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Abstract: Human Activity Recognition (HAR) plays an important role in
life care and health monitoring since it involves examining various activi-
ties of patients at homes, hospitals, or offices. Hence, the proposed system
integrates Human-Human Interaction (HHI) and Human-Object Interaction
(HOI) recognition to provide in-depth monitoring of the daily routine of
patients. We propose a robust system comprising both RGB (red, green,
blue) and depth information. In particular, humans in HHI datasets are
segmented via connected components analysis and skin detection while the
human and object in HOI datasets are segmented via saliency map. To track
the movement of humans, we proposed orientation and thermal features. A
codebook is generated using Linde-Buzo-Gray (LBG) algorithm for vector
quantization. Then, the quantized vectors generated from image sequences
of HOI are given to Artificial Neural Network (ANN) while the quantized
vectors generated from image sequences of HHI are given to K-ary tree
hashing for classification. There are two publicly available datasets used for
experimentation on HHI recognition: Stony Brook University (SBU) Kinect
interaction and the University of Lincoln’s (UoL) 3D social activity dataset.
Furthermore, two publicly available datasets are used for experimentation on
HOI recognition: Nanyang Technological University (NTU) RGB-D and Sun
Yat-Sen University (SYSU) 3D HOI datasets. The results proved the validity
of the proposed system.

Keywords: Artificial neural network; human-human interaction; human-
object interaction; k-ary tree hashing; machine learning

1 Introduction

Recent years have seen an advanced use of multi-vision sensors to attain robustness and high-
performance rates while tackling many of the existing challenges in visual recognition systems [1].
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Moreover, low-cost depth sensors such as Microsoft Kinect [2] are being used extensively ever since
their introduction. In comparison with conventional visual systems, depth maps are unaffected
by varying brightness and lighting conditions [3] which motivate reflection over a wide variety
of applications of Human Activity Recognition (HAR). These applications include assisted living,
behaviour understanding, security systems, human-robot interactions, e-health care, smart homes, and
others [4].

To monitor the daily lifecare routine of humans thoroughly, this paper proposes a system that
integrates the recognition of Human-Human Interaction (HHI) and Human-Object Interaction
(HOI). In the proposed system, the silhouette segmentation of red, green, blue (RGB) and depth
images from HHI and HOI datasets is carried out separately. After silhouette segmentation, there
is the feature extraction phase which consists of mining two unique features, namely thermal and
orientation features. Both HHI and HOI descriptors are combined and processed via Linde-Buzo-
Gray (LBG) algorithm for compact vector representation. In the end, K-ary tree hashing is used for the
classification of HHI classes, while Artificial Neural Network (ANN) is applied for the classification
of HOI classes.

We have used two publicly available datasets for experimentation on HHI recognition: Stony
Brook University (SBU) Kinect interaction and the University of Lincoln’s (UoL) 3D social activity
datasets. Furthermore, we have used two different publicly available datasets for experimentation on
HOI recognition: Nanyang Technological University (NTU) RGB+D and Sun Yat-Sen University
(SYSU) 3D HOI datasets.

The main contributions of this paper are:

• Developing an efficient way of segmenting human silhouettes from both RGB and depth images
via connected components, skin detection, morphological operations, and saliency maps.

• Designing a high-performance recognition system based on the extraction of unique orientation
and thermal features.

• Accurate classification of HHI classes via K-ary tree hashing and HOI classes via ANN.

The rest of this paper is organized as follows: Section 2 explains and analyzes the research work
relevant to the proposed system. Section 3 describes the proposed methodology of the system which
involves an extensive pre-classification process. Section 4 describes the datasets used in the proposed
work and proves the robustness of the system through different experiments. Section 5 concludes the
paper and notes some future works.

2 Related Work

The related work can be divided into two subsections including some recently developed recogni-
tion systems for both HHI and HOI.

