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Abstract: Association rules’ learning is a machine learning method used in
finding underlying associations in large datasets. Whether intentionally or
unintentionally present, noise in training instances causes overfitting while
building the classifier and negatively impacts classification accuracy. This
paper uses instance reduction techniques for the datasets before mining the
association rules and building the classifier. Instance reduction techniques
were originally developed to reduce memory requirements in instance-based
learning. This paper utilizes them to remove noise from the dataset before
training the association rules classifier. Extensive experiments were conducted
to assess the accuracy of association rules with different instance reduction
techniques, namely: Decremental Reduction Optimization Procedure (DROP)
3, DROP5, ALL K-Nearest Neighbors (ALLKNN), Edited Nearest Neigh-
bor (ENN), and Repeated Edited Nearest Neighbor (RENN) in different
noise ratios. Experiments show that instance reduction techniques substan-
tially improved the average classification accuracy on three different noise
levels: 0%, 5%, and 10%. The RENN algorithm achieved the highest levels of
accuracy with a significant improvement on seven out of eight used datasets
from the University of California Irvine (UCI) machine learning repository.
The improvements were more apparent in the 5% and the 10% noise cases.
When RENN was applied, the average classification accuracy for the eight
datasets in the zero-noise test enhanced from 70.47% to 76.65% compared to
the original test. The average accuracy was improved from 66.08% to 77.47%
for the 5%-noise case and from 59.89% to 77.59% in the 10%-noise case.
Higher confidence was also reported in building the association rules when
RENN was used. The above results indicate that RENN is a good solution
in removing noise and avoiding overfitting during the construction of the
association rules classifier, especially in noisy domains.
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1 Introduction

Data mining deals with the discovery of interesting unknown relationships in big data. It is the
main technique used for knowledge discovery. Knowledge discovery is the extraction of hidden and
possibly remarkable knowledge and underlying relations in raw data [1]. The aim of data mining is
detecting the implicit and meaningful knowledge within raw data, which mainly has the following
functions: Automatic prediction of trends and behavior, automatic data mining in large databases to
find predictive information, the need for a large number of manual analyses of the problem can be
done quickly and directly from the data itself to draw conclusions [2]. Association rule mining is a
knowledge discovery technique that discovers remarkable patterns in big datasets; this is considered a
crucial task during data mining [3,4]. A program learns from training samples in machine learning if it
enhances its performance for a specified task with experience [5]. Learning techniques can be divided
into two main groups [6]:

a. Supervised Learning: The training dataset has input vectors and matching target value(s).
b. Unsupervised Learning: The training dataset has input vectors but no output values related to

them. Thus, the learning procedure determines distinct clusters or groups inside the datasets.

For classical supervised machine learning cases, the number of training instances is usually large.
It could be enormous for certain types of problems. Each training instance consists of a vector of
attribute values that are highly likely to uniquely correspond to a specific target class. Association
rules algorithms are applied to these training examples to discover frequent patterns later used to
classify unseen instances. Improving the quality of mined association rules is a complicated task
involving different methods such as prevention, process control, and post evaluation, which utilize
appropriate mechanisms. Users’ active contribution in mining is the key to solving the problem [2].
The accuracy of machine learning algorithms is affected by the overfitting problem that occurs due to
closely inseparable classes or more frequently due to noisy data. Overfitting means that the precision
of the classification of current training examples is high, whereas the precision of classifying unseen
test examples is much smaller [7].

Fig. 1a illustrates the case when noisy instances, which cause overfitting, are present. The
constructed decision boundary between class o and class x overfits the training data, but it does not
generalize well, which may cause the misclassification of unseen instances. In Fig. 1b, border (possibly
noisy) instances are eliminated, simplifying finding a borderline that separates the two classes and is
more likely to achieve a generalization accuracy. To reduce the effect of overfitting on the accuracy,
noisy data should be eliminated. If the training dataset is free from noise, removing duplicates and
invalid data; could improve the classification accuracy. However, most real-world data is not clean,
and error rates are frequent in the range between 0.5% and 30%, with 1%–5% being very frequent [8].

This study aims to avoid overfitting problems in association rules learning using instance reduction
techniques as noise filters. The investigated solution is a dual goal approach. It uses instance reduction
techniques, which are proposed for minimizing memory requirements in instance-based learning [9], to
minimize overfitting without degrading the classification accuracy of the association rules. As a result,
it reduces the complexity of the classifier. Implementing noise-filtering techniques aims to decrease the
number of misclassified instances caused by noise. Previous preliminary work investigated the effect of
applying some limited instance reduction techniques on chosen datasets. Preceding association rules
mining and building classifier with instance reduction as a pre-cleansing step, aiming to minimize the
effect of noise on association rules-based classification [10]. The results showed good improvement
in classification accuracy after applying the ALL K-Nearest Neighbors (ALLKNN) algorithm,
particularly with higher noise ratios. This study examines through extensive empirical experiments the
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effect of applying five instance reduction techniques, namely Decremental Reduction Optimization
Procedure (DROP) 3, DROP5, ALLKNN, Edited Nearest Neighbor (ENN), and Repeated Edited
Nearest Neighbor (RENN) techniques on the accuracy of association rules classifier. These techniques
are covered in Section 2.4.

Figure 1: Decision boundaries with and without noisy instances. a) overfitting due to noise b)
eliminating overfitting by eliminating noisy instances

The rest of this paper is organized as follows: Section 2 presents an overview of association
rules learning and its related performance concepts, then it describes instance reduction techniques
that will be utilized in the research, related literature is also discussed. Section 3 covers the research
methodology; it includes experiments description, performance metrics, the used datasets, and the
experiment settings. The conducted experiments are described, and the obtained results are discussed
in Section 4 with illustrations and comparisons. Section 5 summarizes the results and presents avenues
for future work.

