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Abstract: Due to the drastic increase in the number of critical infrastruc-
tures like nuclear plants, industrial control systems (ICS), transportation, it
becomes highly vulnerable to several attacks. They become the major targets
of cyberattacks due to the increase in number of interconnections with other
networks. Several research works have focused on the design of intrusion
detection systems (IDS) using machine learning (ML) and deep learning (DL)
models. At the same time, Blockchain (BC) technology can be applied to
improve the security level. In order to resolve the security issues that exist in
the critical infrastructures and ICS, this study designs a novel BC with deep
learning empowered cyber-attack detection (BDLE-CAD) in critical infras-
tructures and ICS. The proposed BDLE-CAD technique aims to identify the
existence of intrusions in the network. In addition, the presented enhanced
chimp optimization based feature selection (ECOA-FS) technique is applied
for the selection of optimal subset of features. Moreover, the optimal deep
neural network (DNN) with search and rescue (SAR) optimizer is applied
for the detection and classification of intrusions. Furthermore, a BC enabled
integrity checking scheme (BEICS) has been presented to defend against
the misrouting attacks. The experimental result analysis of the BDLE-CAD
technique takes place and the results are inspected under varying aspects. The
simulation analysis pointed out the supremacy of the BDLE-CAD technique
over the recent state of art techniques with the accuy of 92.63%.

Keywords: BC; internet of critical infrastructure; ids; deep learning; security;
deep neural network; machine learning

1 Introduction

Critical infrastructure system has been utilized for underpinning the functions of an economy and
society. Also, it ranges from conventionally-defined physical assets to a broader description of current
assets in the fields of agriculture, gas, transportation, water supply, electricity, telecommunication,
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public health, security services, and so on [1]. Such transformation is mainly because of the extensive
utilization of Internet of Things (IoT) and their considerable aid for critical infrastructure systems in
industry 4.0 [2]. The IoT system has become essential part of critical infrastructure in industry 4.0,
which creates smart services like smart grids and offers numerous benefits for efficiencies and cost
savings. The international data corporation (IDC) have predicted that there would be an estimation of
41.6 billion interconnected IoT device, which generate 79.4 zettabytes (ZB) by 2025 [3].

The industrial control system (ICS) is the core of critical infrastructure system [4]. It is largely
accountable for supervisory control and data collection (SCADA), which monitors the control flows
and processes of data in industry. The possible application areas of critical infrastructure with IoT
are shown in Fig. 1 [5]. The wider adaption of Internet connected IoT devices have offered different
challenges to critical infrastructure. Initially, ICS was mainly developed for a closed infrastructure
and proprietary without taking care of security problems into account, since conventional critical
infrastructure is kind of isolated and is invulnerable to cyber-attacks. With this infrastructure being
interconnected to the Internet via IoT system, a wide-ranging of cyberattacks, including malware,
Man-in-the-middle attack, distributed denial-of service (DDoS), Brute force, breach, and phishing
attacks are threatening the process of ICS [6,7]. The compromised ICS by cyber attackers might
generate possible risk for the loss of information [8]. Next, scalability is another challenge where ICS
wasn’t initially developed to resolve. Assuming the dramatic growth in the volume of data and the
number of IoT devices they are analyzing and collecting, the centralized method for data analysis and
collection has become a bottleneck of ICS. A decentralized method is crucially needed to satisfy the
evolving needs of ICS.

Figure 1: Application areas of critical infrastructures with IoT

Blockchain (BC) and Artificial intelligence (AI) have their own benefits, but, all of them have
relative drawbacks. BC has problems relating to scalability, security, energy consumption, efficiency,
and privacy, whereas AI systems face problems like effectiveness and interpretability. As two distinct
directions of research, they could be associated with one another and have the benefits of natural
integration. Both techniques have shared requirements for data trust, analysis, and security, and
they could empower one another [9]. For example, AI technique based on three most important
components: computing power, data, and algorithms, and the BC could break the island of data
and realize the flow of data resources, algorithms, and computing power, according to its specific
features, involving immutability, anonymization, and decentralization. Additionally, BC could ensure
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the audit traceability and credibility of AI and the credibility of the original data. Furthermore, BC
could record the decision-making of AI that assists in analyzing and understanding the behaviour of
AI and eventually promote the decision-making of AI, which makes it more explainable, trustworthy,
and transparent. The AI technique could improve the BC construction for making it more efficient,
secure, and energy-saving [10].

