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Abstract: For military warfare purposes, it is necessary to identify the type
of a certain weapon through video stream tracking based on infrared (IR)
video frames. Computer vision is a visual search trend that is used to identify
objects in images or video frames. For military applications, drones take
a main role in surveillance tasks, but they cannot be confident for long-
time missions. So, there is a need for such a system, which provides a
continuous surveillance task to support the drone mission. Such a system
can be called a Hybrid Surveillance System (HSS). This system is based
on a distributed network of wireless sensors for continuous surveillance. In
addition, it includes one or more drones to make short-time missions, if the
sensors detect a suspicious event. This paper presents a digital solution to
identify certain types of concealed weapons in surveillance applications based
on Convolutional Neural Networks (CNNs) and Convolutional Long Short-
Term Memory (ConvLSTM). Based on initial results, the importance of video
frame enhancement is obvious to improve the visibility of objects in video
streams. The accuracy of the proposed methods reach 99%, which reflects the
effectiveness of the presented solution. In addition, the experimental results
prove that the proposed methods provide superior performance compared to
traditional ones.
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1 Introduction

Identifying objects is the most critical issue in different applications such as military, medical,
and industrial applications. Generally, surveillance systems depend on the idea of using certain types
of cameras to get video streams in order to track, detect and identify objects, easily. For military
applications, it is necessary to determine the threats represented in weapons or guns in order to take
the necessary precautions in emergency situations. Therefore, there is a bad need to design automatic
recognition systems that are able to detect weapons, easily. Multi-spectral imaging techniques are
widely used in surveillance systems. These systems include microwave imaging systems as well as
visual light imaging systems. In addition, thermal IR cameras are good candidates for surveillance
applications.

There are several different techniques to perform scene imaging as IR imaging, microwave imaging
and visual imaging. Visible light cameras exploit the reflected light from objects to form the desired
image. Thermal images acquired with IR cameras depend on temperature variations emitted from the
body followed by a focusing process by the camera optics on the IR detector. Complex algorithms
are used to translate the data that comes from the IR detector into an image [1]. Microwave imaging
systems can be used for detecting the concealed objects, but this technique has a limited use as the
microwave frequencies reveal all body details in contradiction with privacy concerns [2]. All imaging
systems should perform several internal processing in order to get the clear crisp image. Basically, the
beams from the light source strike the imaging sensor, and then the produced electrical charge will be
converted into a digital signal representing the intensity of the incident light on the imaging sensor.
Quantization and filtering are applied as digital pre-processing steps to generate the required digital
image. The most widely-used imaging system for night vision is the thermal imaging system. This
mechanism depends on thermal energy emission from the objects due to the temperature variations.
With this type of imaging, concealed weapons will appear darker with low intensity due to the
variations of temperature between the person’s body and the weapon object. Imaging based on thermal
IR radiation is called thermography, in which the electronic capturing device detects the thermal energy
patterns due to variations of temperature of objects. Feature extraction is the most powerful tool to
classify and identify unknown concealed objects. In the proposed approach, the concept of deep neural
network is used to generate distinctive feature maps that can be used to determine the type of the
concealed weapon.

Recently, wireless communication has been widespread in several applications such as 5G net-
works, Wireless Sensor Networks (WSNs), Internet of Things (IoT), and health monitoring. The
Orthogonal Frequency-Division Multiplexing (OFDM) has been considered one of the state-of-the-
art solutions that are able to fulfill the requirements of the next generation communication systems,
such as the increased capacity of users and the mitigation of multipath fading. The OFDM is employed
in the physical layer of broadband wireless networks to allow high data rate communication for both
civilian and military applications. It is used as a technology to allow superior spectral efficiency,
low cost and resistance to Inter-Symbol Interference (ISI) effects [3–5]. In addition, compression
algorithms are badly needed in IoT applications in order to reduce the size of the multimedia content.
Furthermore, in the Internet environment, to allow interactive viewing more efficiently, compression
schemes are required. Compression should be inherently scalable and it should support a high
degree of random accessibility. Set Partitioned in Heretical Tree (SPHIT) is a lossless and reversible
compression technique that can be used to allow complete recovery of the original image. It is scalable
in nature, with low complexity, and a proficient encoding process. The SPIHT was firstly introduced by
Said et al. [6] based on the wavelet transform. It has a better objective performance and less block
artifacts compared with other compression techniques that are based on the DCT such as the JPEG



