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Abstract: In 2021, most of the developing countries are fighting polio, and
parents are concerned with the disabling of their children. Poliovirus transmits
from person to person, which can infect the spinal cord, and paralyzes the
parts of the body within a matter of hours. According to the World Health
Organization (WHO), 18 million currently healthy people could have been
paralyzed by the virus during 1988–2020. Almost all countries but Pakistan,
Afghanistan, and a few more have been declared polio-free. The mathematical
modeling of poliovirus is studied in the population by categorizing it as sus-
ceptible individuals (S), exposed individuals (E), infected individuals (I), and
recovered individuals (R). In this study, we study the fundamental properties
such as positivity and boundedness of the model. We also rigorously study
the model’s stability and equilibria with or without poliovirus. For numerical
study, we design the Euler, Runge–Kutta, and nonstandard finite difference
method. However, the standard techniques are time-dependent and fail to
present the results for an extended period. The nonstandard finite difference
method works well to study disease dynamics for a long time without any
constraints. Finally, the results of different methods are compared to prove
their effectiveness.
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1 Introduction

Poliomyelitis, often termed polio, is a highly infectious viral disease and is also highly contagious.
It is caused by poliovirus, a member of the genus Enterovirus of the family Picornaviridae. These
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viruses are small and have single-stranded ribonucleic acid (RNA) as their genetic material. They are
classified into three kinds: serotypes 1, 2, and 3. Type 1 is the most frequent and the most lethal of
viruses. Type 2 has not been found anywhere in the world since 1991. Polio is an exclusively human
disease that is transmitted from person to person. Vaccination for polio is widely available now, and it
is easy to culture when compared to other viruses. Various kinds of excruciating paralysis manifest
differently, ranging from one of the most frequent to its most serious conditions. Historians have
set down evidence of poliomyelitis in ancient times. The clinical features range from mild cases of
respiratory illness, gastroenteritis, and malaise to severe forms of paralysis. This disease has been
associated with debilitating abnormalities that have affected countless lives across the globe. Great
scientists’ persistence and dedication help describe the viral structure in the 1900s. The World Health
Organization (WHO) declared the Region of the Americas polio-free in 1994. Western Pacific was
certified polio-free in 2000, followed by Europe in June 2002. In 2013, only Nigeria, Pakistan, and
Afghanistan remained polio-endemic. Even after the worldwide elimination of polio, an outbreak is
still very much possible. With the help of the WHO, all the governments worldwide are working to
eradicate poliomyelitis. A highly infectious viral infection may cause paralysis, respiratory issues, or
even death. Most polio infections are asymptomatic. On March 27, 2014, the WHO declared South-
East Asia polio-free, ensuring that wild poliovirus spread stopped in 11 countries from Indonesia
to India. This means that 80 % of the world’s population lives in polio-free zones. More than 18
million formerly crippled individuals can now walk. Poor implementation strategies result in the
spread of the virus. Wild poliovirus is the major reason for the endemic spread in Afghanistan and
Pakistan. The inability to eradicate polio in these two countries may result in up to 200,000 additional
cases each year in the next decade. That is why it is hard to say polio is gone for good. The polio
eradication methods work only when they are implemented properly, which was proved by India’s
polio-free January 2011. In March 2014, the WHO declared India, the most difficult location in
South-East Asia, polio-free. Polio is more likely among pregnant women, and it affects non-vaccinated
youngsters severely. It is transmitted from one person to another orally. There is no cure for polio,
but it can be prevented through vaccination. As 90 % of infected people have no symptoms, they go