2 Literature Review

This section gives an overview of association rules learning and its related performance concepts,
then it describes utilized instance reduction techniques, related literature is also discussed.

2.1 Association Rules

Association rules classifier is a technique implemented to discover new knowledge from hidden
relations among data items in a dataset. An association rule is presented as a relationship between two
sides, A→ B, where A and B represent a variable or a group of variables. A represents the ancestor,
while B represents the consequent. A commonly represents attributes illustrate a specific data record
that governs the other part B, representing the objective class (output). Association rules learning can
be applied to:

• Datasets with transactions on them: a collection of transaction records for specific data items,
such as transactions on a supermarket’s items.

• Datasets have no transactions: such as medical records for patients.
• Data with no timestamp is persistent through time, such as DNA sequencing.

Many association rules algorithms have been presented, for example, Apriori, Apriori Transaction
Identifier (AprioriTID), Frequent Pattern (FP) Growth (FP-Growth), and others [11,12]. Apriori is
the most widely used algorithm for mining association rules [11]. In Apriori, a rule-based classifier
is built from the extracted association rules, which are mined from a large dataset. It calculates the
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occurrences of each item combination, and then combinations below a specific minimum threshold
are excluded. Once the items sets are excluded, the support for each subset of items is computed using
Breadth-First Search and a Hash-Tree structure. Support is described in Section 2.2.

FP-Growth is another algorithm for extracting association rules. Similarly, the support of each
itemset is computed; individual items within an itemset are ordered in descending way according to
the support values. Any itemsets under the minimum specified support are eliminated. The remaining
itemsets are then used to build a Frequent Pattern Tree (FP-Tree) [13]. The FP-Tree illustrates a prefix
tree presenting the transactions [13], where an individual path represents a group of transactions
sharing similar prefix items. Then, each item is represented by a node. All nodes referring to the same
item are linked in a list. Iteratively, a new path is constructed for each unique transaction, and if it
shares a common prefix itemset, nodes are added as needed. The processing order of examples does
not matter in association rules learning, nor each variable’s order within the example.

2.2 Support and Confidence

The biggest problem in mining association rules from big datasets is the vast number of rules. The
number of rules increases exponentially as the dataset size increases. Thus, most algorithms limit the
discovered rules to specific quality measures. Those measures are usually support and confidence for
each discovered rule. The following equation calculates the support for each itemset:

Support (I0) = |{τ ∈ R|I0 ⊆ τ }|
R

(1)

I0 is an instance from the items’ set I, R is a transaction set on I, and τ (tau) is a transaction on I0

[1].

The confidence for generated association rule is computed using the following equation:

Confidence (A → C) = support (A ∪ C)

support (A)
(2)

A → C is the examined rule for calculating its accuracy [1]. Typical algorithms for association rules
mining find all itemsets meeting the minimum specified support. Association rules are then generated
from them [14], resulting in an excessively large number of very specific association rules or rule sets
with low predictive power.

2.3 Overfitting and Association Rules Pruning

Overfitting the training results is considered the most serious problem for discovering association
rules. Overfitting is when very accurate classification accuracy is obtained for the training examples,
while it is much worse for unseen examples. The pruning method is used to prevent the overfitting
issue. Association rules pruning is divided into two main approaches [15]:

a. Pre-Pruning: Sample from the generated rules are terminated. It is commonly applied when
the algorithm implemented for generating association rules uses a decision tree in intermedi-
ate form.

b. Post-Pruning: Some of the rules are eliminated after generating all rules. Two main methods
for post-pruning can be applied depending on their error rates. One of the approaches divides
the dataset into three parts: training, validation, and testing datasets. The training dataset is
used to generate association rules, and then pruning is applied based on the association rules
performance on the validation set by eliminating rules under a minimum stated threshold. The
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other method is pessimistic error pruning; where the training part is used for both training and
validation, and the pessimistic error rate is calculated per rule. Rules that have a pessimistic
error greater than the corresponding sub-rules will be removed.

2.4 Instance Reduction Algorithms

For big datasets, excessive storage and time complexity are needed to process the large number of
instances in a dataset. Moreover, some of these instances may cause the classifier to be very specific
and generate an overfitted classifier that produces unreliable classification results on unseen data.
Instance reduction algorithms are mainly used to minimize the vast memory requirements for huge
datasets [9]. Most instance reduction algorithms have been designed and combined with the nearest
neighbor classifier. As a lazy learning algorithm, it classifies unseen instances to the class to which the
majority of their k nearest neighbors in the training set belong based on a certain distance or similarity
measure. Thus, reducing the training set allows us to reduce computations complexity and alleviate the
high storage requirement of this classifier [16].

Instance reduction algorithms are categorized into two groups:

• Incremental reduction algorithms: the process starts with an empty set, and in each iteration,
essential items from the original dataset are added incrementally, e.g., Encoding Length
(ELGrow) [17].

• Decremental reduction algorithms: begin with the complete dataset, then progressively elimi-
nate irrelevant items, e.g., Decremental Reduction Optimization Procedures (DROPs) [9].

In this research, instance reduction algorithms are used as filtering techniques to keep the nearest
instances based on a specified distance function and discard other distant instances that could cause
overfitting.

The following is a brief description of the instance reduction algorithms tested in this work:

• ALLKNN algorithm [18]: ALLKNN extended ENN. This algorithm works as follows: for i = 1
to k, any instance that is not classified correctly by its neighbors is flagged as a bad instance.
After completing the loop all k times, instances flagged as bad are removed from S.

• ENN algorithm [19]: A Decremental reduction algorithm; it starts with the whole dataset S and
then removes each instance that does not conform to any of its K nearest neighbors (with K = 3,
typically) according to the applied distance function. This process smooths decision boundaries
by removing noisy cases and close-border instances. ENN algorithm has been used in various
condensation methods as a pre-processing filter to exclude the noisy instances [20].