Gumaei et al. [11] presented an architecture which integrates a BC with a deep recurrent
neural network (DRNN) and edge computing for 5G-enabled assisted mode detection and drone
identification. In the presented approach, raw RF signals of dissimilar drones under various flight
modes are collected and sensed remotely on a cloud framework for training a DRNN method and
allocate the training models on edge devices to detect their flight modes and drones. BC is utilized in
this architecture for securing data transmission and integrity. Alkadi et al. [12] presented a DBF to
provide security-based privacy-based BC and distributed IDS with smart contracts in IoT networks.
The IDS is applied by a BiLSTM-DL method for handling sequential network data and is measured
by the data sets. The smart contract and privacy-based BC methodologies are designed by utilizing
the Ethereum library to offer security to the distributed IDS engine.

Singh et al. [13] introduced a DL-based IoT-based framework for a secured smart city in which
BC provides a distributed platform at the transmission stage of software defined networks (SDN) and
cyber-physical systems (CPS) established the protocol for forwarding information. A DL based cloud
is employed at the application layer for resolving transmission scalability, centralization, and latency.
Zhang et al. [14] presented an edge intelligence and BC enabled industrial IoT architecture that attains
secure and flexible edge service management. Next, developed a credit-differentiated edge transaction
approval method and present a cross-domain sharing inspired edge resource scheduling system.

This study designs a novel BC with deep learning empowered cyber-attack detection (BDLE-
CAD) in critical infrastructures and ICS. The proposed BDLE-CAD technique aims to identify the
existence of intrusions in the network. In addition, the presented enhanced chimp optimization based
feature selection (ECOA-FS) technique is applied for the selection of optimal subset of features.
Moreover, the optimal deep neural network (DNN) with search and rescue (SAR) optimizer is applied
for the detection and classification of intrusions. Furthermore, a BC enabled integrity checking scheme
(BEICS) has been presented to defend the misrouting attacks. The experimental result analysis of the
BDLE-CAD technique takes place and the results are inspected under varying aspects.

2 The Proposed Model

In this study, a new BDLE-CAD technique has been developed to identify the existence of
intrusions in critical infrastructures. The proposed BDLE-CAD technique encompasses ECOA-FS
technique for the selection of optimal subset of features. Moreover, the DNN with SAR optimizer is
can be used as a classifier and the BEICS has been presented to defend over the misrouting attacks.
The experimental result analysis of the BDLE-CAD technique takes place and the results are inspected
under varying aspects.

2.1 ECOA Based Feature Selection

Primarily, the ECOA-FS technique is executed to choose the optimal subset of features. The chimp
optimization algorithm (COA) is a mathematical method that is dependent upon intelligent diversity
[15]. Drive, chase, block, and attack are capable of 4 distinct kinds of chimps that are realized by
attacker, obstacle, chaser, and driver. The 4 hunting stages are finalized in 2 phases. In primary stage
is the exploration step, and the second step is the exploitation phase. The exploration phase contains
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driving, blocking, and chasing the prey. Since the exploitation step, it has attacked the prey. Where the
drive and chase are demonstrated as in Eqs. (1) and (2).

d = |c · xprey(t) − m · xchimp(t)| (1)

xchimp(t + 1) = xprey(t) − a · d (2)

where Xprey implies the vector of prey place, xchimp refers the vector of chimp place, t stands for
the amount of present iterations, a, c, m represents the coefficient vector and it is attained with
Eqs. (3)–(5).