undiagnosed and become virus carriers. Since 1988, polio cases have decreased by 95 % globally. But
two endemic nations, Pakistan and Afghanistan, are fighting to join the global immunization effort. In
Pakistan, the COVID-19 curve shows a 2% positive rate for much of July–October, however, diseases
like polio get more attention. On November 16, 2020, Pakistan had 81 polio cases, compared to 147
in 2019. Eliminating polio from Afghanistan, Pakistan, and Nigeria remains a major problem. The
Pakistan national polio program organizes household-level vaccination programs. Poliomyelitis is a
severe infectious illness. A gut virus attacks the brain and spinal cord nerve cells. A high-temperature
headache characterizes fibromyalgia so that it may paralyze limbs or respiratory muscles. However,
respiratory paralysis is uncommon. Polio can spread via food or water. It may also spread while altering
an infected child’s nappies. The virus enters through the nose or mouth, multiplies in the throat and
intestinal tract, and then is absorbed and spread through the blood and lymph system. Anti-polio
antibodies prevent the spread of the virus and provide lifetime protection. In 2009, only 48% and
57%, respectively, of children under five in Bangkalan and Bondowoso had antibodies against all
three polioviruses. According to the Center for Disease Control (CDC), both districts had less than
80% vaccination coverage for regular immunization and more than 90 % for National Immunization
Week. Thus, the number of nations with endemic diseases has declined from 125 in 2000 to three in
2012. World Polio Day is observed on October 24 every year. The WHO recognized the Americas,
Europe, South Asia, and the Western Pacific as polio-free. Afghanistan, Pakistan, and Nigeria are
the only countries where polio is still prevalent. Afghanistan and Pakistan are the only two nations
where polio is an endemic problem. According to 2016 data, the virus is still circulating mostly in
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Afghanistan and Pakistan, sporadically transmitted to neighboring countries. In 2021, Ahmad et al.
[1] worked on challenges and efforts related to polio during COVID-19 in Pakistan. Ataullahjan
et al. [2] expressed a systematic review of polio eradication policies in Pakistan. Haqqi et al. [3]
explored the impact of COVID-19 on the global polio eradication initiative in Pakistan. Nwogu et
al. [4] overviewed the outbreak of polio in Kenya from 2013 to 2015. Bandyopadhyaya et al. [5] found
the end game of polio eradication in final frontiers. Konopka-Anstadt et al. [6] evaluated a new oral
vaccine for the eradication end game using codon deoptimization. Benissan et al. [7] introduced the
poliovirus vaccine and the trivalent oral polio vaccine/bivalent oral polio vaccine in the African region.
Lopalco [8] reviewed vaccine poliovirus circulation and its implications. Kabir et al. [9] generalized
infection transmission of poliovirus epidemiology and possible risk factors in Pakistan. Akil et al.
[10] interpreted the outbreaks and reemergence of poliovirus in war and affected areas. Patel et al.
[11] presented the global introduction of inactivated polio vaccine. Nakamura et al. [12] explored
the introduction period for inactivated polio vaccine environmental surveillance in sewage water.
Bandyopadhyay et al. [13] explained polio’s present, past, and future regarding vaccination. Martinez-
Bakker et al. [14] analyzed the historical facts and current challenges of poliomyelitis eradication.
Singh et al. [15] reviewed polio literature and gave suitable measures to overcome it. Agarwal et al.
[16] showed the modeling spread of polio with the role of vaccination. Jesus [17] described the modern
history from epidemics to the eradication of poliomyelitis. The deterministic models are investigated
using delay techniques as discussed in [18,19]. Hussain et al. [20] investigated the dynamics of pine
wilt disease using the concept of sensitivity analysis. Raza et al. [21] studied the structure-preserving
analysis of the epidemic model with necessary properties. More techniques related to epidemic models
are given in [22,23]. The well-known results with different techniques are studied in [24–32]. The rest of
the manuscript is organized as follows. Section 2 describes the modeling of polio. Section 3 discusses
the numerical methods. Section 4 discusses the outcomes and future issues.