• RENN Algorithm [19]: RENN applies ENN repeatedly until the majority of the remaining
instances’ neighbors have the same class, leaving clear classes with smooth decision boundaries.

• DROP3 algorithm [19]: This algorithm starts with a noise filtering pass similar to ENN. Any
instance misclassified by its k nearest neighbors is removed from S. Then instances are sorted
according to the distance between them and their nearest enemy (nearest neighbor in a different
class). Instances with higher distances are removed first.

• DROP5 algorithm [9]: The removal criterion for an instance is: “Remove instance p if at least as
many of its associates in T would be classified correctly without p.” The removal process starts
with instances that are nearest to their nearest enemy.

The mentioned instance reduction algorithms keep the patterns that have a higher contribution
for pattern classification and remove the large number of inner patterns and all outlier patterns [20].
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2.5 Related Work

Many of the algorithms for discovering association rules work on structured data. However,
nowadays, with the widespread sensor-rich environments and the massive volume of flexible and
extensible data (e.g., JavaScript Object Notation (JSON)), these algorithms are not designed for
unstructured or semi-structured datasets. Jury on [21] presented a data analytics method for data
models in a tree-based format to support the discovery of positive and negative association rules.
His method evaluates fractions of Extensible Markup Language (XML) based data to determine if
they could present informative negative rules or not, even if their support and confidence values were
not enough to the given conditions. The work in this paper can also be applied to unstructured data.
However, in this case, datasets have to be transformed using an information retrieval scheme to apply
filtering techniques before generating association rules.

Dong et al. [22] referenced the main problem in mining Positive and Negative Association Rules
(PNAR), which represent a huge count of discovered rules. Indeed, the number of negative rules is
more than three times of the positive rules discovered. This makes it very difficult for users to build a
decision from these rules. A novel methodology is presented to prune redundant negative association
rules by applying logical reasoning. They merged the correlation coefficient with multiple minimum
confidences to assure that the discovered PNARs are related, this proposed model supports the control
of the count of all rule’s types, and it prunes weak correlation rules.

An analysis of the crucial risk factors and treatment mechanisms, following the integrated
Bayesian network, then applying association rule algorithms has been confronted by Du et al. [23].
They applied their study to analyze the methods to minimize the risk of postpartum hemorrhage after
cesarean section. The probability of risk factors influencing the main factors that cause postpartum
hemorrhage after the cesarean section has been computed by a Bayesian network model depending
on regression analysis. The discovered rules confronted solutions to different causes of postpartum
hemorrhage and offered suggestions for medical institutions to amend the efficiency of variance
treatment.

Yang et al. [24] focused on the process of finding and pruning time series association rules from
sensor data. Regular association rules algorithms produce a huge number of rules; this makes it very
hard to interpret or use; thus, they presented a two-step pruning approach to decrease the redundancy
in a huge result set of time series rules. The first step targets determining rules that can correspond to
other rules or carry more information than other rules. The second step summarizes the leftover rules
using the bipartite graph association rules analysis method, which is appropriate for demonstrating
the distribution of the rules and summarizing the interesting clusters of rules.

Najafabadi et al. [25] applied a modification step to the pre-processing phase prior to the
association rules mining to discover similar patterns. Also, they used the clustering method in the
proposed algorithm to minimize the data size and dimensionality. The results indicated that this
algorithm improved the performance over traditional collaborative filtering techniques measured by
precision and recall metrics.

Most business enterprises aim to anticipate their client potential to help business decisions and
determine possible business intelligence operations to acquire dependable forecasting results. Yang
et al. [26] modified the Naïve Bayes classifier in association rules mining to determine the relations
for marketing data in the banking system. In the first step, a classifier was implemented to classify
dataset items. Then, the Apriori algorithm was employed to merge interrelated attributes to minimize
the dataset’s features.
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Nguyen et al. [27] used collaborative filtering for quantitative association rules to build a recom-
mendation system. A solution has been presented to discover association rules on binary data and to
support quantitative data. The algorithm was applied on Microsoft Web (MSWEB) and MovieLens
datasets, binary and quantitative datasets. The results indicate that the proposed collaborative filtering
model to discover implication rules is more efficient than the traditional model measured by accuracy,
performance, and the required time for building a recommender system.

Zhang et al. [28] proposed a novel multi-objective evolutionary algorithm to discover positive and
negative association rules. This algorithm aims to enhance the process of multi-objective optimization
by applying a reference point that depends on a non-dominated sorting method. The genetic crossover
technique is applied to extend the process for crossover, and the rules mutation has been improved.
In addition, the algorithm can deal with all attribute types in the datasets. The results show that this
improved algorithm performs much more effectively in quality measurements.

3 Research Methodology
3.1 Experiments Description

The proposed approach includes performing a set of experiments to demonstrate results compared
to other approaches. Experiments are applied as follows:

a. Read a dataset from the UCI machine learning repository.
b. Produce new datasets by injecting noise with 0%, 5%, and 10% to the original datasets. Noise

is injected by randomly changing the class attribute of the itemsets.
c. For each of the above noise ratios, generate association rules in each of the following cases:

• Neither noise filtering nor pruning techniques are applied.
• Built-in pruning is used without implementing noise filtering techniques.
• Noise filtering techniques are used without implementing built-in pruning.
• Noise filtering techniques and built-in pruning are both applied.