a = 2 · f · r1 − f (3)

c = 2 · r2 (4)

m = chaotic−value (5)

where f implies the non-linearly declined in 2.5 to 0, r1 and r2 refers the arbitrary number amongst
zero and one, and m refers the chaotic vector. The dynamic coefficient f has chosen to distinct curve
as well as slope, so the chimps are utilizing distinct capabilities for searching the prey. The chimps are
upgrading their places dependent upon another chimp, and this mathematical method is signified by
Eqs. (6) and (8).

dAttacker = |c2xAttacker − m1x|
dBarrier = |c2xBarrier − m2χ |
dChaser = |c3xChaser − m3x|
dDriver = |c4xDriver − m4x|

(6)

χ2=xBarrier−a2(dBarrier) χ1=xAiiacker−a1(dAiiacker)

x4 = xDriver − a4(dDriver) x3 = xChaser − a3(dChaser)
(7)

x(t + 1) = x1 + x2 + x3 + x4

4
(8)

x1 = xAttacker − a1(dAttacker)

x2 = xBarrier − a2(dBarrier)

x3 = xChaser − a3(dChaser)

x4 = xDriver − a4(dDriver)

In ECOA, the extremely disruptive polynomial mutation is increased version of polynomial
mutation technique [16]. It could resolve the limitation that polynomial mutation technique is fall
as to local optimal once the variable is nearby boundary. In Eqs. (9)–(12) illustrate the procedure of
HDPM modifies the xi

δ1 = χi − lb
ub − lb

(9)

δ2 = ub − xi

ub − lb
(10)

δk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[(2r) + (1 − 2r)∗(1 − δ1)
ηm+1]

1
ηm + 1

−1

, r ≤ 0.5

1 − [2(1 − r) + 2(r − 0.5)∗(1 − δ2)
ηm+1]

1
ηm + 1 , otherwise

(11)
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xi = xi + δk(ub − lb) (12)

where ub and lb define the upper and lower boundaries of the search spaces. r signifies the arbitrary
number amongst zero and one. ηm refers the distribution exponential that is a non-negative number.
Since it is clear that the previous formula, HDPM is exploring the total search space.

In contrast to the classical ECOA, in which the update of solutions takes place in the search area in
the direction of continuous value location. However, in the BECOA, the searching area can be defined
by n dimension Boolean lattice. In addition, the solutions get updated using the corner of a hypercube.
Moreover, for selecting the features, 1 represents the selection of features, otherwise 0. In addition, the
BECOA derived a fitness function in determining the solutions for maintaining a tradeoff between a
pair of objectives, as given in Eq. (13):

fitness = αΔR(D) + β
|Y |
|T | (13)

ΔR(D) denotes the error of the classifier, |Y | represents the subset size, and |T | indicates the total
number of features that exist in the dataset. Besides, α signifies a variable ∈ [0, 1] related to the weight
of the classification error level, and β = 1 − α symbolizes the significance of reduction feature.

2.2 Optimal DNN Based Intrusion Detection and Classification

At this stage, the chosen features are passed into the DNN model for intrusion classification. The
DNN is an ANN that consists of input, hidden, and output layers. The hidden layer applies a group
of non-linear functions and it can be demonstrated as follows [17]:

Z = sig(W∗x + bias) (14)

where x refers the input of all nodes, W and bias signifies the weight as well as bias vectors
correspondingly and sig implies the sigmoid activation functions, for instance, 1

1+e−x . During the
presented optimizing DNN, 2 hidden layers are assumed and for minimizing the MAE of DNN,
optimum selective of weight matrices are required in order, at this point SAR has been employed.
The searching and rescuing function has important 2 stages, for instance, social as well as individual
phases. In the searching procedure, the set members collect the clues. The clues left under the search by
group members were saved from the memory matrix (O) but the human place is saved from the place
matrix (W). The clue matrix B with size N∗D that has of left clues and the human places are expressed
as:

B =
[

W
O

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W11 · · · W1D

...
. . .

...
WN1 · · · WND

O11 · · · O1D

...
. . .

...
ON1 · · · OND

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The 2 steps of human search are demonstrated as follows. i) Social step: The search way has
provided by SDi = (Wi − Bk) where k �= i. A novel solution has been created utilizing the formula.