CMC, 2022, vol.72, no.2 2547

[7,8]. The encoding is performed by quantizing and coding of the wavelet coefficients to select the
significant coefficients to be used as the roots. The decomposition structure is assumed to be the
octave-band structure, and then the sub-bands at different levels are used with some sort of alignment.

Different studies have utilized the SPIHT algorithm for image transmission over wireless systems
[9,10], because it has a good rate-distortion performance for still images with comparatively low
complexity, and it is scalable or completely embeddable. The success of this algorithm in compression
of images with high efficiency and simplicity makes it well known as a benchmark for embedded
wavelet image coding [11,12]. In this framework, SPHIT is employed as a source coder tool for robust
wireless video stream transmission, as it is a progressive coding algorithm. It is flexible in achieving
the required code rate and also simple to design. The compression of images and videos for drone
applications is important due to the high temporal and spatial correlation between pixels leading to
redundancies. Firstly, the image stream captured by drones is different from that transmitted over
other networks due to the enormous data size, and power required for each node in processing and
transmission. Then, compressed images are transmitted over the OFDM wireless channel to reduce
the communication burden. At the receiver side, a deep learning model can be used for object detection
as in the detection of concealed weapons.

Raturi et al. [13] studied the urgent need to develop automated monitoring systems. Their
proposed security surveillance system has the ability to detect any type of concealed objects such as
firearms or even any type of weapon including knife, and scissors, which may cause security problems.
They introduced a framework to detect and classify the concealed weapons by analyzing the Closed-
Circuit Television CCTV stream data. Their classification framework depends on deep-learning-based
object detection and classification techniques. To detect the concealed weapons, a multi-sensor stream
data capturing framework is used, and the concept of sensor fusion is adopted to generate integrated
images. These integrated images are further processed for segmentation to localize objects of interest.
The authors utilized an R-CNN (Region-based Convolutional Neural Network) model to classify
weapons from the collected dataset. They achieved a 93.6% efficiency in the detection of concealed
weapons. Kaur et al. [14] proposed a method to extract features from input images to detect and
classify different shapes of guns based on Scale Invariant Feature Transform (SIFT) and Speeded-
Up Robust Features (SURF) techniques. They achieved a 90% efficiency using both methods with
faster processing for the SURF algorithm. Mahajan et al. [15] introduced a survey of the different
methods used for the detection of concealed objects to improve the accuracy and effectiveness of the
security system. They reviewed the presented systems that can be used for the recognition of different
objects based on extracted features. In addition, they introduced motion analysis to detect concealed
weapons from video frames.

Chadha [16] studied the subject of Concealed Weapon Detection (CWD), because it was of major
interest in the United States. In this work, acoustic signals have been used to detect a concealed
weapons. Acoustic signals have been selected for this task, as they are characterized by minimum
health risks and maximum cost effectiveness. The reflected acoustic signals are used as signatures
that depend on the object composition and shape. Acoustic signatures are compiled to identify the
concealed weapons. Fast Fourier Transform (FFT) is used to extract features from each acoustic
signature. A mathematical model is created through machine learning to detect concealed weapons.
An accuracy of 88% was achieved based on Random Forest (RF) classifier algorithm. Hussin et al.
[17] succeeded to detect the desired object based on Circular Hough Transform (CHT). Color pre-
processing, filtering, smoothing and shape detection are the steps to be applied to detect and allocate
the desired objects.