Experiment (a) aims to study the impact of noise on classification accuracy, while experiment (b) is
intended to show whether applying only pruning will improve the classification accuracy. Experiment
(c) aims to discover the efficiency of only implementing noisy filtering techniques. Finally, experiment
(d) tests the efficiency of combining noise filtering and pruning algorithms in succession. The previous
experiments aim to illustrate the impact of noise on classification accuracy and examine the effect of
built-in pruning and noise filtering techniques on the classification accuracy in noisy instances. To
conduct the above experiments and apply association rules classification, the Waikato Environment for
Knowledge Analysis (WEKA) data mining tool [29] is employed to build an association rules classifier
from datasets. WEKA implements several algorithms to build association rules. The Apriori algorithm
is used in this research since it is adequate with all the chosen datasets. The research methodology is
illustrated in Fig. 2.

The pruning function implemented in WEKA applies a pessimistic error rate-based pruning
in C4.5. After deleting one of their conditions, it keeps the rules that have an estimated error rate
lower than those of the same rules. The pessimistic error rate is a top-down greedy pruning approach
that eliminates conditions successively from the Apriori-Tree if this reduces the estimated error. The
problem is that some rules could be discarded totally, which means that some cases will not be covered,
and this will affect the prediction of unseen instances. This will be confirmed empirically in this
research.
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Figure 2: The research methodology followed in the paper

In WEKA, JCBAPrunning is a class implementing the pruning step of the classification Based
on Association (CBA) algorithm using a Cache-conscious Rectangle Tree (CR-Tree). The CR-tree is
a prefix tree structure to explore the sharing among rules, which achieves substantial compactness.
CR-tree itself is also an index structure for rules and serves rule retrieval efficiently. Valid options for
JCBAPruning are:

• C the confidence value: The confidence value for the optional pessimistic-error-rate-based
pruning step (default: 0.25).

• N: If set, no pessimistic-error-rate-based pruning is performed.

3.2 Performance Metrics

The accuracy of association rules classification in different experiments is compared using several
performance metrics: precision, recall, and percentage of correctly classified instances. Here is a brief
explanation for each measure:

Precision (true positives) = Number of the instances which truly have class x
Total number of instances classified as class x

(3)
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Recall = True Positive
True positive + false negative

(4)

where False negatives: percentage of incorrectly classified examples as not belonging to class x while
they truly belong to class x.

Correctly classified instances percent = Number of correctly classified instances
Number of all instances

(5)

3.3 Datasets

To evaluate the proposed approach, eight benchmark datasets were selected from the University
of California Irvine (UCI) machine learning repository [30] to conduct the experiments. These datasets
vary in size, the number of attributes, and data type. These datasets are convenient to supervised
learning as they include only one class, as the Apriori algorithm accepts only single target attribute
datasets. Tab. 1 shows the details for the used datasets.

Table 1: UCI eight benchmark datasets

Name Instances Input attributes Output attributes Classes

Iris 150 4 1 3
Glass 214 9 1 7
Voting 435 16 1 2
Breast cancer-diagnostic 699 10 1 2
Liver 345 6 1 2
Pima-indians-Diabetes 768 8 1 2
Banknote authentication 1372 4 1 2
Heart-Cleveland 303 13 1 2

3.4 Experiments Settings

WEKA, a data mining tool from the University of Waikato, New Zealand, was used to conduct
the pre-described experiments and build associate rules classifiers from the above datasets. The version
that was used to apply association rule-based classification is WEKA 3.8.4. This version of WEKA
contains a package manager that enables the user to install learning schemes (in our case, we will install
Java association rule-based classifier) since it is not embedded implicitly. This classifier implements
Apriori and predictive Apriori algorithms. In the conducted experiments, Apriori is applied since
it fits the chosen datasets. An optional pruning parameter is included in the Apriori algorithm
to enable/disable built-in pruning. The algorithm works as a decision list classifier and includes
mandatory and optional pruning phases. The optional pruning parameters are deactivated when no
pruning is implemented. A pessimistic error rate-based pruning is applied in the pruning function
such as in C4.5. Thus, the rules are pruned with an approximate error, which is greater than the
corresponding rule after deletion of one of its conditions. Elective pessimistic error rate-based pruning
has a confidence level that ranges from zero to 1.0. The conducted experiments, set confidence value
to its default value of 0.25. To prepare the datasets for the experiments, attribute values must be
discretized as required by the classifier.
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In WEKA, Discretize is an instance filter that discretizes a range of numeric attributes in a dataset
into nominal attributes. Discretization is a simple binning. Skips the class attribute if set. Continuous
ranges are divided into sub-ranges by the user-specified parameter, such as equal width (specifying
range of values) and equal frequency (number of instances in each interval).

Valid options for the discretizing filter are:

- unset-class-temporarily: Unsets the class index temporarily before the filter is applied to the
data. (default: no)

- B<num>: Specifies the (maximum) number of bins to divide numeric
attributes into. (default = 10)

-M<num>: Specifies the desired weight of instances per bin for
equal-frequency binning. If this is set to a positive number, then
the-B option will be ignored. (default = −1)

- F: Use equal-frequency instead of equal-width discretization.
- O: Optimize the number of bins using leave-one-out estimate of

estimated entropy (for equal-width discretization). If this is set,
then the-B option will be ignored.

- R <col1, col2-col4, . . . >: Specifies list of columns to Discretize. First and last are valid
indexes. (default: first-last)

- V: Invert matching sense of column indexes.
- D: Output binary attributes for discretized attributes.
- Y: Use bin numbers rather than ranges for discretized attributes.
- precision<integer>: Precision for bin boundary labels. (default = 6 decimal places).
- spread-attribute-weight: When generating binary attributes, spread weight of old attribute

across new attributes. Do not give each new attribute the old
weight.

4 Experiments and Results

The proposed approach aims to reduce the effect of overfitting in noisy domains by applying
instance reduction techniques, which will act as noise filters before generating association rules and
conducting association rules classification. Classification accuracy will be compared with the case
when only built-in pessimistic error pruning is applied. Further comparisons will explore the effect
of combining both instance reduction (noise filtering) techniques and built-in pruning to improve
classification accuracy.