2.1 HHI Recognition Systems

In recent years, many RGB-D (red, green, blue, and depth) human-human interaction recognition
systems have been proposed [5]. Prati et al. [6] proposed a system in which multiple camera views
were used to extract features from depth maps using regression learning. However, despite the use of
multiple cameras, their system had restricted applicability on large areas and was not robust against
occlusion. Q. Ye et al. [7] proposed a system comprising of Gaussian time-phase features using ResNet
(Residual Network). A high performance rate was achieved but their system also had a high complexity
rate. In [8], Ouyed et al. extracted motion features from the joints of two persons involved in an
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interaction. They used multinomial kernel logistic regression to evaluate HIR but the system lacked
spatiotemporal context for interaction recognition. Moreover, Ince et al. [9] proposed a system based
on skeletal joints movement using Haar-wavelet. In this system, some confusion was observed due to
the similarities in angles and positions of various actions. Furthermore, Bibi et al. [10] proposed an
HIR system with local binary patterns using multi-view cameras. A high confusion rate was observed
in similar interactions.

Yanli et al. [11] proposed an HIR system that benefits from contrastive feature distribution. The
authors extracted skeleton-based features and calculated the probability distribution. In [12], Subetha
et al. extracted Histogram of Oriented Gradient (HOG) and pyramidal features. Besides, a study
in [13] presented an action recognition system based on way-points trajectory, geodesic distance,
joints motion and 3D Cartesian-plane features. This system achieved better performance but there
was a slight decrease in accuracy due to the factor of silhouette overlapping. In addition to this
study, an action representation was performed with shape, spatio-temporal angular-geometric and
energy-based features [14]. Therefore, a high recognition rate was achieved but the performance of the
system is reduced in those environments where human posture changes rapidly. Also, human postures
were extracted in [15] using an unsupervised dynamic X-means clustering algorithm. Features were
extracted from skeleton joints obtained via depth sensors. The system lacked in the identification
of static actions. Waheed et al. [16] generated 3D human postures and obtained their heat kernels
to identify key body points. Then they extracted topological and geometric features using these key
points. The authors also extracted full body features using CNN [17]. In [18], a time interval at which
social interaction is performed was detected and spatio-temporal and social features were extracted
to track human actions. Moreover, a study in [19] proposed a fusion of multiple sensors. That is, they
extracted HOG and statistical features. However, this system only worked on pre-segmented activities.

2.2 HOI Recognition Systems

Various methodologies have been adopted by researchers for identifying human activities in the
past few years [20]. For example, Meng et al. [21] proposed an HOI recognition system based on inter-
joint and joint-object distances. However, they did not identify the object individually but considered
it one of the human body joints. In [22], joint distances that were invariant to the human pose were
measured for feature extraction. This system was tested with only one dataset that consists of six simple
interactions. Jalal et al. [23] proposed a HAR system based on the frame differentiation technique.
In this system, human joints were extracted to record the spatio-temporal movements of humans.
Moreover, Yu et al. [24] proposed a discriminative orderlet, i.e., a middle-level feature that was used
for the visual representation of actions. A cascaded HOI recognition system was proposed by Zhou et
al. [25]. It was a multi-stage architecture in which each stage of HOI was refined and then fed to the
next network. In [26], zero-shot learning was used to accurately identify a relationship between a verb
and an object. Their system lacked a spatial context and was tested on a simple verb-object pair. All
the methodologies mentioned above in related work are either tested on RGB data or represented by
a very complex set of features which increases the time complexity of the system.

Inspired by these approaches and mindful of their limitations, the proposed system has been
designed. Because of the high accuracies achieved by systems that used depth sensors or RGB-D data,
our system also takes RGB-D input. Different researchers have extracted different types of features
from human silhouettes. To make our model unique, we have chosen orientation and thermal features.
Moreover, these features are robust against occlusion and rapid posture changes, the two major issues
faced by most researchers. Furthermore, the approaches that have used multiple features have increased
time complexity. To solve this issue, we used vector quantization. It was also noted that systems tested
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on only one dataset or limited number of classes fail to prove their general applicability. Therefore, the
proposed system has been validated on four large datasets including two HHI and two HOI datasets.

3 Material and Methods

This section describes the proposed framework for active monitoring of the daily life of humans.
Fig. 1 shows the general overview of the proposed system architecture. This architecture is explained
in the following sections.