2 Modelling of Polio

For any time t, S: represents the class that is influenced by infection, E: represents the class that
is disclosed by disease, I: represent an infective class, V: represents immunization class, A: represents
the constant immigration rate of the human population, β: is the per unit time probability of infection
transmission by infective population, Rβ: (0 < r ≤ 1): is the per unit time probability of infection
transmission by exposed population, r: is the reduction in the exposed class due to transmission of
infection, v: represents the proportion of recruits in the susceptible class moving to the vaccinated
class, v1: is the number of exposed populations that are vaccinated, b: number of exposed people move
to the infection class, μ: natural death of human population and α: disease death rate of the human
population. Thus, a continuous model for people regarding polio is described in Fig. 1.

Figure 1: Spread map of polio
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The system of differential equations is as follows:

S′(t) = A − βSI − rβSE − (μ + v) S, (1)

E ′(t) = βSI + rβSE − (b + μ + v1) E, (2)

I ′(t) = (b + v1) E − (μ + α) I, (3)

V ′(t) = vS − μV. (4)

With initial condition S (0) ≥ 0; E (0) ≥ 0; I (0) ≥0; V (0) ≥ 0.

2.1 Model Properties

Theorem 1: Solutions (1–4) with initial conditions are positive for all t ≥ 0.

Proof: By letting the Eq. (1),

S′ = A − βSI − rβSE − (μ + v) S, S′ ≥ −[βI + rβE + (μ + v)]S.∫
S′

S
dt ≥ −

∫
βI + rβE + (μ + v) dt, ln S ≥

∫
− [βI + rβE + (μ + v)] dt.

S (t) ≥ e
∫ −[βI+rβE+(μ+v)]dt ≥ 0 (5)

From Eq. (2),

E ′ = βSI − rβSE − (b + μ + v1) E, E ′ ≥ −E [rβS + (b + μ + v1)] ,

∫
E ′

E
dt ≥

∫
−E [rβS + (b + μ + v1)] dt, ln E ≥

∫
−E [rβS + (b + μ + v1)] dt

E (t) ≥ e
∫ −E[rβS+(b+μ+v1)] ≥ 0 (6)

From Eq. (3)

I ′ = (b + v1) E − (μ + α) I, I ′ ≥ − (μ + α) I,
∫

I ′

I
dt ≥

∫
− (μ + α) dt, ln I ≥

∫
− (μ + α) dt

I (t) ≥ e−(μ+α)t ≥ 0 (7)

From Eq. (4)

V ′ = vS − μV, V ′ ≥ −μV,
∫

V ′

V
dt ≥

∫
−μdt, ln V ≥

∫
−μdt

V (t) ≥ e−μt ≥ 0 (8)

Hence, the positivity of the desired system is proved.
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Theorem 2: The solutions (S, E, I , V)εR4
+ of the system (1–4) are bounded at any time t ≥ 0 and

limit→∞ SupN (t) ≤ A
μ
.

Proof: let us consider the function as follows:

N (t) = S (t) + E (t) + I (t) + V (t).

dN (t)
dt

=dS
dt

+ dE
dt

+ dI
dt

+ dV
dt

,
dN
dt

≤ A − μS − μE − μI − μV ,

dN
dt

≤ A − μ [S + E + I + V ] ,
dN
dt

≤ A − μN.

dN
dt

+ μN ≤ A.

The auxiliary equation is

D + μ = 0, D = −μ

Nc (t) = C1e−μt, Np (t) = A
μ

N (t) = Nc (t) + Np (t) , N (t) = C1e−μt + A
μ

SupN (t) ≤ C1e−μt + A
μ

, t ≥ 0

limt→∞ SupN(t) ≤ A
μ
, as required.

2.2 Model Equilibria

The system admits two types of equilibria is as follows:

The disease-free equilibrium of the model is K0 = ( A
μ+v

, 0, 0, v
μ
S).

The endemic equilibrium of the model is denoted by K1= (S∗, E∗, I∗, V∗).

S∗ = (b + μ + v1) (μ + α)

β (b + v1) + rβ (μ + α)
, E∗ = A − (μ + v) S∗

rβS∗ + βS∗
(

b + v1

μ + α

) , I ∗ = b + v1

μ + α
E∗, and V ∗ = v

μ
S∗.