In addition to the noise-free base case, the noise was also introduced to the datasets in two ratios:
5% and 10% by changing classes of the itemsets. In the classification task, 10-fold cross-validation is
used to test the learning algorithm. Also, filtering techniques, when applied, use 10-folds. The results
reported in this section show the average for the 10-folds. The used performance metrics are the
percentage of correctly classified instances, precision, and recall.



CMC, 2022, vol.72, no.2 3729

4.1 Investigating the Effect of Noise

In this experiment, both noise filtering and built-in pruning were not applied. This experiment
aims to study the effect of noise and construct a baseline that can be compared with the results in
subsequent experiments. Tab. 2 shows the performance of associate rules using different datasets under
0%, 5%, and 10% noise ratios. Fig. 3 compares the performance of the association rules classifier using
different noise ratios when both noise filtering and built-in pruning were not applied. It can intuitively
be noticed that all three performance metrics degrade with the increased noise level. The above set
of experiments will be referred to as baseline when compared with the results obtained in subsequent
sections.

Table 2: Association rules classifier results with no pruning, no filtering using different noise ratios

0% noise (A1) 5% noise (B1) 10% noise (C1)

Dataset name Correctly
classified
%

Precision
%

Recall % Correctly
classified
%

Precision
%

Recall % Correctly
classified
%

Precision
%

Recall %

Iris 94.00 94.00 94.00 80.00 84.00 80.00 63.33 68.00 63.00
Glass 47.20 48.00 47.00 38.32 59.00 38.00 37.38 41.00 37.00
Voting 92.41 92.00 92.00 92.41 92.00 92.00 80.23 80.00 80.00
Breast
cancer-diagnostic

92.99 93.00 93.00 89.56 90.00 90.00 73.82 75.00 74.00

Liver 57.97 34.00 58.00 57.10 33.00 57.00 57.97 34.00 58.00
Pima-indians-diabetes 67.19 72.00 67.00 63.54 40.00 64.00 62.11 39.00 62.00
Banknote
authentication

55.54 31.00 56.00 55.03 30.00 55.00 54.45 30.00 54.00

Heart-cleveland 56.44 50.00 56.00 52.68 28.00 53.00 49.84 25.00 50.00
Average 70.47 64.25 70.38 66.08 57.00 66.13 59.89 49.00 59.75
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Figure 3: Comparison of performance of association rules under different noise ratios with no noise
filtering or built-in pruning

4.2 The Effect of Applying Filtering and Pruning

In this section, a series of experiments are conducted to study the effect of implementing noise
filtering and built-in pruning in different combinations on the datasets with 0%, 5%, and 10% noise
ratios inserted.



3730 CMC, 2022, vol.72, no.2

4.2.1 The Effect of Applying Filtering and Pruning with 0% Noise

Experiments set (A1-A4) are applied on the original datasets without noise injection.

• A1. Baseline results were obtained in Section 4.1 without applying noise filtering or pruning.
• A2. Results were obtained by applying built-in pruning methods with no noise filtering method.
• A3. Results were obtained by applying noise filtering methods without built-in pruning.
• A4. Results were obtained by applying both noise filtering and built-in pruning.

Tab. 3 compares the accuracy for cases: A1, A2, and A3 for the chosen datasets using different
instance reduction techniques. Tab. 4 compares the accuracy for cases: A1, A2, and A4. Results
highlighted in Bold indicate classification accuracy enhancements compared with the baseline case
A1. In all Subsequent tables, CC implies Correctly Classified instances, P implies precision, and R
implies recall.

It can be clearly noticed that applying only pruning to the datasets in case A2 was insufficient
to increase the classification accuracy. It unexpectedly reduced the overall precision compared with
the base case A1. This was a probable result due to the behavior of pessimistic error rate-based
pruning methodology as a greedy pruning approach that consecutively eliminates conditions from the
Apriori-Tree if this minimizes the estimated error. Some potential important rules could be discarded;
consequently, the prediction accuracy for unseen instances could be affected. A3 cases show the impact
of using noise filtering techniques only without applying pruning. ENN showed good improvement,
and better results were achieved when RENN was applied as the classification accuracy improved in
five out of eight datasets.

The last set of tests, A4, investigates the impact of implementing both noise filtering and built-
in pruning algorithms. When results are compared with A3 cases, classification accuracy is reduced
heavily, even when compared to the benchmark case A1. Therefore, implementing both filtering and
pruning algorithms concurrently would not certainly result in better classification accuracy. It must be
noted that the behavior of this combination of algorithms still needs to be studied in noisy domains,
as explored in the subsequent experiments. As the best results in the current set of experiments were
achieved when only noise filtering was applied before building association rules (A3), the impact of
applying noise filtering techniques on the quality of association rules will be examined next.

Tabs. 5 and 6 compare the resulting rules without applying filtering or built-in pruning with the
resulting rules after applying RENN (the best noise filter) for the Breast-Cancer dataset. Tab. 5 shows
the first ten rules and their confidence value produced in the zero-noise case without applying filtering
or pruning. The confidence range for the rules produced after applying RENN is shown in Tab. 6.

It can be noticed that applying RENN affected the confidence of the generated association rules.
When neither noise filtering nor pruning were applied, the confidence ranged from 1 to 0.94, while it
improved with RENN from 1 to 0.99.