Figure 1: System architecture of the proposed system

3.1 Image Normalization and Silhouette Segmentation

The images in HHI and HOI datasets are first filtered to enhance the image features. Then, a
median filter is applied to both RGB and depth image sequences to remove noise [27] using the formula
in Eq. (1):

y[m, n] = median{x[i, j], (i, j) ∈ w} (1)

where i and j belong to a window w a having specified neighborhood centered around the pixels [m,
n] in an image.

3.1.1 Silhouette Segmentation of Human-Human Interactions

The silhouette segmentation of RGB and depth frames of HHIs is performed separately. At first,
connected components are located in an image via 4-connected pixel analysis as given through Eq. (2):

N4(p) = {(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)} (2)

where x and y are coordinates of pixel p. After labeling of connected components, a threshold limit
that determines the area (height and width) of the human body is specified. Then, a bounding box is
drawn on only those labeled components that are within the specified limit. As a result, all the humans
in a frame are identified and enclosed in a bounding box. After identification, human skin is detected
inside a bounding box via HSV (hue, saturation, value) color model [28]. To improve the thresholding
process, all the light color intensities (white, skin, and yellow) are converted into black color having
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an intensity value of 0. Then threshold-based segmentation is applied to generate binary silhouettes.
Silhouette segmentation of RGB images is shown in Fig. 2.

Figure 2: Silhouette segmentation of an HHI image. (a) Detected humans via connected components,
(b) skin color detection of right and left human, (c) binary silhouette, and (d) RGB silhouette

The segmentation of depth images of HHI is performed via morphological operations [29]. The
first step is to convert a depth image into a binary image via Otsu’s thresholding method. Then
morphological operations of dilation and erosion are applied which result in retaining the contour
of key objects in an image. The Canny edge detection technique is then applied to detect the edges of
the two people involved in HHI. In the end, the smaller detected objects are removed from the image.

3.1.2 Silhouette Segmentation of HOI

Spectral residual saliency map-based segmentation technique [30] is used to segment humans and
objects from RGB and depth images. The saliency map is generated by evaluating the log spectrum
of images and Fourier transform is used to obtain the frequency f of the grayscale images G(x). The
amplitude A(f) = abs(f) and phase spectrum P(f) = angle(f) are computed through frequency image.
Then, spectral residual regions of RGB and depth images are computed from Eq. (3) as follows:

R(f ) = L(f ) − h(f ) × L(f ) (3)

where L(f) is the log of A(f) and h(f) is an averaging filter. After residual regions are computed,
saliency map S is generated from Eq. (4) as follows:

S = F−1[exp((R(f ) + P(f ))]2 (4)

where F−1 is inverse Fourier transform. In the end, the saliency map is converted into a binary image
via the binary thresholding method. After segmenting salient regions from the background, humans
and objects are detected separately in an image using K-means algorithm. This process of silhouette
segmentation on a depth image is depicted in Fig. 3.
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Figure 3: Silhouette segmentation of an HOI image. (a) Original depth image, (b) saliency map, (c)
binary silhouette, and (d) segmented depth human and object silhouette

3.2 Feature Extraction

The proposed system exploits two types of features: orientation features and thermal features. The
details and results of these features are described in the following subsections.

3.2.1 Orientation Features

After obtaining human silhouettes, fourteen human joints (head, neck, right shoulder, left
shoulder, right elbow, left elbow, right hand, left hand, torso, torso base, right knee, left knee, right
foot, and left foot) are identified. Eight human joints are identified by Algorithm 1 (detection of key-
body points in human silhouette) proposed in [14]. In this algorithm, eight human joints are detected
by finding the topmost, bottommost, rightmost and leftmost pixels from the boundary of a human
silhouette. The rest of the six human joints are identified by taking the average of the pixel locations of
already identified joints. For example, the location of the neck joint is identified by taking the mean of
the location of the head and torso joint. After locating joint points, a combination of three joints
is taken to form a triangular shape and as a result, fourteen triangles are formed in HOI images
(See Fig. 4a). In HOI silhouettes, the orientation features of objects are also extracted. Four triangles
(twelve angles) are formed from the centroid to all the four extreme points (See Fig. 4b). While in HHI
images, two people are involved so the number of triangles is twenty-eight (fourteen for each person)
as shown in Fig. 4c. The angle of tangent is measured between three sides of each triangle from Eq. (5)
as follows:

tanθ = u.v
|u||v| (5)

where u.v are obtained by taking a dot product of two vectors u and v which are any two sides of a
triangle. A total of three angles are calculated for each triangle. The first angle is calculated by taking
AB as u and AC as v. The second angle is calculated by taking AB as u and BC as v. The third angle
is calculated by taking BC as u and AC as v as shown in Fig. 4d.



CMC, 2022, vol.72, no.2 2603

Figure 4: Triangular shapes formed by combining human joints. (a) Single person frame of playing
phone HOI in SYSU dataset, (b) triangle formation on object, (c) two-person frame of conversation
HHI in UoL dataset, and (d) three angles of a triangle

3.2.2 Thermal Features

The movements of different body parts as the human silhouettes move from one frame to the next
are captured in the form of thermal maps. The parts having greater movements during an interaction
have higher heat values (yellowish colors) on these maps. On the other hand, parts of a human
silhouette that show lesser movements, i.e., they are less involved in performing an interaction, are
displayed in a reddish or blackish color. A matrix of index values ranging from 0 to 8000 shows heat
values in thermal maps. These index values are used to extract heat of only those parts that are involved
in an HOI and are represented from Eq. (6) as follows:

TM(v) =
K∑

0

ln R(K) (6)

where v is a 1D vector in which the extracted values are stored, K represents index values and ln R
refers to the RGB values that are extracted from K. The thermal maps of different HOI are shown in
Fig. 5.

Figure 5: Thermal maps of HOI and HHI along with the scale of thermal values

After extracting the two types of features from both HHI and HOI datasets, they are concatenated,
resulting in a matrix.
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3.3 Vector Quantization

After extracting the two types of features from all the images of the HHI and HOI datasets, the
features are added as descriptors of each interaction class, separately. However, this results in a very
large feature dimension size [31]. Therefore, we generate an organized feature vector by considering a
codebook of size 512.

3.4 HHI Classification via K-ary Tree Hashing

The quantized feature vectors of HHI classes are fed to the K-ary tree hashing classifier. The
optimized features are represented in the form of a graph G = {gi}, where i = 1 . . . . N and N represents
the number of objects in the graph [32]. The graph comprises of vertices V and undirected edges E.
Moreover there is a label function l:V→L to assign labels to nodes in gi where gi represents the whole
graph with V , E, and l. A class label yi is set for each gi based on graph’s structure. The graph structure
means the values in the nodes of the graph based on the values of feature vectors. Each feature vector of
the testing class is represented in the form of a graph and then used for predicting the correct label for
each class. Also, a size of MinHashes {D(r)}R

r=1 for R iterations and the traversal table K is also defined.
For MinHashes, random permutations {π(r)

d } are also generated. The process of classifying various
HHIs is given in Algorithm 2 which takes the graph, the traversal table, and the size of MinHashes as
input. It is divided into four sections: traversal table construction, MinHash selection, recursive leaf
extension, and leaf sequence. The traversal table is constructed to find the subtree patterns in using
k-ary trees. Like a binary tree in which each node has two children, each node in a k-ary tree has k
children. The leaf node labels of the k-ary trees can identify the patterns hidden in the data. Then the
MinHash scheme is used to classify the interactions based on the identified patterns.

