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Abstract: When firefighters are engaged in search and rescue missions inside a
building at a risk of collapse, they have difficulty in field command and rescue
because they can only simply monitor the situation inside the building utilizing
old building drawings or robots. To propose an efficient solution for fast
search and rescue work of firefighters, this study investigates the generation
of up-to-date digital maps for disaster sites by tracking the collapse situation,
and identifying the information of obstacles which are risk factors, using
an artificial intelligence algorithm based on low-cost robots. Our research
separates the floor by using the mask regional convolutional neural network
(R-CNN) algorithm, and determines whether the passage is collapsed or
not. Then, in the case of a passage that can be searched, the floor pattern
of the obstacles that exist on the floor that has not collapsed is analyzed,
and obstacles are searched utilizing an image processing algorithm. Here,
we can detect various unknown as well as known obstacles. Furthermore,
the locations of obstacles can be estimated using the pixel values up to the
bounding box of an existing detected obstacle. We conduct experiments using
the public datasets collected by Carnegie Mellon university (CMU) and data
collected by manipulating a low-cost robot equipped with a smartphone while
roaming five buildings in a campus. The collected data have various floor
patterns for objectivity and obstacles that are different from one another.
Based on these data, the algorithm for detecting unknown obstacles of a
verified study and estimating their sizes had an accuracy of 93%, and the
algorithm for estimating the distance to obstacles had an error rate of 0.133.
Through this process, we tracked collapsed passages and composed up-to-date
digital maps for disaster sites that include the information of obstacles that
interfere with the search and rescue work.
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1 Introduction

The United States (U.S.) government has approximately 45,000 unused or underutilized buildings
[1]. Furthermore, according to the U.S. fire administration, approximately 20% of urban structures are
not being utilized [2]. Abandoned empty buildings have a risk of collapse, access to them is restricted
through the “Worcester marking system.” It is also difficult to access buildings at a risk of collapse
because of disaster situations such as fire and earthquake, as well as abandoned empty buildings. To
search, suppress the fire and examine the situation inside the buildings at a risk of collapse, robots are
deployed instead of people. When the nuclear reactors were destroyed in Fukushima, Japan, snake-
shaped robots were deployed to examine inside of nuclear reactors [3]. Robots were also utilized for
search and rescue missions when an earthquake occurred in the Lushan national park in China [4].
Recently, the firefighting robot Colossus was utilized to put out the fire in Notre-dame, France [5].
Los Angeles, U.S. also introduced the firefighting robot RS3 [6].

With the conventional simple monitoring using existing architectural drawings and robot image
data, firefighters have difficulty in field command or rescue when performing search and rescue
activities inside buildings where the disaster occurred. Because of the disaster, buildings at a risk of
collapse have collapsed floors and ceilings, and places that have been altered by remodeling. Thus,
it is difficult to identify the inside layouts by the architectural drawings created when the building
was constructed. Moreover, it is difficult to understand the concrete situation inside the building in
a disaster situation simply by monitoring the inside of the building from outside the building using
robots owing to obstacles and collapsed parts. Therefore, instead of utilizing existing design drawings
and simple monitoring, we researched the generation of efficient, useful up-to-date digital maps for
disaster sites that correspond to the actual situation inside the building at a risk of collapse.

To generate up-to-date digital maps for disaster sites, it is necessary to detect collapsed passages
and obstacles inside the buildings, and link them to the digital maps. Before detecting them, we
classified buildings’ inner spaces of various shapes into three categories. The first category is closed
spaces, such as a room that is closed on all sides and can be accessed through an entrance such as
a door. The second category is large open spaces comprising columns inside them such as a large
plaza. The third category is passages such as a corridor that serves as a passage that interconnects the
aforementioned spaces. Most studies related to the inside of buildings detect obstacles among the three
categories of spaces such as room, plaza, and corridor, or predict the path. In studies on the detection
of objects inside buildings [7,8], an artificial intelligence model studies objects designated by labels
and detects them. Meanwhile, studies on obstacle detection [9–11] detect obstacles in inner spaces
of buildings such as rooms or plazas. Studies on passages inside buildings such as corridors focus
on predicting the path by identifying the characteristics of passages rather than detecting obstacles
[12–14]. We focused on obstacles in corridors and collected and analyzed information related to
obstacles. For firefighters in a corridor to determine whether it is a collapsed passage, the floor
was segmented based on deep learning to determine whether it collapsed. In addition, a hybrid
algorithm that converges image processing was proposed and constructed to estimate the size of
detected obstacles in a non-collapsed passage. To conduct experiments, a smartphone was installed in
a real low-cost robot, and corridor image data were collected from various buildings. After obtaining
the bounding box of an obstacle by detecting an obstacle and estimating its height using deep learning
and image processing, the distance to the obstacle was estimated and the obstacle size and distance
data were stored. In addition, we created up-to-date digital maps that include whether the detected
obstacles and passages have collapsed or not using the algorithm. Although existing disaster robots
cost tens of thousands to hundreds of thousands of dollars, we utilized a low-cost robot that costs
less than 5,000 dollars with a smartphone, which is advantageous for the software updates. This study
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can help the robot to determine an autonomous driving path by detecting various forms of unknown
obstacles and storing their information. Furthermore, using the generated up-to-date digital maps,
firefighters can work efficiently inside buildings at risk of collapse.