2548 CMC, 2022, vol.72, no.2

Deep learning has been extensively involved in several applications, such as medical [18], security
[19] and biometric recognition [20]. Hence, this paper is concerned with deploying Deep Learning
Models (DLMs) on both IR sequences and drone surveillance images in military applications. This
paper presents an efficient model for weapon detection. The target of deploying deep learning is to
recognize the type of the weapons carried by persons or soldiers. The images can be collected by
distributed sensor networks and/or surveillance drones. The contributions of the proposed work can
be illustrated as follows:

1- Proposal of a hybrid surveillance framework based on both wireless sensor networks and
drones.
2- Compression of the obtained images using SPIHT encoder and then transmission of the
compressed images via OFDM channel.
3- Building a CNN model which provides an optimal performance for weapon detection.
4- Building a hybrid model based on CNN and ConvLSTM models for weapon detection.
5- Providing a comparative study between the two proposed models from the accuracy of
detection perspective.

This paper is structured into five sections. Section two represents the proposed framework. The
simulation results are discussed in section three. Moreover, brief result discussion and comparison are
represented in section four. Finally, section five shows the conclusions of this paper.

2 Proposed Framework

This paper presents a hybrid surveillance framework based on wireless sensor networks and drones
for military applications. A hybrid surveillance strategy is introduced through the received images
acquired using OFDM modulation. The motivation for this strategy is the lake of long-time missions
for drones. The drone devices are supplied with batteries or solar cells, which cannot be sustainable for
long-time surveillance missions. Hence, there is a need to investigate a hybrid system that includes a
sensor network with low power consumption to serve the sustainable surveillance mission. The wireless
sensor networks are launched to detect weapons in the surrounding sites. Then, if a weapon is detected,
drones can be used to make short-time missions. Such missions could be either surveillance or defense
missions. Fig. 1 shows the proposed framework, while Fig. 2 shows the block diagram of the proposed
scheme for weapon detection.

The proposed scheme consists of multiple transmitters which are used within distributed wireless
sensor networks. The sensors transmit images through wireless channels that are assumed to be OFDM
channels. Finally, the detected images are received by a central receiver. This receiver is arranged
to classify the detected weapons using deep learning. In the next section, the proposed DLMs are
discussed in detail.

2.1 SPIHT-OFDM Model

The block diagram of SPIHT followed by OFDM modulator (SPHIT-OFDM) transmitter is
shown in Fig. 3. Firstly, the input video stream is split into frames, and each frame is processed,
separately. The coefficients of each frame are categorized into different layers based on the significance
of the input stream. Afterwards, the modified stream of each frame is adapted to binary format that
is appropriate to be processed by the OFDM modulator.
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Figure 1: The proposed SDN military surveillance framework

Figure 2: The proposed WDDL scheme
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Figure 3: Block diagram of the SPIHT-OFDM transmitter and receiver. (a) SPIHT-OFDM transmit-
ter, (b) SPIHT-OFDM receiver

In the OFDM modulator, the input bit stream is divided into several overlapped sub-channels,
namely N sub-channels using the serial-to-parallel (S/P) converter. The duration of the new data
symbol is smaller than that of the original one in order to mitigate the multi-path delay spread and
provide enhancement of the spectral efficiency. In addition, the multi-path propagation problem is
solved by converting the wideband frequency selective channels into N overlapped frequency selective
channels. Hence, the bit streams on each sub-carrier are mapped into the data symbols (constellation
points) by Quadrature-Phase Shift Keying (QPSK). Then, the bit stream is modulated by a set of
orthogonal sub-carriers {fk, k = 0, 1, . . . , N − 1} using IFFT to construct the OFDM signal Xk,z =
{Xk, k = 0, 1, . . . , N − 1}. Each data symbol is assigned to a different sub-carrier [21–23].

The complex envelope of the transmitted OFDM signal is represented by the following
equation [22]:

x(t) = 1√
N

N−1∑
k=0

Xkej2π fkt, 0 ≤ t < Ts (1)

where Xk represents the constellation points to be transmitted at the carrier frequency fk, Ts is the data
symbol period, and fk is the center frequency of the kth sub-carrier.

