM and WHU-RS datasets. Finally, the
ORNBFE model has gained competitive performance with the CT of 65 s and 71 s on test UCM and
WHU-RS datasets. However, the proposed MMF-EDC model has accomplished higher performance
with the CT of 59 s and 62 s on test UCM and WHU-RS datasets.

From the above mentioned experimental results analysis, it is obvious that the proposed MMF-
EDC model is found to be an appropriate scene classification tool for RS data. The proposed MMF-
EDC model not only achieves higher classification accuracy, it also achieves minimum computation
complexity.

5 Conclusion

This paper has presented an effective MMF-EDC model for pattern identification in the earth
data and classifies them into appropriate class labels. The proposed MMF-EDC model aims to
identify and classify the scenes that exist in the remote sensing data, which is helpful for several real
time applications. The MMF-EDC technique involves two major phases namely feature fusion and
classification. Primarily, the features in the input remote sensing images are extracted using HOG,
LBP, and QAFO-ResNet models, which are then are fused by the use of entropy technique. The
application of QAFO algorithm helps to increase the classification performance of the presented
method by optimally tuning the hyperparameters of the ResNet model. Besides, the VAE model is
applied to categorize the scenes based on the fused feature vectors. The experimental assessment of
the MMF-EDC model is carried out on benchmark UCM and WHU-RS datasets. The experimental
values denoted that the MMF-EDC method exhibit promising classification performance on all the
applied images with maximum accuracy of 0.989 and 0.994 on the test UCM and WHU-RS dataset
respectively. In future, the performance of the MMF-EDC technique is enhanced with utilize of
advanced DL architectures for image classification process.
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