Algorithm 1: HHI Classification via K-ary tree hashing
Input: gi = (V , E, l), K, {D(r)}R

r=1

// R specifies total iterations//
Output: {x(r)}R

r=1

//Traversal Table Construction//
1 V ← |V |
2 l(V + 1) ← ∞
3 T ← (V + 1) ∗ ones(V + 1, 1 + K)

for v = 1: V do
4 Nv ← neighbour(v)

//MinHash Selection//
5 temp ← sort(l(Nv))

6 k ← min(K, |Nv|)
7 T(v) ← [v, index(temp(1:k))]

end for
// Recursive Leaf Extension//

8 z(1) ← [1:V ]T

9 S(1) ← l(z(1))

for i = 1: R do
if r > 1 then

10 z(r) ← reshape(T(z(r−1), :), [1, ∗])
(Continued)
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Algorithm 1: Continued
11 S(r) ← reshape(l(z(r)), [V , ∗])

end if
//Leaf Sequence//

12 f (r) ← [h(S(r)(1, :)), . . . h(S(r)(V , :))]T

13 x(r) ← [min(π
(r)
1 (f (r))), . . . min(π

(r)

D(r) (f (r)))]T

end for

3.5 HOI Classification via Artificial Neural Networks

The Quantized vectors of HOI are then fed to ANN for training and predicting accurate results.
The final vector dimension of the SYSU 3D HOI dataset is 6054 × 480 while for NTU RGB+D dataset
is 6054 × 530. There are 6054 rows that represent the feature values for both thermal and orientation
features. Whereas there are 480 and 530 columns representing the number of images in the SYSU 3D
HOI and NTU RGB+D datasets respectively. In the LOSO validation technique, one subset is used
for testing and all the remaining subsets are used to train the system. The system is then validated
by taking another subset for testing and the remaining subsets for training. In this way, the system
is trained and tested with all the subjects in both datasets and avoids sampling bias. There are three
layers: input layer, hidden layer, and output layer in ANN [33]. These layers are interconnected to each
other and weights are associated with each connection. The net input at the neuron of each layer is
computed using a transfer function Tj given in Eq. (7) as follows:

Tj =
∑

i

wi,j × xi + bj (7)

where wi,j are the weights, xi represents the inputs and bj is the added bias term. An input layer is fed
with feature descriptors. After adjusting weights, adding bias, and processing through hidden layer, it
predicts accurate HOI classes of both datasets.

4 Performance Evaluation

This section gives a brief description of the four datasets used for HHI and HOI, results of the
experiments conducted to evaluate the proposed HAR system and its comparison with other systems.

4.1 Datasets Description

The description of each dataset used for HHI recognition and HOI recognition is given in Tab. 1.
Each class of HHI and HOI dataset is performed by different number of subjects as described in the
dataset description table. So the proposed system is trained with the different number of subjects of
varying appearances resulting in high-performance rate in the testing phase. Each subject is used for
both training and testing of a system via the LOSO validation technique. Cross-validation is used
to avoid sampling bias via using new image classes for testing of a system other than those used for
training.
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Table 1: Datasets description for HHI and HOI recognition

Dataset name Type of interaction Description

SBU Kinect interaction dataset
[34]

Eight RGB-D human-human
interactions

SBU Kinect interaction
dataset is a two-person
interaction dataset
consisting of 8 interaction
classes, i.e., approaching,
departing, kicking,
punching, pushing,
shaking hands, exchanging
object, and hugging. Each
class of the SBU dataset is
performed by 21 subjects.
Further details of the
dataset are given in [34].

Uol 3D activity dataset [35] Eight RGB-D human-human
interactions

Kinect 2 sensor is used to
capture eight interactions
that are: handshake, hug,
help walk, help stand-up,
fight, push, conversation,
and call attention. Each
class of the UoL dataset is
performed by six different
persons. The rest of the
details are given in [35].

SYSU 3D HOI dataset [36] Twelve RGB-D human-object
interactions

A Kinect sensor is used to
collect RGB and depth
images. Twelve
human-object activities
performed in this dataset
are sweeping, mopping,
taking from a wallet,
taking out wallet, moving
chair, sitting chair, packing
backpacks, wearing
backpacks, playing phone,
calling phone, pouring,
and drinking. Each class of
the SYSU 3D HOI dataset
is performed by forty
subjects. Details of the
dataset are given in [36].