2.3 Reproduction Number

This section finds the reproduction number R0 by using the following generation matrix method.
We introduce two types of matrices: the transition matrix and the second is transmission matrix.⎡

⎣E ′

I ′

V ′

⎤
⎦ =

⎡
⎣rSβ βS 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣E

I
V

⎤
⎦ −

⎡
⎣b + μ + v1 0 0

−b − v1 μ + α 0
0 0 μ

⎤
⎦

⎡
⎣E

I
V

⎤
⎦.

Here,

F =
⎡
⎣rSβ βS 0

0 0 0
0 0 0

⎤
⎦ , G =

⎡
⎣b + μ + v1 0 0

−b − v1 μ + α 0
0 0 μ

⎤
⎦ .
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FG−1 =

⎡
⎢⎢⎣

rβA
(μ + v) (b + μ + v1)

+ βA (b + v1)

(μ + v) (μ + α)(b + μ + v1)

βA
(μ + v) (μ + α)

0

0 0 0
0 0 0

⎤
⎥⎥⎦.

The spectral radius of the FG−1 is called the reproduction number is as follows:

R0 = R1 + R2

R0 = βA (b + v1)

(μ + v) (μ + α)(b + μ + v1)
+ rβA

(μ + v) (b + μ + v1)
,

Where R1 = βA (b + v1)

(μ + v) (μ + α)(b + μ + v1)
,R2 = rβA

(μ + v) (b + μ + v1)
.

2.4 Local Stability

Theorem 3: The disease-free equilibrium K0 = ( A
μ+v

, 0, 0, v
μ
S) is locally asymptotically stable if

R0 < 1 otherwise unstable if R0 > 1.

Proof: Considering the function from the system (1–4) as follows:

F1 =A − βSI − rβSE − (μ + v) S, F2 = βSI + rβSE − (b + μ + v1) E, F3 = (b + v1) E − (μ + α) I,

F4 = vS − μV.

The elements of the given Jacobean matrix at KO is as follows:

J (KO) =

⎡
⎢⎢⎣

− (μ + v) −rβ A
μ+V

−β A
μ+V

0
0 rβ A

μ+V
− (b + μ + v1) β A

μ+V
0

0 b + v1 − (μ + α) 0
V 0 0 −μ

⎤
⎥⎥⎦.

J (KO − λI) =

∣∣∣∣∣∣∣∣
− (μ + v) − λ −rβ A

μ+V
−β A

μ+V
0

0 rβ A
μ+V

− (b + μ + v1) − λ β A
μ+V

0
0 b + v1 − (μ + α) − λ 0
V 0 0 −μ − λ

∣∣∣∣∣∣∣∣
= 0.

λ1 = −μ < 0, λ2 = − (μ + v) < 0.

λ2 + λ

[
(μ + α) − rβA

μ + v
+ λ2

]
− rβA

μ + v
(μ + α) − βA

μ + v
(b + v1) = 0

λ2 + λ [(μ + α) + (b + μ + v1) (1 − R2)] + (μ + α) (b + μ + v1) (1 − R0) = 0

We obtain the following results by applying Routh Hurwitz criteria for 2nd order.

A1 > 0, A2 > 0, if R0, R2 < 1, where A1 = [(μ + α) + (b + μ + v1) (1 − R2)], A2 =
(μ + α) (b + μ + v1) (1 − R0).

Theorem 4: The endemic equilibrium K1= (S∗, E∗, I∗, V∗) is locally asymptotically stable if Ro > 1.