This paper is organized as follows. Section 2 introduces studies on detecting obstacles and
identifying the locations and sizes of obstacles in spaces, and various disaster robots. Section 3
describes the overall architecture of the proposed algorithm and the detailed architecture of each
module. Section 4 describes the experimental data and experiment design, presents the experiment
results for each module, and summarizes the overall results. Section 5 concludes by presenting various
issues of the proposed algorithm and future research directions.

2 Related Works

A several studies related to vision attempted to detect obstacles in specific scenes. Existing studies
on obstacle detection can be largely classified into two groups: those that trained a model and detected
designated obstacles using the model, and those that detected various shapes of untrained obstacles.
One study adopted the you only look once (YOLO) algorithm [15] to train a model and detect objects
[16]. Furthermore, not solely the YOLO algorithm, but also the deep learning algorithm and labeled
objects were utilized to train a model [17–20]. A few studies attempted to find designated objects more
accurately by merging the results predicted by the trained model with an image processing algorithm
[21,22]. Several researchers have tried to detect untrained obstacles. One study detected obstacles using
a depth sensor such as red, green, blue (RGB) image and its corresponding depth image (RGB-D)
instead of a general camera [23]. This study distinguished dynamic obstacles based on mathematical
models and geometric constraints by clustering the feature points of a depth image. A study that
attempted to detect untrained obstacles utilizing an RGB camera [24] proposed a student-teacher
system, which discovered foreground obstacles in a video and obtained a soft mask for each frame.
Then the student convolution neural network (CNN), a sub-network of the system, was trained by
filtering the result masks based on the untrained quality metric. The finally obtained student network
allowed the training of more general and objective features than the unsupervised teachers. Another
study [25] detected dynamic obstacles using the temporal features of videos.

We separated floors and obstacles by detecting the foreground according to the floor of corridors,
as well as detecting obstacles. When floors are separated, collapsed passages inside a building at risk
of collapse can be detected. Furthermore, because robots and people move through the floors, we
focused on detecting obstacles on floors. Image processing and segmentation to separate floors have
been researched. A study on floor detection utilizing image processing [26] detects corridors based on
edges. The canny edges [27] of images that have undergone gray scale transformation are obtained and
morphologically transformed. Research on image segmentation such as fully convolutional networks
(FCN) [28] and U-net [29] is been conducted. A study that separated the floors of corridors using
image segmentation [30] trained a CNN model with corridor images and segmentations corresponding
to floors. Because the parts corresponding to floors may not be smooth owing to lights and shades,
these parts are filled using the conditional random field (CRF) [31] for optimization. The algorithm
of this study separates floors after image segmentation using the mask regional convolutional neural
network (R-CNN) [32] algorithm. Then obstacles are detected by extracting the edges of the separated
floor segmentation masks and comparing between the case when there is an obstacle and when there
is no obstacle.

We estimate and store the locations of detected obstacles and the sizes of obstacles on images.
Determining the locations of and distances to obstacles by estimating their depths play a critical role
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when robots perform autonomous driving, or building inside maps are drawn later. Various studies
related to estimating the locations of obstacles are using the stereo technique [33,34]. In particular, one
study obtained a polynomial function using the parallax of two stereo cameras and actual distances,
and estimated the distance to obstacles [35]; however, we estimate the distance using a monocular
camera that uses solely one camera. Several studies [36,37] have been recently conducted to estimate
the distance to obstacles from the camera using a monocular camera. Utilizing a monocular camera
instead of a stereo camera, we obtain a polynomial regression function using the edge lines of floors
to obstacles and the actual distance, and then estimate the distance.