(Continued)
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Table 1: Continued
Dataset name Type of interaction Description

NTU RGB+D dataset [37] Ten RGB-D human-object
interactions

We used 3781 video
samples of twelve
human-object interactions
for experimentation such
as drink water, eat a meal,
tear up paper, put on the
jacket, take off the jacket,
put on a hat/cap, take off a
hat/cap, phone call, play
with phone/tablet and
taking a selfie. There are
56,880 video samples
provided for 60 action
classes performed by many
different number of
subjects. The rest of the
details are given in [37].

4.2 Experimental Settings and Results

All the processing and experimentation are performed on MATLAB (R2018a). The hardware
system used is Intel Core i5 with 64-bit Windows-10. The system has an 8 GB ram and 5 (GHz)
CPU. To evaluate the performance of the proposed system, we used a Leave One Subject Out (LOSO)
cross-validation method. The results section is divided into two sections: experimental results on HHI
datasets and experimental results on HOI datasets.

4.2.1 Experimental Results on HHI Datasets

Experiment I: Recognition Accuracies

At first, classes of SBU and UoL datasets are given to the K-ary tree hashing classifier separately.
The results of classification with classes of the SBU and UoL dataset is shown in the form of confusion
matrices in Tabs. 2 and 3 respectively.

Experiment II: Precision, Recall and F1 Measures

The precision is the ratio of correct positive predictions to the total positives while the recall is the
true positive rate and it is the ratio of correct positives to the total predicted positives. The F1 score
is the mean of precision and recall. The precision, recall and F1 score for classes of SBU and UoL
dataset are given in Tabs. 4 and 5 respectively.
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Table 2: Confusion matrix showing recognition accuracies over classes of SBU dataset

Interaction classes Approaching Departing Kicking Punching Pushing Hugging EO SH

Approaching 0.93 0.02 0 0 0 0 0.01 0.04
Departing 0.03 0.93 0 0 0 0.01 0.02 0.01
Kicking 0 0 0.97 0.01 0.02 0 0 0
Punching 0 0 0.03 0.95 0.02 0 0 0
Pushing 0 0.01 0.01 0.05 0.92 0.01 0 0
Hugging 0.01 0 0 0.02 0.01 0.96 0 0
EO 0.03 0 0 0 0.01 0 0.91 0.05
SH 0.05 0 0 0 0 0 0.05 0.90

Mean recognition accuracy rate = 93.38%
Note: EO = exchanging object, SH = shaking hands.

Table 3: Confusion matrix showing recognition accuracies over classes of UoL dataset

Interaction
classes

Handshake Hug Help walk Help
stand-up

Fight Push Conversation Call
attention

Handshake 0.94 0.02 0.03 0 0 0 0.01 0
Hug 0 0.96 0.02 0 0 0.02 0 0
Help walk 0 0.02 0.94 0.04 0 0 0 0
Help stand-up 0.02 0 0.04 0.94 0 0 0 0
Fight 0 0.01 0 0 0.96 0.02 0.01 0
Push 0 0 0.01 0 0.04 0.94 0.01 0
Conversation 0 0 0 0.02 0.04 0 0.89 0.05
Call attention 0.03 0 0 0 0 0.4 0.05 0.88

Mean Recognition Accuracy rate = 93.1%

Table 4: Precision, Recall and F1 score over classes of SBU dataset

Interaction
classes

Precision Recall F1 score Interaction classes Precision Recall F1 score

Approaching 0.89 0.93 0.91 Pushing 0.94 0.92 0.93
Departing 0.97 0.93 0.95 Hugging 0.98 0.96 0.97
Kicking 0.96 0.97 0.97 Exchanging Object 0.92 0.91 0.91
Punching 0.92 0.95 0.94 Shaking hands 0.90 0.90 0.90

Mean precision = 0.935 Mean recall = 0.933 Mean F1 score = 0.935
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Table 5: Precision, Recall and F1 score over classes of UoL dataset

Interaction
classes

Precision Recall F1 score Interaction
classes

Precision Recall F1 score

Handshake 0.95 0.94 0.94 Fight 0.92 0.96 0.94
Hug 0.95 0.96 0.96 Push 0.92 0.94 0.93
Help walk 0.90 0.94 0.92 Conversation 0.92 0.89 0.90
Help
stand-up