To avoid the problems of Inter-Symbol Interference (ISI) and Inter-Carrier Interference (ICI), a
Cyclic Prefix (CP) is pre-appended to each data block of every sub-carrier. This introduces a cyclic
redundancy of length Ng samples. The insertion the CP during the guard interval converts the linear
convolution to a circular convolution. Finally, the signal samples x(n) are embedded into the Digital-
to-Analogue converter (D/A) and amplified using the High Power Amplifier (HPA). The OFDM
signal x (t) is transmitted over an Additive White Gaussian Noise (AWGN) channel.

At the receiver side, the received signal is given by:

r(t) = x(t) ∗ h(t) + no(t) (2)

where r(t) is the received signal, h(t) is the channel impulse response and no(t) is a complex AWGN
with single-sided power spectral density No.
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At the receiver side, the received signal is converted to digital format using an (A/D) converter.
Then, all processes are reversed.

2.2 Proposed WDDL System

In this paper, a Weapon Detection Deep Learning (WDDL) system is proposed. It consists of
three phases. The first phase is the pre-processing phase. The second one is the forward propagation
phase. Finally, the third one is the back-propagation phase. Fig. 4 shows the block diagram of the
proposed deep learning model for the classification task.

Figure 4: Block diagram of the classification stage of the proposed WDDL system

2.2.1 Video Stream Pre-Processing

In this section, the methodology to perform digital pre-processing for each frame of the video
stream is explained. Frame pre-processing allows improvement of its quality prior to any detection
task. Such improvement is accomplished by eliminating unwanted distortions and enhancing the
important features, so that the CNN model can perform its classification task, efficiently. Adaptive
Weiner filter is one of the most common techniques used to improve the visibility of digital images
by suppressing noise and preserving edges. The operation of the adaptive Weiner filter depends on
estimating the local mean and variance around each pixel to minimize the Mean Squared Error (MSE)
as follows [24]:

MSE(x̂) = 1
K

K∑
i,j=1

(x̂(i, j) − x(i, j))2 (3)

where x(i, j) is the required noise-free image, x̂(i, j) is the estimated Weiner filtered image, and K is the
total number of image pixels.

The Weiner filter update equation is given by:

x̂(i, j) = σ 2
x (i, j)

σ 2
x (i, j) + σ 2

n (i, j)
[y(i, j) − μx(i, j)] + μx(i, j) (4)
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where y(i, j) is the noisy image, σ 2
x (i, j) is the noisy image local variance, μx(i, j) is the noisy image local

mean, and σ 2
n (i, j) is the noise local variance.

For the local mean and local variance estimation, we get:

μ̂x(i, j) = 1

(2r + 1)
2

i+r∑
p=i−r

j+r∑
q=j−r

y(p, q) (5)

σ 2
x (i, j) = 1

(2r + 1)
2

i+r∑
p=i−r

j+r∑
q=j−r

(y(p, q) − μ̂x(i, j))2 − σ 2
n (i, j) (6)

Moreover, histogram equalization is applied on the output image after Weiner filtering in order
to enhance the image contrast, so that the features are extracted with the CNN. For L different gray
levels, each level i occurs ni times out of a total of n occurences. The Transform Function (T.F) based
on histogram equalization to obtain an image with better contrast can be estimated with the following
relation [25]:

T .F =
(

n0 + n1 + . . . + ni

n

)
(L − 1) (7)

2.2.2 Feature Extraction by CNN

In this subsection, the two proposed WDDL models based on CNN and ConvLSTM are
introduced. These models are designed to extract the image features, efficiently. Hence, the effective
design is obtained by setting hyper-parameters including number of layers, number of filters, filter
size in each layer, number of epochs and batch size to certain values to enhance the efficiency of
classification.

The CNN is considered an efficient feature extraction methodology. The main idea of the CNN
is to perform the 2D digital filtering on the input images to extract the feature maps that contain
distinctive features from the images [26–28]. These filters have two main control parameters: filter size
and stride. The filter size represents the dimensions of the applied filters and the stride represents the
position of the filter initial sliding point. Moreover, if the filters have a size of M × M, the stride size
would be (M − 1)/2. The pooling layer is mainly used for feature reduction, where the feature map
is segmented into pixel windows, and each window is reduced into one pixel. The pooling process is
controlled by two parameters. The first one is the type of pooling, which is performed on the feature
map, while the second is the window size. There are two types of pooling processes: max-pooling and
average pooling. The max-pooling process elects the maximum value from each window, while the
average pooling reduces the window pixels into their mean value.