Proof: The Jacobean matrix at K1 = (S∗, E∗, I ∗, V ∗) is as follows:
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J(K1) =

⎡
⎢⎢⎣

−βI ∗ − rβE∗ − (μ + v) −rβS∗ −βS∗ 0
βI ∗ + rβE∗ rβS∗ − (b + μ + v1) βS∗ 0
0 b + v1 − (μ + α) 0
V 0 0 −μ

⎤
⎥⎥⎦.

|J(K1 − λI)| =

∣∣∣∣∣∣∣
−βI∗ − rβE∗ − (μ + v) − λ −rβS∗ −βS∗ 0
βI∗ + rβE∗ rβS∗ − (b + μ + v1) − λ βS∗ 0
0 b + v1 − (μ + α) − λ 0
V 0 0 −μ − λ

∣∣∣∣∣∣∣ = 0.

λ1 = −μ < 0,∣∣∣∣∣∣
−βI ∗ − rβE∗ − (μ + v) − λ −rβS∗ −βS∗

βI ∗ + rβE∗ rβS∗ − (b + μ + v1) − λ βS∗

0 b + v1 − (μ + α) − λ

∣∣∣∣∣∣ = 0

−βI ∗ − rβE∗ − (μ + v) − λ

∣∣∣∣ rβS∗ − (b + μ + v1) − λ βS∗

b + v1 − (μ + α) − λ

∣∣∣∣ − (βI ∗ + rβE∗)∣∣∣∣ −rβS∗ −βS∗

b + v1 − (μ + α) − λ

∣∣∣∣ = 0.

λ3 + λ2A + λC + D = 0

Where A = βI∗+rβE∗+(μ + v)−rβS∗+(b + μ + v1)+(μ + α), B = −rβ2S∗I ∗+βI ∗ (b + μ + v1)+
βI ∗ (μ + α)+rβE∗ (b + μ + v1)+rβE∗ (μ + α)−rβS∗ (μ + v)+(μ + v) (b + μ + v1)+(μ + α) (μ + v)−
rβS∗ (μ + α)+(b + μ + v1) (μ + α)−(βS∗) (b + v1)+rβ2S∗I ∗, C = −rβ2S∗I ∗ (μ + α)+βI ∗ (b + μ + v1)

(μ + α) − r2β2E∗S∗ (μ + α) + rβE∗ (b + μ + v1) (μ + α) − rβE∗S∗ (b + v1) − rβS∗ (μ + α) (μ + v) +
(b + μ + v1) (μ + α) (μ + v) − (μ + v) βS∗ (b + v1) + rβ2S∗I ∗ (μ + α) + r2β2E∗S∗ (μ + α) + rβ2S∗E∗

(b + v1).

Applying Routh-Hurwitz Criterion for 3rd order, A > 0, D > 0, and AC > D, if R0 > 1.

Hence the given system is locally asymptotically stable.

3 Numerical Methods
3.1 Euler Method

The Euler method for the Eqs. (1–4) is as follows:

Sn+1 = Sn + h[A − βSnIn − rβSnEn − (μ + v1) Sn] (9)

En+1 = En + h[βSnIn + rβSnEn − (b + μ + v1)En] (10)

In+1 = In + h[(b + v1)En − (μ + α) In] (11)

Vn+1 = Vn + h [v1Sn − μVn] (12)

Where “h” is represented by time step size.
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3.2 Runge Kutta Method

The Runge Kutta method for the Eqs. (1–4) is as follows:

Stage 1

K1 = h [A − βSnIn − rβSnEn − (μ + v1) Sn]

L1 = h [βSnIn + rβSnEn − (b + μ + v1)En]

M1 = h [(b + v1)Sn − (μ + α) In]

N1 = h [v1Sn − μV n]

Stage 2

K2 = h
[

A − β(Sn + K1

2

) (
In + M1

2

)
− rβ(Sn + K1

2
)(En + L1

2
) − (μ + v1) (Sn + K1

2
)]

L2 = h[β(Sn + K1

2
)(In + M1

2
) + rβ(Sn + K1

2
)(En + L1

2
) − (b + μ + v1) (En + L1

2
)]

M2 = h
[
(b + v1)

(
En + L1

2

)
− (μ + α)

(
In + M1

2

)]