Currently, several types of disaster robots are being utilized in disaster sites [38]. In disaster
situations, disaster robots enter buildings, suppress fires, search for people in collapsed buildings,
and help rescue them; however, the firefighting robot RS3 is very expensive at the price of $277,000
[39], and other robots utilized in disaster sites are also expensive as well. Because disaster robots are
costly, ranging from tens of thousands to hundreds of thousands of dollars, solely a small number
of robots are deployed and utilized in a limited range in actual disaster sites, making efficient rescue
work difficult. In the case of search, users identify the disaster site simply by remotely controlling
robots without generating a digital map of the disaster site. Such methods are difficult to analyze
the overall disaster situation, and firefighters entering a building have to move in accordance with
maps that do not reflect the actual disaster situation such as the existing architectural drawings.
We generated up-to-date disaster site digital maps using a $2,771 low-cost robot [40] and an $837
smartphone [41], instead of existing disaster robots costing hundreds of thousands of dollars. By
utilizing low-cost robots, it becomes possible to perform search work in a wide range with multiple
robots in a disaster situation. Moreover, collecting information about the inside of buildings using the
smartphone facilitates software updates or the addition of other imaging devices later.

3 Algorithms

In this section, the overall architecture of the proposed algorithm and the detailed architecture
of each module are described. First, the overall architecture of the proposed algorithm is briefly
described, then the algorithm applied in each module is explained in detail.

3.1 Data Collection and Recognition

When firefighters are engaged in rescue activities in unexpected disaster situations such as
typhoons, floods, earthquakes, heavy snow, and fires, they should quickly identify the disaster situation
inside a building at a risk of collapse. Fig. 1 illustrates the architecture design of a system for generating
disaster site maps utilizing a low-cost robot. By quickly deploying a low-cost robot combined with a
smartphone in which the latest artificial intelligence software is installed into a building in a disaster
situation, up-to-date digital maps for disaster sites including information such as obstacles, building
remains, and collapsed passages that interfere with rescue and search activities in the disaster site can be
created. The low-cost robot combined with the smartphone collects and analyzes data, and generates
up-to-date digital maps that allow fast identification of building collapse sites by linking with a cloud
server. Using the generated maps, the status inside the building in a disaster situation can be analyzed,
and necessary materials and personnel can be efficiently placed where assistance is needed.
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Figure 1: Architecture of the data collection and recognition system proposed in this study

3.2 Proposed Algorithm Design

Fig. 2 illustrates the overall architecture image of the proposed algorithm, and the flowchart is
illustrated in Fig. 3. The RGB video data enter the first module. After the floor is separated, if the shape
of image segmentation is normal, the separated floor mask enters the second module. If the image
segmentation has an abnormal shape, it is considered that entry is no longer possible. In addition,
to avoid detecting very far obstacles, the two over three point of the image is designated as a region
of interest (ROI), and the line is searched for the corresponding part. After the obstacle is detected
by analyzing the line pattern, the height of the obstacle is estimated using image processing in the
third module. In the fourth module, the distance to the obstacle is estimated adopting the polynomial
regression function obtained using the pixel values of the line to the obstacle, and the actual value
between the start point of the robot and the obstacle. The current location of the obstacle can be
known based on the predicted distance. The sizes and distances of the collapsed passage and detected
obstacle are stored in a cloud server. Because the overall algorithm is composed of one framework, the
results are indicated sequentially. The detailed algorithm for each module is described in the following
section.

Error Propagation = √
Error Rate12 + Error Rate22 + Error Rate32 (1)

To verify the overall algorithm by the verified accuracy of each detailed algorithm, the error
propagation is calculated using Eq. (1). Here, the error rates are obtained using the accuracy of each
detailed algorithm.

3.3 Floor Detection

Whether an entry is possible or not can be determined using floor segmentation. We determined
that entry is no longer possible if the floor mask shape is not a normal trapezoid. To obtain the image
segmentation of the floor, we utilized a model trained by the mask R-CNN [32] algorithm. This floor
mask is close to a triangle shape. Because an obstacle that is far from the current position has unclear
features, the two over three point of the image is designated as a region of interest. Accordingly, the
mask has a trapezoidal shape. Fig. 4 illustrates the shape of a normal passage and the shape of a
passage blocked by an obstacle. The floor of the normal passage has a trapezoidal shape; however, if
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the passage is blocked or cannot be entered anymore because of a large obstacle or floor collapse of
the building, the result is different from the normal shape as illustrated in Fig. 4. We determined that
entry was possible if an abnormal floor pattern does not appear as in this case.