More experiments are needed in noisy domains to check the effectiveness of instance reduction
techniques as noise filters.
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Table 5: Confidence value for the first ten rules when neither noise filtering nor built-in pruning was
applied at 0% noise ratio

Rule Confidence

If uniformity of cell size = 1 AND normal nucleoli = 1 ==> Class = 2 1
If uniformity of cell shape = 1 ==> Class = 2 0.99
If uniformity of cell size = 1 AND mitoses = 1 ==> Class = 2 0.99
If bare nuclei = 1 AND normal nucleoli = 1 ==> Class = 2 0.99
If uniformity of cell size = 1 ==> Class = 2 0.99
If bare nuclei = 1 AND mitoses = 1 ==> Class = 2 0.98
If bare nuclei = 1 ==> Class = 2 0.96
If single epithelial cell size = 2 AND mitoses = 1 ==> Class = 2 0.95
If marginal adhesion = 1 AND mitoses = 1 ==> Class = 2 0.95
If single epithelial cell size = 2 ==> Class = 2 0.94

Table 6: Confidence value for the first ten rules when RENN noise filtering was applied without built-
in pruning at 0% noise ratio

Rule Confidence

If uniformity of cell size= (-inf-0.9] AND normal nucleoli= (-inf-0.9] ==> Class = 0 1
If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] ==> Class = 0 1
If uniformity of cell size= (-inf-0.9] AND normal nucleoli= (-inf-0.9] AND mitoses=
(-inf-0.9] ==> Class = 0

1

If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] AND mitoses=
(-inf-0.9] ==> Class = 0

1

If uniformity of cell shape= (-inf-0.9] ==> Class = 0 1
If uniformity of cell shape= (-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0 1
If uniformity of cell Size= (-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0 0.99
If bare nuclei= (-inf-0] AND normal nucleoli= (-inf-0.9] AND mitoses= (-inf-0.9]
==> Class = 0

0.99

If marginal adhesion= (-inf-0.9] AND bare nuclei= (-inf-0] AND mitoses= (-inf-0.9]
==> Class = 0

0.99

If marginal adhesion= (-inf-0.9] AND normal nucleoli= (-inf-0.9] AND mitoses=
(-inf-0.9] ==> Class = 0

0.99

4.2.2 The Effect of Applying Filtering and Pruning with 5% Noise

Experiments set (B1-B4) 5% noise ratio was injected into the datasets by changing the class
attribute. Four different tests are conducted as follows:

• B1. Baseline results were obtained in Section 4.1 without applying noise filtering or pruning.
• B2. Results were obtained by applying built-in pruning methods with no noise filtering method.
• B3. Results were obtained by applying noise filtering methods without built-in pruning.
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• B4. Results were obtained by applying both noise filtering and built-in pruning.

Tab. 7 compares the accuracy for cases: B1, B2, and B3 for the chosen datasets using different
instance reduction techniques. Tab. 8 compares the accuracy for cases: B1, B2, and B4. Results
highlighted in Bold indicate accuracy enhancements compared with the baseline case B1.

It can be noticed that in B2 when only built-in pruning was applied, classification accuracy did
not increase for the 5% noise injected datasets. It even reduced overall accuracy due to the pessimistic
error rate-based pruning approach. From B3 experiments it appears that applying ALLKNN showed
a great improvement, RENN achieved a significant improvement. It can be noticed from Tab. 7 that
the difference between the results achieved by RENN (77.47%) in comparison to the baseline (66.08%)
is greater than the same difference (76.65% to 70.47%) when the noise was 0% as shown in Tab. 3. This
indicates that the improvement due to the noise filter would be more apparent with the increase in
the noise ratio. This observation will later be thoroughly analyzed. The results for the last set B4 were
worse than those in B3, applying ALLKNN and RENN with pruning introduced good results, but
still the best results achieved by applying ALLKNN and RENN without pruning.

Tab. 9 shows the first ten rules produced for the Breast-Cancer dataset and their confidence
without applying filtering or built-in pruning with a 5% noise ratio. Tab. 9 shows the first ten rules
with their confidence produced after applying RENN. It can be noticed from Tab. 9 that the ten rules
have a 0.94 confidence value, which is lower than the zero-noise case, and this is an expected result due
to noise. Again, the confidence value for the constructed association rules improved when the RENN
noise filter was applied; it ranges from 1 to 0.99, as shown in Tab. 10.

4.2.3 The Effect of Applying Filtering and Pruning with 10% Noise

Experiments set (C1-C4) 10% noise ratio was injected into the datasets by changing the class
attribute. Four different tests are conducted as follows:

• C1. Baseline results were obtained in Section 4.1 without applying noise filtering or pruning.
• C2. Results were obtained by applying built-in pruning methods with no noise filtering method.
• C3. Results were obtained by applying noise filtering methods without built-in pruning.
• C4. Results were obtained by applying both noise filtering and built-in pruning.

Tab. 11 compares the accuracy for cases: C1, C2, and C3 for the chosen datasets using different
instance reduction techniques. Tab. 12 compares the accuracy for cases: C1, C2, and C4. Results
highlighted in Bold indicate accuracy enhancements compared with the baseline case C1.

In this experiment, it is hard to notice an improvement in C2 compared to C1. Accuracy
enhanced significantly in C3 when ALLKNN and RENN were applied, which indicates an excellent
performance for these techniques with higher noise ratios. Also, improvements are made in C4 when
applying ALLKNN and RENN simultaneously with pruning, compared to C1.