N2 = h
[

v1(Sn + K1

2
) − μ

(
Vn + N1

2

)]

Stage 3

K3 = h
[

A − β(Sn + K2

2

) (
In + M2

2

)
− rβ(Sn + K2

2
)(En + L2

2
) − (μ + v1) (Sn + K2

2
)]

L3 = h
[
β(Sn + K2

2
)(In + M2

2
) + rβ(Sn + K2

2
)(En + L2

2
) − (b + μ + v1) (En + L2

2
)

]

M3 = h
[
(b + v1)

(
En + L2

2

)
− (μ + α)

(
In + M2

2

)]

N3 = h
[

v1(Sn + K2

2
) − μ

(
Vn + N2

2

)]

Stage 4

K4 = h [A + β(Sn + k3) (In + M3) − rβ(Sn + k3)(En + L3) − (μ + v1) (Sn + k3)]

L4 = h[β(Sn + K3)(In + M3) + rβ(Sn + K3)(En + L3) − (b + μ + v1) (En + L3)]

M4 = h [(b + v1) (En + L3) − (μ + α) (In + M3)]

N4 = h [v1(Sn + K3) − μ (Vn + N3)]
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Final stage

Sn+1 = Sn + 1
6

[K1 + 2K2 + 2K3 + K4]

En+1 = En + 1
6

[L1 + 2L2 + 2L3 + L4]

In+1 = In + 1
6

[M1 + 2M2 + 2M3 + M4]

Vn+1 = V n + 1
6

[N1 + 2N2 + 2N3 + N4]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

where “h” is represented by the time step size.

3.3 Nonstandard Finite Difference Method

The nonstandard finite difference (NSFD) could be developed for the system (1–4), the Eq. (1) of
the polio epidemic model may be calculated as:

dS
dt

= A − βSI − rβSE − (μ + v1) S.

The decomposition of proposed method is as follows:

Sn+1 = Sn + h[A − βSn+1In − rβSn+1En − (μ + v1) Sn+1].

Sn+1 = Sn + hA
1 + hβIn + hrβEn + h (μ + v1)

(14)

In the same way, we decompose the remaining system into proposed nonstandard finite difference
(NSFD) method, like Eq. (14), as follows:

En+1 = En + hβSnIn + hrβSnEn

1 + h(b + μ + v1)
(15)

In+1 = In + h((b + v1)En

1 + h (μ + α)
(16)

V n+1 = V n + hv1sn

1 + hμ
(17)

where “h” is represented by time step size.

3.4 Linearization Process of Nonstandard Finite Difference (NSFD) Method

In this section, we shall present the theorem at the equilibria of the model for the process of
linearization of the nonstandard finite difference (NSFD) method is as follows:

Theorem 5: The nonstandard finite difference (NSFD) method is stable if the eigenvalues of
Eqs. (14–17) lie in the same unit circle, for any n ≥ 0.
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Proof: Consider the right-hand sides of the equation in (14–17) as functions L1, L2, L3, L4, as
follows:

L1 = S + hA
1 + hβI + hrβE + h (μ + v1)

, L2 = E + hβSI + hrβSE
1 + h(b + μ + v1)

, L3 = I + h((b + v1)E
1 + h (μ + α)

, L4 = V + hv1S
1 + hμ

.

The elements of the Jacobian matrix are given as

J (S, E, I , V) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂L1

∂S
∂L1

∂E
∂L1

∂I
∂L1

∂V
∂L2

∂S
∂L2

∂E
∂L2

∂I
∂L2

∂V
∂L3

∂S
∂L3

∂E
∂L3

∂I
∂L3

∂V
∂L4

∂S
∂L4

∂E
∂L4

∂I
∂L4

∂V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The given Jacobian matrix at K0 = (
A

μ + v
, 0, 0, v

μ
S) is as follows:

J (KO) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + h (μ + v1)