To produce a distinctive feature map, the input image is inserted into the feature extraction
network which consists of sequential pairs of convolutional and pooling layers. These features are
involved in the classification process with a neural network to produce the output of the deep neural
network. Through the training stage, the weights of all layers are regulated using the back-propagation
algorithm.

The first proposed approach comprises three convolutional (CNV) layers, each trailed by a max-
imum pooling layer. A Global Average Pooling (GAP) layer is finally inserted. A final classification
layer with two classes (weapon or no weapon) is utilized. The CNV layers work as feature extractors,
where each CNV layer gives its corresponding feature map. Max-pooling after each CNV layer allows
a resizing process of the feature map in order to keep only the most representative features. The output
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of the last pooling layer is fed into the GAP layer. Tab. 1 shows a summary of the first proposed
approach based on a CNN.

Table 1: Summary of the proposed DLM based on CNV layers

Layer type Output shape

Batch normalization (224, 224, 3)
Reshape to ConvLSTM (1, 224, 224, 3)
ConvLSTM (1, 224, 224, 16)
Reshape to Conv. (224, 224, 16)
Conv. (222, 222, 32)
Pooling (111, 111, 32)
Conv. (109, 109, 64)
Pooling (54, 54, 64)
Conv. (52, 52, 128)
Pooling (26, 26, 128)
Global average layer (128)
Dense (2)

In the second proposed approach for object detection from IR image sequences, a ConvLSTM
layer and three CNV layers followed by max-pooling layers are used. The ConvLSTM layer has an
advantage of remembering the previous state of extracted features and constructing a series of feature
states in some sense of state prediction based on the state history. Unfortunately, this characteristic may
be undesired. Assuming that a certain state in the series is dropped, all next states would be affected
and dropped, also. Hence, the design of such a model should be performed carefully to be reliable and
sustainable in the testing phase. Tab. 2 presents the hyper-prameters of the second proposed hybrid
model based on a ConvLSTM layer and CNV layers.

Table 2: Summery of the second proposed DLM based on a hybrid structure of a ConvLSTM layer
and CNV layers

Layer type Output shape

Conv. (222, 222, 16)
Pooling (111, 111, 16)
Conv. (109, 109, 32)
Pooling (54, 54, 32)
Conv. (52, 52, 64)
Pooling (26, 26, 64)
Conv. (24, 24, 128)
Pooling (12, 12, 128)
Conv. (10, 10, 256)
Pooling (5, 5, 256)

(Continued)
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Table 2: Continued
Layer type Output shape

Global average layer (256)
Dense (2)

3 Simulation Results
3.1 Data Description

In this paper, the proposed DLMs are tested on the Terravic Weapon IR dataset [29]. This dataset
is suitable for weapon detection and weapon discharge detection with thermal imagery. It has been
collected using a special thermal sensor (Raytheon L-3 Thermal-Eye 2000AS). Terravic Weapon IR
dataset consists of five thermal sequences. Each sequence includes IR frames for a certain weapon as
shown in Tab. 3. The included frames are formatted into 8-bit gray-scale JPEG images. The size of
each frame is 320 × 240 pixels. Samples of the dataset are presented in Fig. 5.

Table 3: Description of weapon IR dataset

Sequence no. No. of frames Description

#1 397 Subject walks with a holstered gun
#2 245 Video grouping demonstrating gag impact and shell

release. Make: Colt Model – AR15 (6601 Match
HBAR). Type: .223 (5.56 × 45). Limit: 30 round
magazines utilized for recordings. Material: Steel
w/manganese phosphate covering and aluminum w/hard
anodized covering. Polymer buttstock, hold and
forestock.

#3 480 Video succession demonstrating gag impact and shell
release. SKS Yugoslavian made, Assault rifle Shoots
7.62 × 39, or 7.62 NATO. Appeared with discretionary
30 Rd. mag.