The efficiency of applying only noise filtering, mainly ALLKN and RENN, is becoming more
evident with the increased injected noise ratio. RENN achieved 77.59% classification accuracy
compared to (59.89%) achieved by the baseline experiment with the same noise ratio. When the noise
ratio was 0%, RENN achieved 76.65%, while the achieved accuracy with the baseline at the same noise
ratio was 70.47%, as reported in Tab. 3. The difference now is more apparent, indicating the increasing
importance of using noise filtering techniques in the presence of more noise.
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Table 9: Confidence value for the first ten rules when neither noise filtering nor built-in pruning was
applied at a 5% noise ratio

Rule Confidence

If uniformity of cell size= (-inf-1.9] AND bare nuclei= (-inf-1.9] ==> Class = 2 0.94
If uniformity of cell size= (-inf-1.9] AND bare nuclei= (-inf-1.9] ==> Class = 2 0.94
If bare nuclei= (-inf-1.9] AND normal nucleoli= (-inf-1.9] AND mitoses= (-inf-1.9]
==> Class = 2

0.94

If bare nuclei= (-inf-1.9] AND normal nucleoli= (-inf-1.9] AND mitoses= (-inf-1.9]
==> Class = 2

0.94

If uniformity of cell size= (-inf-1.9] AND normal nucleoli= (-inf-1.9] ==> Class = 2 0.94
If bare nuclei= (-inf-1.9] AND normal nucleoli= (-inf-1.9] ==> Class = 2 0.94
If uniformity of cell size= (-inf-1.9] AND normal nucleoli= (-inf-1.9] ==> Class = 2 0.94
If uniformity of cell shape= (-inf-1.9] ==> Class = 2 0.94
If bare nuclei= (-inf-1.9] AND normal nucleoli= (-inf-1.9] ==> Class = 2 0.94
If uniformity of cell shape= (-inf-1.9] ==> Class = 2 0.94

Table 10: Confidence value for the first ten rules when RENN noise filtering was applied without
built-in pruning at a 5% noise ratio

Rule Confidence

If uniformity of cell size= (-inf-0.9] AND normal nucleoli= (-inf-0.9] ==> Class = 0 1
If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] ==> Class = 0 1
If uniformity of cell size= (-inf-0.9] AND normal nucleoli= (-inf-0.9] AND mitoses=
(-inf-0.9] ==> Class = 0

1

If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] AND mitoses=
(-inf-0.9] ==> Class = 0

1

If uniformity of cell shape= (-inf-0.9] ==> Class = 0 1
If uniformity of cell shape= (-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0 1
If uniformity of cell size= (-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0 0.99
If bare nuclei= (-inf-0] AND normal nucleoli= (-inf-0.9] AND mitoses= (-inf-0.9]
==> Class = 0

0.99

If marginal adhesion= (-inf-0.9] AND bare nuclei= (-inf-0] AND mitoses= (-inf-0.9]
==> Class = 0

0.99

If uniformity of cell size= (-inf-0.9] ==> Class = 0 0.99
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The use of filtering algorithms also enhanced the confidence of the discovered association rules
in both 0% and 5% noise cases. The confidence values of the association rules with the 10%-noise case
will be compared. Tab. 13 shows the first ten rules produced for the Breast-Cancer dataset and their
confidence without applying filtering or built-in pruning with a 10% noise ratio. Tab. 14 shows the first
ten rules with their confidence produced after applying RENN. It can be noticed from Tab. 13 that the
ten rules have a 0.9 confidence value, which is lower than both the 0% noise and 5% noise cases, and
this is an expected result due to noise. Again, the confidence value for the constructed association rules
improved when the RENN noise filter was applied; it ranges from 0.94 to 0.91, as shown in Tab. 14.

Table 13: Confidence value for the first ten rules when neither noise filtering nor built-in pruning was
applied at a 10% noise ratio

Rule Confidence

If uniformity of cell size= (-inf-1.9] AND uniformity of cell shape= (-inf-1.9] AND
bare nuclei= (-inf-1.9] AND normal nucleoli= (-inf-1.9] ==> Class = 2

0.9

If uniformity of cell size= (-inf-1.9] AND uniformity of cell shape= (-inf-1.9] AND
bare nuclei= (-inf-1.9] ==> Class = 2

0.9

If uniformity of cell shape= (-inf-1.9] AND bare nuclei= (-inf-1.9] ==> Class = 2 0.9
If uniformity of cell shape= (-inf-1.9] AND bare nuclei= (-inf-1.9] AND normal
nucleoli= (-inf-1.9] ==> Class = 2

0.9

If uniformity of cell size= (-inf-1.9] AND uniformity of cell shape= (-inf-1.9] AND
bare nuclei= (-inf-1.9] AND mitoses= (-inf-1.9] ==> Class = 2

0.9

If uniformity of cell size= (-inf-1.9] AND uniformity of cell shape= (-inf-1.9] AND
normal nucleoli= (-inf-1.9] ==> Class = 2

0.9

If uniformity of cell shape= (-inf-1.9] AND bare nuclei= (-inf-1.9] AND mitoses=
(-inf-1.9] ==> Class = 2

0.9

If uniformity of cell size= (-inf-1.9] AND uniformity of cell shape= (-inf-1.9] AND
bare nuclei= (-inf-1.9] AND normal nucleoli= (-inf-1.9] ==> Class = 2

0.9

If single epithelial cell size= (1.9–2.8] AND bare nuclei= (-inf-1.9] AND normal
nucleoli= (-inf-1.9] ==> Class = 2

0.9

If uniformity of cell size= (-inf-1.9] AND bare nuclei= (-inf-1.9] AND normal
nucleoli= (-inf-1.9] ==> Class = 2

0.9

4.3 Effect of Pruning

As previously discussed, the results show that applying pruning without filtering did not improve
the classification accuracy compared to using noise filtering alone. Tab. 15 illustrates the average
accuracy for the used datasets on cases when neither pruning nor filtering (i.e., baseline) was used
and when cases when only pruning was used at different noise ratios. It is shown that accuracy drops
steadily as the noise ratio rises for the baseline and pruning-only experiments. Therefore, using pruning
to overcome the noise effect is not a good choice.
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Table 14: Confidence value for the first ten rules when RENN noise filtering was applied without
built-in pruning at a 10% noise ratio