−
(

A
μ + v

+ hA
)

rhβ

[1 + h (μ + v1)]
2

−hβ

(
A

μ + v
+ hβ

)
[1 + h (μ + v1)]

2 0

0 1

1−rhβ

(
A

μ + v

)
+h(b+μ+v1)

hβ

(
A

μ + v

) (
1 + rhβ

(
A

μ + v

)
+ h (b + μ + v1)

)
[

1 − rhβ

(
A

μ + v

)
+ h (b + μ + v1)

]2 0

0
h (b + v1)

1 + h (μ + α)
0 0

hv1

1 + hμ
0 0

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1 + h (μ + v1)

− λ

−
(

A
μ + v

+ hA
)

rhβ

[1 + h (μ + v1)]
2

−hβ

(
A

μ + v
+ hβ

)
[1 + h (μ + v1)]

2 0

0
1

1 − rhβ

(
A

μ + v

)
+ h (b + μ + v1)

− λ

hβ

(
A

μ + v

)(
1+rhβ

(
A

μ + v

)
+h(b+μ+v1)

)
[
1−rhβ

(
A

μ+v

)
+h(b+μ+v1)

]2 0

0
h (b + v1)

1 + h (μ + α)
−λ 0

hv1

1 + hμ
0 0

1
1 + hμ

− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

λ1 = 1
1+hμ

< 1,

∣∣∣∣∣∣∣∣∣∣∣∣

1
1 + h (μ + v1)

− λ
− (A + hA (μ + v)) rhβ

(μ + v) [1 + h (μ + v1)]2
−hβA − hβ (μ + v)

(μ + v) [1 + h (μ + v1)]2

0
μ + v

(μ + v) − rhβA + (μ + v) h (b + μ + v1)
− λ

hβA ((μ + v) + rhβA + (μ + v) h (b + μ + v1))

[(μ + v) − rhβA + (μ + v) h (b + μ + v1)]2

0
h (b + v1)

1 + h (μ + α)
−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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λ2 = 1
1 + h (μ + v1)

< 1

[(
μ + v

(μ + v) − rhβA + (μ + v) h (b + μ + v1)
− λ

)
(−λ) −

(
hβA ((μ + v) + rhβA + (μ + v) h (b + μ + v1))

[(μ + v) − rhβA + (μ + v) h (b + μ + v1)]2

)(
h (b + v1)

1 + h (μ + α)

)]

= 0

λ2− μ + v
(μ + v) − rhβA + (μ + v) h (b + μ + v1)

(λ)−
(

hβA ((μ + v) + rhβA + (μ + v) h (b + μ + v1))

[(μ + v) − rhβA + (μ + v) h (b + μ + v1)]2

) (
h (b + v1)

1 + h (μ + α)

)
= 0.

Hence, by using the Mathematica software all the eigen values of the above Jacobian matrix lie in
the unit circle if R0 < 1.Thus, the system (14–17) is stable.

Now, for endemic equilibrium (EE) K1= (S∗, E∗, I∗, V∗). The given Jacobian matrix is

J (K1) =

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + hβI∗ + rhβE∗ + h (μ + v1)

− (S∗ + hA) rhβ

[1 + hβI∗ + rhβE∗ + h (μ + v1)]
2

− (S∗ + hA) hβ

[1 + hβI∗ + rhβE∗ + h (μ + v1)]
2 0

hβI∗ (1 − rhβS∗ + h (b + μ + v1) + (E∗ + hβS∗I∗) rhβ)

[1 − rhβS∗ + h (b + μ + v1)]
2

1
1 − rhβS∗ + h (b + μ + v1)

hβS∗ (1 − rhβS∗ + h (b + μ + v1))

[1 − rhβS∗ + h (b + μ + v1)]
2 0

0
h (b + v1)

1 + h (μ + α)
0 0

hv1

1 + hμ
0 0

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

λ1 = 1
1 + hμ

< 1,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1 + hβI∗ + rhβE∗ + h (μ + v1)