W
′
ij =

⎧⎨
⎩

{
Bij + r1(Wij − Bij), if f (Bi) > f (Wi)

Wij + r1(Wij − Bij), otherwise if r2 > SE

Wij, otherwise
(16)
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At this point f (Bi) & f (Wi) denotes the FF values to Bi & Wi, r1 and r2 indicates the arbitrary numbers
from the range [−1, 1] and [0, 1], the SE is technique parameter range amongst zero and one.

ii) Individual step: According to the present place humans identify its novel place and novel place
of ith human is provided as [18]:

W
′
i = Wi + r3(Bk − Bm), i �= k �= m (17)

Every solution is placed from the solution spaces, once the novel place is outer the solution space
then it can be enhanced utilizing the formula

W ∧
ij =

⎧⎪⎨
⎪⎩

wi,j + w max
j

2
if w∧

ij > w max
j

wi,j + w min
j

2
if w∧

ij < w min
j

(18)

where W max
j and W min

j implies the maximal as well as minimal threshold. The performance of
determining the global optimum solution has improved by providing memory upgrade formulas

MEn =
{

wi if f (W ′
i ) > f (Wi)

MEn otherwise
(19)

Wi =
{

W ′
i if f (W ′

i ) > f (Wi)

Wi otherwise
(20)

where MEn is nrh has saved clue place from the memory matrix and n refers the arbitrary integer number
ranging amongst [1, N]. During the clue search procedure, once optimum clues are not initiated nearby
the present place a specific amount of searches, human goes to novel place. For modeling, this, primary,
the USN is fixed 0 to all humans.

USNi =
{

USNi + 1 if f (W ′
i ) > f (Wi)

0 otherwise
(21)

Once the USN value is superior to the maximal unsuccessful searching number, the human
becomes an arbitrary place from the searching space utilized in Eq. (21), and the value of USNi is
fixed 0 to that human.

wij = wmin
j + r4(wmax

j − w min
j ); i = 1, . . . ..D (22)

where r4 ranges from the interval zero and one.

2.3 Process Involved in BEICS

The BC [19] is a major component of the integrity verification system. The primary concept is
to offer a solution in which that every flow produced from the controller is saved in a verifiable
and immutable dataset. The BC includes a series of blocks interconnected to one another via hash
values. At the BC network, the users contain a pair of keys namely private key for signing the BC
transaction and public key for representing the irreplaceable address. The client signed a transaction
by the use of private key and transmit it to the other ones in the network for verification. Once the
broadcasting block gets verified, it is added to the BC. If it is saved, the data in the provided blocks
could not be modified with no changes of all succeeding blocks. Besides, the data is present in many
hosts concurrently, therefore, the modifications can be discarded by the peer hosts. Here, a private BC
has been presented in contrast to a public BC. The private BC decides who can get participated in the
network and represented actions as well as permissions allotted identifiable applicants. Therefore, it
limits the need for consensus mechanisms like Proof of Work. Fig. 2 shows the structure of BC.
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Figure 2: Structure of BC

3 Experimental Validation

In this section, the performance validation of the BDLE-CDE technique takes place using
benchmark dataset [20], which comprises 1000’s different classes of events. The dataset contains binary
(Natural and Attack) and multiclass (No event, Natural, and Attack) labels. Tab. 1 provides a detailed
result analysis of the BDLE-CDE technique on the binary class dataset.

Table 1: Results analysis of proposed BDLE-CAD model on binary class dataset

Binary dataset Precision Recall Specificity Accuracy F-Score

Subdata-1 96.89 97.47 99.02 98.88 97.10
Subdata-2 97.02 97.95 99.35 98.39 97.05
Subdata-3 98.23 96.98 98.90 98.62 97.94
Subdata-4 96.56 97.83 99.12 98.45 97.97
Subdata-5 96.91 96.67 98.95 98.75 96.77
Subdata-6 96.53 97.76 99.17 98.49 97.06
Subdata-7 97.45 96.70 99.27 98.30 96.52
Subdata-8 97.01 97.71 99.30 98.39 97.42
Subdata-9 97.34 97.17 99.34 98.72 97.87
Subdata-10 97.80 97.97 99.37 98.49 97.23
Subdata-11 97.37 97.00 99.05 98.93 97.48
Subdata-12 98.27 97.98 98.99 98.74 97.57
Subdata-13 97.58 97.72 99.23 98.93 97.01
Subdata-14 98.37 96.76 99.36 98.91 97.89
Subdata-15 97.76 97.04 99.28 98.51 96.90