0.94 0.94 0.94 Call
attention

0.95 0.88 0.91

Mean precision = 0.931 Mean recall = 0.931 Mean F1 score = 0.930

Experiment III: Comparison with Other Systems

This section compares the proposed methodology with other recent methods as shown in Fig. 6.
These methods have been discussed in Section 2.
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Figure 6: Comparison of mean recognition accuracy of the proposed method with other recent
methods over HHI datasets

4.2.2 Experimental Results on HOI Datasets

Experiment I: Recognition Accuracies

The results of classification with classes of SYSU and NTU dataset are shown in the form
of confusion matrices in Tabs. 5, 6 and 7, respectively. It is observed during experimentation that
the interactions, which involve similar objects like packing backpacks and wearing backpacks, are
confused with each other.

Experiment II: Precision, Recall and F1 Measures

The precision, recall and F1 scores for classes of the SYSU and the NTU dataset are given in
Tabs. 8 and 9 respectively. Hence an accurate system is developed which is able to recognize each HOI
with high precision.
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Table 6: Confusion matrix showing recognition accuracies over classes of SYSU 3D HOI dataset

HOI classes S M TFW TOW MC SC PB WB PP CP P D

S 0.89 0.07 0 0 0.02 0.02 0 0 0 0 0 0
M 0.06 0.90 0 0 0.04 0 0 0 0 0 0 0
TFW 0 0 0.88 0.08 0 0 0.02 0 0.01 0.01 0 0
TOW 0 0 0.07 0.89 0 0 0 0 0.02 0 0.02 0
MC 0 0.01 0 0 0.95 0.04 0 0 0 0 0 0
SC 0 0 0 0 0.06 0.94 0 0 0 0 0 0
PB 0 0 0 0 0 0 0.90 0.08 0 0 0.02 0
WB 0 0 0 0 0 0 0.08 0.89 0 0 0.01 0.02
PP 0 0 0.03 0 0 0 0 0 0.88 0.07 0.02 0
CP 0 0 0 0 0 0 0 0.02 0.08 0.87 0.00 0.03
P 0 0 0 0 0 0 0.03 0 0.02 0 0.90 0.05
D 0 0 0 0 0 0 0 0 0 0.04 0.08 0.88

Mean recognition accuracy = 89.75%
Note: S = sweeping, M = mopping, TFW = taking from wallet, TOW = taking out wallet, MC = moving chair, SC = Sitting chair, PB =

packing backpacks, WB = wearing backpacks, PP = playing phone, CP = calling pone, P = pouring, D = drinking.

Table 7: Confusion matrix showing recognition accuracies over classes of NTU RGB+D dataset

HOI classes DW EM BT BH TP PJ TJ PH TH PC PP TS

DW 0.90 0.06 0.04 0 0 0 0 0 0 0 0 0
EM 0.05 0.91 0.02 0.02 0 0 0 0 0 0 0 0
BT 0.02 0.03 0.87 0.08 0 0 0 0 0 0 0 0
BH 0.01 0.01 0.09 0.89 0 0 0 0 0 0 0 0
TP 0 0 0 0.01 0.94 0 0 0.02 0 0 0.03 0
PJ 0 0 0 0 0 0.92 0.06 0.02 0 0 0 0
TJ 0 0 0 0 0 0.07 0.91 0 0.02 0 0 0
PH 0 0 0 0 0 0.02 0 0.90 0.08 0 0 0
TH 0 0 0 0 0 0 0.02 0.07 0.91 0 0 0
PC 0 0 0 0.02 0 0 0 0 0 0.91 0.05 0.02
PP 0 0 0 0 0.02 0 0 0 0 0.04 0.91 0.03
TS 0 0 0 0 0 0 0 0 0 0.02 0.06 0.92

Mean recognition accuracy = 90.75%
Note: DW = drink water, EM = eat meal, BT = brush teeth, BH = brush hair, TP = tear up paper, PJ = put on jacket, TJ = take off jacket,
PH = put on a hat, TH = take off a hat, PC = phone call, PP = play with phone, TS = taking a selfie.
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Table 8: Precision, recall and F1 score over classes of SYSU dataset