− λ
− (

S∗ + hA
)

rhβ

[1 + hβI∗ + rhβE∗ + h (μ + v1)]2
− (

S∗ + hA
)

hβ

[1 + hβI∗ + rhβE∗ + h (μ + v1)]2

hβI∗ (
1 − rhβS∗ + h (b + μ + v1) + (

E∗ + hβS∗I∗)
rhβ

)
[1 − rhβS∗ + h (b + μ + v1)]2

1
1 − rhβS∗ + h (b + μ + v1)

− λ
hβS∗ (

1 − rhβS∗ + h (b + μ + v1)
)

[1 − rhβS∗ + h (b + μ + v1)]2

0
h (b + v1)

1 + h (μ + α)
−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

By using Mathematica software, the largest eigen value of the Jacobian is less than one, ultimately
remaining will also lie in the unit circle when R0 > 1. Thus, endemic equilibrium is stable.

3.5 Numerical Results

For the analysis of the Eqs. (1) to (4), we use the values of the parameters which is presented in
Tab. 1 is as follows:

Table 1: Value of parameters

Parameters Values

A 0.5000

(Continued)
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Table 1: Continued
Parameters Values

μ 0.5000
v 0.6000
α 0.0001
v1 0.001
b 0.9000
r 0.5000
σ 1 0.04
β 1.002 (DFE)

0.002 (EE)

(a)

(b)

Figure 2: (a) Time plot for disease-free equilibrium (DFE) at any time t (b) Time plot for endemic
equilibrium (EE) at any time t
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Figure 3: (a) (Convergent behavior) Sub-populations for endemic equilibrium (EE) at h = 0.01. (b)
(Divergent behavior) Sub-populations for endemic equilibrium (EE) at h = 1

Figure 4: (Continued)
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Figure 4: (a) (Convergent behavior) Sub-populations for endemic equilibrium (EE) at h = 0.01 (b)
(Divergent behavior) Sub-populations for endemic equilibrium (EE) at h = 2

(a)

(b)

Figure 5: (a) (Convergent behavior) Sub-populations for endemic equilibrium (EE) at h = 0.01 (b)
Sub-populations for endemic equilibrium (EE) at h = 100
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3.6 Comparison Section

(a)

(b)

(c)

(d)

Figure 6: Comparison behavior (a) Infected class for endemic equilibrium (EE) with Euler and
nonstandard finite difference (NSFD) methods at h = 0.01 (b) Infected class for endemic equilibrium
(EE) with Euler and nonstandard finite difference (NSFD) methods at h = 1 (c) Infected class for
endemic equilibrium (EE) with Runge Kutta and nonstandard finite difference (NSFD) methods
at h = 0.01 (d) Infected class for endemic equilibrium (EE) Runge Kutta and nonstandard finite
difference (NSFD) methods at h = 2
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4 Results and Concluding Remarks

Figs. 2a and 2b show the simulation of the continuous model for both equilibria at any time t,
using the ODE (45). Figs. 3a and 3b analyze the dynamics using the Euler method, which is consistent
with the model’s continuous behavior for the small-time step size. Unfortunately, the increasing time
step size indicates the negativity and unboundedness of the results. However, this kind of analysis has
no real relevance. In Figs. 4a and 4b, the Runge–Kutta method produces the same scenario as Euler,
but comparatively much better. Figs. 5a and 5b show the actual behavior of the disease and is also
valid for the long-term analysis. Figs. 6a and 6d show the effectiveness of the proposed method, such
as nonstandard finite-difference. It also proves the positivity, boundedness, and dynamical consistency
of the results. The study analyzes poliovirus modeling using analytical approaches and numerical
techniques. The nonstandard finite difference (NSFD) scheme is a comfortable tool to analyze
dynamical properties such as stability, positivity, and boundedness and shows the exact behavior of
the continuous model. We shall extend this kind of analysis for all kinds of complex and nonlinear
problems in the future.
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