Average values 97.41 97.38 99.18 98.63 97.32



1586 CMC, 2022, vol.72, no.1

Fig. 3 offers a brief precn and recal analysis of the BDLE-CDE technique under distinct subdata
on binary class dataset. The figure revealed that the BDLE-CDE technique has attained increased
values of precn and recal. For instance, with subdata-1, the BDLE-CDE technique has offered precn and
recal of 96.89% and 97.47% respectively. Meanwhile, with subdata-10, the BDLE-CDE technique has
provided precn and recal of 97.80% and 97.97% respectively. Eventually, with subdata-15, the BDLE-
CDE technique has demonstrated precn and recal of 97.76% and 97.04% respectively.

Figure 3: Pren and Recl analysis of BDLE-CDE technique on binary dataset

Fig. 4 exhibits a detailed specy and Fscore analysis of the BDLE-CDE technique under distinct
subdata on binary class dataset. The figure shows that the BDLE-CDE technique has accomplished
superior values of specy and Fscore. For instance, with subdata-1, the BDLE-CDE technique has
demonstrated specy and Fscore of 99.02% and 97.10% respectively. Moreover, with subdata-10, the
BDLE-CDE technique has gained specy and Fscore of 99.37% and 97.23% respectively. Furthermore,
with subdata-15, the BDLE-CDE technique has reached specy and Fscore of 99.28% and 96.90%
respectively.

Figure 4: Specy and Fscore analysis of BDLE-CDE technique on binary dataset
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Fig. 5 portrays the accuy analysis of the BDLE-CDE technique on the test binary dataset. The
results show that the BDLE-CDE technique has gained a lower accuy of 98.30% on subdata-7 and
higher accuy of 98.91% on subdata-14. Therefore, it is ensured that the BDLE-CDE technique has
effectually classified binary classes.

Figure 5: Accuy analysis of BDLE-CDE technique on binary dataset

Tab. 2 offers a comprehensive comparison study of the BDLE-CDE technique on the multi class
dataset.

Table 2: Results analysis of proposed BDLE-CAD model on multiclass dataset

Multiclass dataset Precision Recall Specificity Accuracy F-Score

Subdata-1 79.00 92.09 93.46 93.08 80.55
Subdata-2 82.98 91.57 92.93 93.79 80.39
Subdata-3 81.62 89.72 93.56 92.41 82.51
Subdata-4 81.80 89.97 93.59 93.98 82.46
Subdata-5 79.47 89.53 93.13 91.50 81.49
Subdata-6 83.20 92.29 93.46 91.23 79.74
Subdata-7 80.69 92.85 92.78 92.22 83.19
Subdata-8 83.50 90.56 93.96 93.24 80.08
Subdata-9 80.11 91.45 93.87 92.38 80.67
Subdata-10 83.37 92.39 93.79 93.05 79.83
Subdata-11 78.88 91.34 93.28 93.16 82.26
Subdata-12 82.56 89.28 93.04 92.53 82.75
Subdata-13 83.49 89.57 93.59 93.59 80.15
Subdata-14 83.37 89.56 93.40 91.01 79.79
Subdata-15 78.62 89.25 93.75 92.21 82.46

Average values 81.51 90.76 93.44 92.63 81.22
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Fig. 6 showcases a brief precn and recal analysis of the BDLE-CDE technique under distinct
subdata on multi class datasets. The figure discovered that the BDLE-CDE technique has attained
increased values of precn and recal. For instance, with subdata-1, the BDLE-CDE technique has
presented precn and recal of 79% and 92.09% respectively. Meanwhile, with subdata-10, the BDLE-
CDE technique has delivered precn and recal of 83.37% and 92.39% respectively. Finally, with subdata-
15, the BDLE-CDE technique has demonstrated precn and recal of 78.62% and 89.25% respectively.