#4 481 Video succession indicating gag impact and shell release.
Make: Smith and Wesson. Model: 5906. Type: 9 mm.
Limit: 15 + 1. Material: Stainless steel.

#5 297 Video arrangement indicating gag impact and shell
release. Make: Colt Model 150; AR15 (6601 Match
HBAR). Type: .223 (5.56 × 45). Limit: 30 round
magazines utilized for recordings. Material: Steel
w/manganese phosphate covering and aluminum w/hard
anodized covering. Polymer buttstock, grasp and
forestock.
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Figure 5: Samples of the dataset

3.2 Evaluation Metrics

In this proposed approach, accuracy is used to estimate the strength of the CNN model and give
indication if there is a misleading result. Accuracy is calculated as follows:

Accuracy = Sum (true positive and true negative)
Sum (total IR population)

× 100 (8)

3.3 Results

The simulation tests are performed on the dataset using Python 3.5, TensorFlow and Keras. The
proposed models have been assessed, in the training stage, based on k-overlay cross validation. This
strategy continues by arbitrarily fragmenting the dataset into k folds of roughly equivalent size. Out
of these folds, (k-1) folds are used for training and the rest one is used for testing. In our simulation
experiments, 90% of the data is used for training and the other 10% are used for testing. This process
is repeated on the data through a folding process several times, and the results are averaged. Fig. 6
illustrates the data fragmentation process.

Figure 6: Fragmentation of the dataset

In the first simulation experiment, the proposed DLM is carried out on the IR images of soldiers.
In the experiments, the number of epochs and batch size are set to 10 for each. The accuracy of the
two proposed models is illustrated in Figs. 7 and 8. In addition, the loss of the two proposed models is
illustrated Figs. 9 and 10. It can be observed that the accuracy in Figs. 7 and 8 is increased gradually
till it gets to 100% at epoch No. 9. Although the IR images have low resolution, the proposed approach
achieves an accuracy of 100% in robust conditions. Tab. 4 shows the value of accuracy and loss at each
epoch for the first and the second proposed approaches.

In the second simulation experiment, the performance of the two proposed DLMs is investigated
on the compressed images transmitted over OFDM channel. The proposed models are also carried
out on the compressed video frames. The compression is performed due to the large amount of data
between the distributed sensors and the central receiver. The compressed video stream is broadcasted
over an OFDM channel. This experiment is carried out to assess the performance of the proposed
DLMs in the wireless communication scenario. The accuracy of the two proposed models is illustrated
in Figs. 11 and 12. In addition, the loss results are illustrated in Figs. 13 and 14. A comparison of the
loss and accuracy between the proposed models on the compressed received images is introduced in
Tab. 5. The simulation results reveal that the proposed DLMs achieved accuracies of 99.2%, 99.5% for
CNN and ConvLSTM models, respectively, as shown in Tab. 5.
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Figure 7: Accuracy of the 1st model

Figure 8: Accuracy of the 2nd model

Figure 9: Loss of the 1st model
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Figure 10: Loss of the 2nd model

Table 4: Accuracy and loss at each epoch in the first experiment

Epoch No. CNN ConvLSTM & CNN

Loss Accuracy (%) Testing time Loss Accuracy (%) Testing time

1 0.357 85 1.04 Sec. 0.377 85 3.92 Sec.

2 0.264 86 0.255 90
3 0.236 94 0.155 95
4 0.1 96 0.375 86
5 0.07 98 0.12 97
6 0.05 98.5 0.07 98
7 0.03 99 0.04 99
8 0.01 99 0.005 99
9 0.0029 100 0.0031 100
10 0.0015 100 0.0012 100

Figure 11: Accuracy of the 1st model
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Figure 12: Accuracy of the 2nd model

Figure 13: Loss of the 1st model

Figure 14: Loss of the 2nd model
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Table 5: Accuracy and loss at each epoch in the second experiment

Epoch No. CNN ConvLSTM & CNN

Loss Accuracy
(%)

Testing time Loss Accuracy
(%)

Testing time

1 0.631 60.3 1.87 Sec. 0.639 60.3 3.92 Sec.