Figure 2: Algorithm architecture

Figure 3: The proposed algorithm flowchart
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Figure 4: Example of detecting a normal passage and a passage blocked by obstacle through floors in
an indoor space

3.4 Obstacle Detection and Size Estimation

In this study, obstacles are detected using the obstacle pattern of a separated floor. There are
various types of obstacles inside buildings at a risk of collapse; however, it is highly difficult to designate
labels for all types of obstacles. Hence, we detected the floor using deep learning, and detected objects
by analyzing the pattern of the parts excluding the floor. The overall flow of the algorithm is illustrated
in Fig. 5.

Figure 5: Obstacle detection algorithm combined with a deep learning-based floor detection algorithm

The mask corresponding to the floor is obtained using image segmentation for the floor. When a
normal floor was detected, the line segment detector (LSD) method [42] was applied to determine the
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line. To detect a local line in LSD, a straight line is regarded as a square area, and a straight line with
a high direction is extracted by measuring the degree of similar directions for the pixels included in
this area. Here, we need both the local line of the obstacle, and the overall line that expresses the edges
of the corridor and is opposite to the local line. Therefore, we obtained a local line with conspicuous
features by utilizing LSD after applying blur. We can obtain the edge line features of the floor, and
if there is an obstacle, a line of a shape that is different from the line drawn in the previous frame is
obtained. Fig. 6 illustrates the edges represented by using a canny edge for the mask value to more
clearly express the shapes when there is an obstacle and when there is none. We analyzed the obstacle
pattern of the floor when there is an obstacle. As illustrated in Fig. 6a, when there is no obstacle, a
continuous straight line is obtained; however, when there is an obstacle, straight lines with different
slopes are obtained as illustrated in Fig. 6b. By comparing the slopes of the straight lines detected in
frames based on the straight-line pattern, if there are five or more such patterns, it is determined that
there is an obstacle.

Figure 6: Obstacle detection result based on canny edge image processing: (a) a passage with no
obstacle, (b) a passage with an obstacle

We detected obstacles in the image data collected using a robot, and determined accuracy, recall,
and precision for the detection result. Based on the obtained recall and precision, the F1-score was
calculated using Eq. (2).

F1 − Score = 2 ∗ {(Precision ∗ Recall)/(Precision + Recall)} (2)

The size of the detected obstacle is estimated after the existence of an obstacle is determined. To
estimate the obstacle size, we are required to know the horizontal and vertical sizes of the obstacle. In
this study, the size of the baseline, which is the x-axis of the obstacle, was estimated using the obstacle
pattern of the floor. In addition, various image processing algorithms were applied to estimate the
height, which is the y-axis of the obstacle. First, the feature line obtained through the floor was utilized
to estimate the baseline. The pattern of a floor that was determined to have an obstacle has a shape
out of the existing line as illustrated in Fig. 6b. As illustrated in Fig. 7a, the distance from the dotted
line, an edge line when there is no obstacle, to the red circle, the farthest feature point, was determined
as the base line size. After that, to estimate the height excluding complex and unnecessary features, a
square was drawn with the line start and end points of the x-coordinate that meets with the y-axis of the
two over three point detected on the floor, and the line start and end points of the x-coordinate when
the y-axis is zero, which are illustrated as four green circles in Fig. 7b. Then this square was designated
as the mask. The edge of the obstacle was obtained by applying the canny edge to the remaining part
excluding the square part in the image. It was determined that the feature corresponding to the door
is detected together with this edge. To remove the feature corresponding to the door, the edge that
continued from the top of the image was excluded. Among the remaining edges, to leave solely clear
and definite features, morphology techniques [43] were applied to the edge values. The morphology
techniques fill holes or remove noises by analyzing image shapes, thus clearly indicating the obstacle
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area. Among the morphology techniques, we performed the close operation, which removes noises,
and then open operation, which only indicates clear features, thus leaving solely the most important
features. Then, among these features, the highest and lowest features were determined by the height.
Although the accurate height of the obstacle cannot be estimated, the height was estimated enough to
know the approximate shape of the obstacle.