Figure 6: Pren and Recl analysis of BDLE-CDE technique on multiclass dataset

Fig. 7 reveals a detailed specy and Fscore analysis of the BDLE-CDE technique under distinct
subdata on multi class datasets. The figure displayed that the BDLE-CDE technique has resulted
in maximum values of specy and Fscore. For instance, with subdata-1, the BDLE-CDE technique has
demonstrated specy and Fscore of 93.46% and 80.55% respectively. Moreover, with subdata-10, the
BDLE-CDE technique has gained specy and Fscore of 93.87% and 80.67% respectively. Furthermore,
with subdata-15, the BDLE-CDE technique has reached specy and Fscore of 93.75% and 82.46%
respectively.

Figure 7: Specy and Fscore analysis of BDLE-CDE technique on multiclass dataset
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Fig. 8 shows the accuy analysis of the BDLE-CDE technique on the test binary dataset. The figure
reported that the BDLE-CDE technique has gained a lower accuy of 91.01% on subdata-14 and higher
accuy of 93.98% on subdata-4. Therefore, it is ensured that the BDLE-CDE technique has effectually
classified multiple classes.

Figure 8: Accuy BDLE-CDE technique on binary dataset

Tab. 3 offers a detailed comparative study of the BDLE-CDE technique with recent methods [21].
A comparative classification result analysis of the BDLE-CDE technique on the binary class dataset
is depicted in Fig. 9. The results exposed that the Nearest Neighbor (NN), random forest (RF), and
SVM models have obtained lower accuy of 71.56%, 80.61%, and 78.84% respectively. At the same time,
the KNN, Adaboost+JRip, and JRip models have obtained moderate accuy values of 95.49%, 95.56%,
and 90.10%. However, the BDLE-CDE technique has resulted in increased accuy of 98.63%.

Table 3: Comparative accuracy analysis of BDLE-CAD model on binary and multiclass dataset

Methods Binary
class

Multi
class

BDLE-CAD 98.63 92.63
KNN 95.49 87.66
Nearest neighbor 71.56 77.33
Random forest 80.61 80.51
SVM 78.84 78.56
JRip 90.10 90.09
Adaboost+JRip 95.56 91.44
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Figure 9: Comparative Accuy analysis of BDLE-CDE technique on binary dataset

Detailed multiclass performance analysis of the BDLE-CDE technique on the multi class dataset
is offered in Fig. 10. The experimental values illustrated that the Nearest Neighbor (NN), random
forest (RF), and SVM models have gained reduced accuy of 77.33%, 80.51%, and 78.56% respectively.
Moreover, the KNN, Adaboost+JRip, and JRip models have obtained moderate accuy values of
87.66%, 91.44%, and 90.09%. However, the BDLE-CDE technique has accomplished superior accuy

of 92.63%. From these results and discussion, it can be ensured that the BDLE-CDE technique has
the ability to attain maximum performance over the other compared methods.

Figure 10: Comparative Accuy analysis of BDLE-CDE technique on multiclass dataset
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4 Conclusion

In this study, a new BDLE-CAD technique has been developed to identify the existence of
intrusions in critical infrastructures. The proposed BDLE-CAD technique encompasses ECOA-FS
technique for the selection of optimal subset of features. Moreover, the DNN with SAR optimizer
is can be used as a classifier and the BEICS has been presented to defend over the misrouting
attacks. The experimental result analysis of the BDLE-CAD technique takes place and the results
are inspected under varying aspects. The simulation analysis pointed out the supremacy of the BDLE-
CAD technique over the recent state of art techniques with the accomplished superior accuy of 92.63%.
Therefore, the BDLE-CAD technique can be utilized as a proficient tool to detect intrusions in the
network. In future, clustering and outlier detection approaches can be designed to boost the detection
performance.
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