2 0.453 90.6 0.557 61.2
3 0.794 60.8 0.238 98.7
4 0.459 86.9 0.209 86
5 0.209 98.8 0.208 86.5
6 0.675 86.8 0.145 90.8
7 0.226 98 0.169 88.7
8 0.139 100 0.252 96.1
9 0.105 100 0.055 98.2
10 0.109 99.2 0.008 99.5

Figure 15: Accuracy of the 1st model

Finally, the performance of the proposed DLMs is evaluated on noisy image. In this case, the
transmitted signal after OFDM is affected by the existence of AWGN. The AWGN is induced, because
the distance between the distributed sensors and central receiver is assumed to be within the range of
1 km. The target is to detect any suspicious motion from such an intruder (soldier) and detect the type
of the gun with him. So, the proposed DLMs are carried out on noisy images in order to perform this
task. The accuracy and the loss results are introduced in Figs. 15–18 and Tab. 6. The simulation results
ensure that the proposed DLMs achieve accuracies of 96.5%, and 99% for CNN and ConvLSTM,
respectively.
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Figure 16: Accuracy of the 2nd model

Figure 17: Loss of the 1st model

Figure 18: Loss of the 2nd model
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Table 6: Accuracy and loss at each epoch in the third experiment

Epoch No. CNN ConvLSTM & CNN

Loss Accuracy (%) Testing time Loss Accuracy (%) Testing time

1 0.701 76.6 1.87 Sec. 0.639 79.3 3.92 Sec.

2 0.462 90.6 0.557 88.2
3 0.376 97.4 0.238 98.7
4 0.292 96.1 0.209 96
5 0.209 98.8 0.208 96.5
6 0.175 96.8 0.145 97.8
7 0.139 97 0.169 98.3
8 0.126 99 0.252 99.1
9 0.105 99 0.055 98.2
10 0.109 96.5 0.008 99

4 Result Discussion

In this paper, a study of weapon detection has been presented. Two different DLMs have been
proposed. The first model is based on CNN and the second one is based on a combination of CNN
and ConvLSTM. This study is focused on the effect of deploying DLMs on distributed wireless sensor
networks for military applications. Hence, the proposed models have been evaluated on the dataset
in presence of AWGN and with image compression as the wireless channel affects the images or
frames. The proposed scenario is based on image transmission over OFDM as a common modulation
technique in wireless communication. Fig. 19 shows a comparison of accuracy between the two
proposed models. It can be observed that the proposed hybrid model has a superior performance
for weapon detection from images transmitted over a wireless communication channel in the presence
of AWGN.

10
0

99
.2

96
.5

10
0

99
.5

99

ORIGINAL IMAGES COMPRESSED IMAGES COMPRESSED IMAGES 
WITH AWGN

CNN CNN and ConvLSTM

Figure 19: A comparison of accuracy between the two proposed CNN and hybrid CNN and
ConvLSTM models

The proposed trend is novel in this field. The contribution of this paper is in the field of detecting
carried weapons with soldiers. Furthermore, the proposed DLMs are deployed on the transmitted
images from a dynamic environment, which is frequently encountered in military applications. The
main trend of research works in the literature is to detect weapons in a static environment. Therefore,
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we can consider the proposed models as efficient solutions for military, surveillance and data analysis
applications.

5 Conclusions

A significant issue involving weapon detection from IR images has been discussed in this work.
The objective is to detect the weapon type from the collected images from drones. Different DLMs
have been deployed to achieve this objective. The video stream is compressed using SPHIT encoder,
and finally it is broadcasted over OFDM channel to reach the receiver side, where DLMs are applied
for object detection. This work has presented a CNN model, and a hybrid model that contains CNV
and ConvLSTM layers. The proposed models have been carried out on original, compressed and
compressed with AWGN images. The proposed models reveal a superior performance for weapon
detection in the presence of robust conditions as they achieved an accuracy of 99%. Furthermore, this
work can be improved in the future by adding another stage to segment the objects of interest in the
images.
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