Figure 7: Methods to estimate the size of objects in the algorithm: (a) estimating the base line size of
the obstacle, (b) square mask coordinate setting to specify unnecessary areas

3.5 Robot and Obstacle Localization
3.5.1 Robot Localization

To estimate the location of objects using a robot, the current location of the robot must be known.
The initial location of the robot can be specified by the person who controls the robot, and can be
automatically estimated using the number of rooms in the building. The location of the robot according
to robot’s movement can be estimated using the wheel size of the robot and number of revolutions of
the wheel. If the circumference of the robot’s wheel is 20 cm, it follows that the robot moves 20 cm each
time it moves one revolution; however, the robot’s location can be shifted when the robot steps on a
low bump or small residue on the floor, causing an error. To remove this error, the robot’s location
can be reset when the robot changes direction at the stairs and corners on the existing architectural
drawing. Furthermore, this error can be corrected by detecting signs indicating the room number, etc.
while the robot is moving. Room number can be detected using the indoor localization algorithm of
an existing study [44]. We automatically detect the initial location of the robot using the room number
on the architectural drawing based on the existing study.

3.5.2 Obstacle Localization

After the obstacle size is estimated, the real distance to the obstacle is estimated. To more
accurately estimate the distance, we utilize the real starting location of the robot. To estimate the
location of the obstacle, we utilize the pixel value of the edge line of the floor that reaches the bounding
box of the obstacle. The edge pixel value of the floor decreases as it gets closer to the obstacle’s
bounding box, and this is utilized to estimate the distance to the obstacle. The x-axis in the graph
of Fig. 8, which illustrates this, is the pixel length of the edge line to the obstacle’s bounding box, and
the y-axis is the real distance from the start point of the robot to the object. The orange line on the
graph expresses the polynomial regression function between the real distance and the pixel length. The
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polynomial regression function obtained through the pixel and real distances is expressed as Eq. (3).

y = 9E − 05x3 − 0.0217x2 + 2.715x + b (3)

Figure 8: Analysis comparing the real and estimated distances between the robot and obstacle

When the obstacle for estimating the distance is no longer detected, it is considered that the
obstacle has been passed. Then, to estimate the location of another obstacle, the location of the robot
when the other obstacle was first detected is specified as the start point. Furthermore, the actual
location of the obstacle inside the building can be estimated using the moved location of the robot.
The performance of the algorithm for estimating the distance by detecting objects is evaluated using
the average error rate obtained using Eq. (4).

Error Rate = (Real Distance − Estimation Distance)/Real Distance (4)

4 Experiments and Results

In this section, the devices utilized in data collection and experiment to test the designed algorithm
are explained, and the results obtained by applying the collected data to the algorithm are explained
as well.

4.1 Experiments Setup and Data Recognition

For this experiment, we attached a Samsung Galaxy S10 to a four-wheeled robot that can be
manipulated with a remote controller, and then collected data inside various buildings in the campus.
The robot’s speed determined through the rear wheels was 0.4 m/s, and the front wheels had casters.
As illustrated in Fig. 9, data were collected in a corridor with an obstacle and in a corridor with no
obstacle.

There were various obstacles such as fire extinguishers, desks, chairs, and lockers at the five places
in total. All corridors have straight line shape, and a separate space for going down the stairs at the
center of the corridor. To fix a camera to the robot, we utilized a fixing device as illustrated in Fig. 10,
which was attached to the front of the robot using an insulation tape. The fixing device can hold
two cameras simultaneously. The robot has an emergency stop switch and its speed and direction
can be controlled utilizing the remote controller. Data were collected while the low-cost robot with a
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fixed camera was moved around various buildings in the campus. In addition to the collected data,
we also utilized the open Carnegie Mellon university (CMU) dataset [45] for accurate performance
measurement. The CMU dataset was collected from corridors using a customized LAGR robot at
Carnegie Mellon university wean hall. Among the data of the CMU dataset, we only utilized the left
images taken with a stereo camera.

Figure 9: Example of passage image data collected inside buildings

Figure 10: Low-cost robot and smartphone setup used in this experiment

4.2 Experiments and Results

In the collected data, obstacles are first detected through the obstacle detection module. The
height of the detected obstacle is estimated, and the detected obstacle is cut. Fig. 11 illustrates the
cutting result of untrained obstacles using features. Although obstacles are not accurately cut, it can
be observed that they have all the features of obstacles.

For this experiment, we utilized the inside of the buildings with the most diverse obstacles among
the buildings in the campus. The accuracy of the algorithms for detecting obstacles is summarized in
Tab. 1.