Interaction
classes

Precision Recall F1 score Interaction
classes

Precision Recall F1 score

Sweeping 0.94 0.89 0.91 Packing
backpacks

0.87 0.90 0.89

Mopping 0.92 0.90 0.91 Wearing
backpacks

0.90 0.89 0.89

Taking
from wallet

0.90 0.88 0.89 Playing
phone

0.87 0.88 0.88

Taking out
wallet

0.92 0.89 0.90 Calling
phone

0.88 0.87 0.87

Moving
chair

0.89 0.95 0.92 Pouring 0.86 0.90 0.88

Sitting
chair

0.94 0.94 0.94 Drinking 0.90 0.88 0.89

Mean precision = 0.899 Mean recall = 0.897 Mean F1 score = 0.897

Table 9: Precision, Recall and F1 score over classes of NTU dataset

Interaction
classes

Precision Recall F1 score Interaction
classes

Precision Recall F1 score

Drink water 0.92 0.90 0.91 take off
jacket

0.92 0.91 0.91

Eat meal 0.90 0.91 0.91 put on a hat 0.89 0.90 0.90
Brush teeth 0.85 0.87 0.86 take off a

hat
0.90 0.91 0.91

Brush hair 0.89 0.89 0.89 phone call 0.94 0.91 0.92
Tear up
paper

0.98 0.94 0.96 play with
phone

0.87 0.91 0.89

Put on
jacket

0.89 0.92 0.91 taking a
selfie

0.95 0.92 0.93

Mean precision = 0.907 Mean recall = 0.908 Mean F1 score = 0.907

Experiment III: Comparison with Other Systems

This section compares the proposed methodology over HOI datasets with other recent methods
as shown in Fig. 7. In [36], a RGB-D HOI system based on joint heterogeneous features based learning
was proposed. Also, an RGB-D HOI system based on SIFT regression was proposed in [38]. A feature
map was constructed by Local Accumulative Frame Feature (LAFF). Furthermore, a study in [39]
explained graph regression, whereas multi-modality learning convolutional network was proposed in
[40]. In [41], the skeletal joints extracted via depth sensors were represented in the form of key poses
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and temporal pyramids. A mobile robot platform-based HIR was performed in [42] using skeleton-
based features. Moreover, the overall human interactions are divided into interactions of different
body parts [43]. In this work, pairwise features were extracted to track human actions. In [44], the
authors introduced a semi-automatic rapid upper limb assessment (RULA) technique using Kinect v2
to evaluate the upper limb motion.
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Figure 7: Comparison of mean recognition accuracy of different recent methods over HOI datasets

5 Discussion

A comparison of the proposed system with other systems showed that the proposed system
performed better than many other systems proposed in the recent years. Moreover, the high accuracy
scores justify the need of additional depth information along with RGB information. Similar findings
were also presented in [16] and [17]. However, there are some limitations of the systems, such as during
skeletal joints extraction, it was challenging to locate the joints of occluded body parts. In order to
overcome this limitation, we have adopted the methodology of dividing the silhouette into four halves
and then locating the top, bottom, left and right pixels for identifying joints in each half. Moreover,
most of the interactions are performed in standing positions in the datasets used in the proposed
system. Due to this reason, there is less occlusion of human body parts with objects or other body
parts and the performance rate is not very much affected.

6 Conclusion and Future Works

This paper proposes a real-time human activity monitoring system that recognizes the daily
activities of humans using multi-vision sensors. This system integrates two types of HAR systems:
HHI recognition systems and HOI recognition systems. After silhouette segmentation, two unique
features are extracted: thermal and orientation features. In order to validate the proposed system’s
performance, three types of experiments are performed. The comparison of the proposed system
with other state-of-the-art systems is also provided which clearly shows the better performance of
the proposed system. In real life, the proposed system should be applicable to many applications such
as assisted living, behavior understanding, security systems and human-robot interactions, e-health
care and smart homes.

We are working on integrating more types of human activity recognition and developing a system
that monitors human behavior in both indoor and outdoor environments as part of our future works.
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