As presented in Tab. 1, existing object detection algorithms that have solely undergone pre-training
cannot detect obstacles of various shapes. In actual disaster sites, there are several unknown obstacles
of diverse shapes such as residues and broken objects as well as known objects. At this time, labeling
of objects existing inside the building takes a lot of time and money, and even if the labeled data is
sufficiently collected, each object has a different shape, making it difficult to find obstacles through
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the existing object detection algorithms. In addition, because it is impossible to label all obstacles
inside the buildings at a risk of collapse, we detected obstacles solely using the proposed algorithm
without combining it with existing object detection algorithms. The proposed algorithm exhibited a
high performance in the detection of unknown obstacles. Because object detection utilized the features
of the floor, the result was greatly influenced by shadows and contrasts caused by light. When the light
weakened as illustrated in Fig. 12, there was a case of misjudging that there was an obstacle because of
the shadow, although there was no obstacle. Such misjudgment cases decreased when a constant light
was applied, but misjudgments increased when the light turned off or changed in the middle of the
experiment. Furthermore, when the robot moved toward the central stairs or the end of the corridor,
a pattern that is different from the existing corridor patterns was detected. When the robot definitely
reached the end of the corridor, we considered it as a case of an obstacle.

Figure 11: Example of detecting obstacles using pattern analysis and resulting images for estimating
the height of obstacles

Table 1: Performance comparison between the proposed algorithm for detecting indoor obstacles and
existing object detection algorithms

Module Accuracy Recall Precision F1-score

YOLOv4 [15] 0.52 0.46 0.548 0.5
+ Pre-trained from [46]
Faster R-CNN [17] 0.47 0.45 0.466 0.458

(Continued)
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Table 1: Continued
Module Accuracy Recall Precision F1-score

+ Pre-trained from [47]
Retina net [18] 0.48 0.254 0.86 0.392
+ Pre-trained from [47]
Single shot multibox detector (SSD)
[19]

0.36 0.111 0.71 0.19

+ Pre-trained from [47]
Ours obstacle detection 0.80 0.93 0.84 0.88

Figure 12: Example of obstacle detection error due to light

After detecting an obstacle, the algorithm estimates the size of the obstacle. To estimate the
obstacle’s size, the height of the obstacle is estimated, a bounding box in which the obstacle exists
is estimated, and the obstacle is cut in line with the bounding box. Fig. 11 illustrates the result of
cutting a detected obstacle in line with the bounding box. We considered it as a correct estimation
if the obstacle was fully included in the bounding box. However, if any part of the obstacle was not
included in the bounding box, it was considered as an inaccurate detection. The accuracy obtained
using this was 0.93 as presented in Tab. 2. Thus, in most cases, the bounding box included the entire
obstacle.

After the size of the obstacle is estimated, its location is estimated sequentially by localization.
When the location is estimated, a text file that the estimated location value is written together with the
frame number is saved. To verify the distance estimation result, we utilized the average error rate for the
distance estimation result. The final error rate was determined by averaging the distance estimation
error rate for each obstacle. The distance estimation average error rate of obstacles is presented in
Tab. 3.

Each module is sequentially performed, and the height and distance are estimated from
the detected obstacle. As explained in the previous section, we obtained error propagation using
the accuracy and error rate of the algorithm to determine the overall accuracy of the algorithm. The
error rate was defined as 1 minus the validation value. The error of obstacle detection was 1 minus
F1 score, or 0.12, error of size estimation was 0.07, and error of distance estimation was 0.133. The
error propagation value obtained from the error rate of each detailed algorithm is 0.19; therefore, the
overall accuracy of our algorithm is 0.81.
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Table 2: Accuracy result for estimating the size of an obstacle

Dataset Module Accuracy

CMU Size estimation 0.83
Ours dataset Size estimation 0.93

Table 3: Average error rate for distance estimation of obstacle localization

Module Error rate

Distance estimation 0.133

5 Conclusion

This study is related to the generation of up-to-date disaster digital maps by tracking the locations
of collapsed places that are difficult to enter and unknown obstacles, and mapping them on building
maps for efficient search and rescue work by identifying the disaster situation inside buildings. The
places that can and cannot be accessed inside buildings were identified using a low-cost robot, and
the information of various accessible obstacles was collected. The obstacle detection performance of
the proposed algorithm indicated a high accuracy of 93%, and the obstacle location estimation had an
error rate of 0.133. Up-to-date digital maps can be created using the information of obstacles obtained
in this study, and they will be effective for research of the autonomous driving of robots; however, as
aforementioned, inaccurate detections because of the effects of light and various environments inside
buildings occasional occur. We will conduct a research on obstacle detection in indoor environments of
special shapes to address this challenge, and also conduct research to create more concrete up-to-date
disaster digital maps by detecting outdoor obstacles around buildings.
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