Rule Confidence

If uniformity of cell shape= (-inf-0.9] AND bare nuclei= (-inf-0] AND mitoses=
(-inf-0.9] ==> Class = 0

0.94

If uniformity of cell shape= (-inf-0.9] AND bare nuclei= (-inf-0] ==> Class = 0 0.93
If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] AND mitoses=
(-inf-0.9] ==> Class = 0

0.92

If bare nuclei= (-inf-0] AND normal nucleoli= (-inf-0.9] AND mitoses= (-inf-0.9]
==> Class = 0

0.92

If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] AND normal
nucleoli= (-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0

0.92

If uniformity of cell shape= (-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0 0.92
If uniformity of cell size= (-inf-0.9] AND bare nuclei= (-inf-0] ==> Class = 0 0.92
If marginal adhesion= (-inf-0.9] AND bare nuclei= (-inf-0] AND normal nucleoli=
(-inf-0.9] AND mitoses= (-inf-0.9] ==> Class = 0

0.92

If uniformity of cell shape= (-inf-0.9] ==> Class = 0 0.91
If uniformity of cell size= (-inf-0.9] AND uniformity of cell shape= (-inf-0.9] AND
mitoses= (-inf-0.9] ==> Class = 0

0.91

Table 15: Average performance comparison between baseline experiments and pruning only experi-
ments at different noise ratios

Noise ratio Baseline experiments Pruning only experiments

Correctly
classified%

Precision % Recall % Correctly
classified%

Precision % Recall %

0% 70.47 64.25 70.38 68.64 59.00 69.00
5% 66.08 57.00 66.13 64.17 53.00 64.00
10% 59.89 49.00 59.75 60.60 50.00 61.00

Fig. 4 compares baseline experiments with Pruning only experiments at different noise ratios in
terms of classification accuracy, Precision, and Recall. Both sets of experiments show performance
degradation in the presence of noise. No noticeable improvement can be observed when pruning only
was applied.
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Figure 4: Comparison of average performance of baseline experiments with pruning only experiments
at different noise ratios. a) classification accuracy, b) Precision, and c) Recall

4.4 Effect of Filtering

This section compares the performance of the best three noise filters, namely: ALKNN, ENN,
and RENN, with the baseline experiments’ performance at different noise ratios.

The purpose of this experiment is to investigate whether implementing filtering algorithms alone
will be a good choice to overcome the overfitting problem and improve the classification accuracy.
Tab. 16 shows the average accuracy for the used datasets on the baseline experiments and with cases
when ALLKNN, ENN, and RENN were used at different noise ratios. It is shown that accuracy drops
steadily as the noise ratio rises for the baseline case. Noise filters, however, show greater resistance to
noise. The best noise filter was RENN. Even the difference between the noise filter performance and
baseline was more apparent with the increase in noise ratio. The accuracy difference between RENN
and baseline was 6.18% (76.65–70.47), 11.39% (77.47–66.08), and 17.7% (77.59–59.89) with 0%, 5%
and 10% noise ratios, respectively. Figs. 5a, 4b, and 4c compare baseline experiments with filtering
only experiments at different noise ratios in terms of classification accuracy, Precision, and Recall,
respectively.
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Table 16: Average performance comparison between baseline experiments and filtering only experi-
ments at different noise ratios

Noise
ratio

Baseline experiments ALLKNN ENN RENN

Correctly
classi-
fied%

Precision
%

Recall
%

Correctly
classi-
fied%

Precision
%

Recall
%

Correctly
classi-
fied%

Precision
%

Recall
%

Correctly
classi-
fied%

Precision
%

Recall
%

0% 70.47 64.25 70.38 73.63 75.00 74.50 74.12 74.30 74.10 76.65 77.25 76.60
5% 66.08 57.00 66.13 76.17 77.80 76.40 75.22 75.10 75.30 77.47 78.63 77.80
10% 59.89 49.00 59.75 75.68 78.10 75.60 74.65 74.60 74.80 77.59 80.13 77.80

Figure 5: Comparison of average performance of baseline experiments with filtering only experiments
at different noise ratios. a) classification accuracy, b) Precision, and c) Recall

Applying instance reduction techniques as noise filters showed a significant improvement in
classification accuracy, especially with a higher noise ratio. It appears that filtering techniques work
better in higher noise domains, which is the desired result. The results of applying filtering alone were
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even higher than those of applying both filtering and pruning, as was the evidence in Tabs. 3, 4, 7, 8,
11, and 12. Filtering only is also less complex during the building of the classifier.

4.5 Statistical Analysis of the Results

Training data is a random sample from their populations in machine learning problems. These
samples could be representative of their populations or not. This means that the results obtained
from applying any technique vary depending on the data; a systematic way is needed to exclude the
probability of getting extreme results due to sampling errors.

The null hypothesis of the learning problem needs to be tested and either accepted or rejected.
The null hypothesis assumes that all treatments have similar means: H0: μ1 = μ2 = μ3 . . .= μk.

If the null hypothesis is accepted, there is no significant difference among the tested algorithms. If
the null hypothesis is rejected, it can be concluded that there is a significant difference among the tested
algorithms. In case of rejection, paired t-Tests have to be conducted to show where the performance
has been improved.

One-way Analysis of Variance (ANOVA) is one of the techniques used to test the null hypothesis.
It computes the p-value, which determines whether there is a significant difference or not. P-value
expresses the significance level. This value usually takes one of the values: 0.01, 0.05, or 0.10. In this
research, 0.05 will be used, corresponding to 95% confidence in the results. Tab. 17 shows the ANOVA
results on the 0% noise, 5% noise, and 10% noise cases.

Table 17: ANOVA-single factor for 0% noise, 5% noise and 10% noise. Each group has a count of 8

0% noise 5% noise 10% noise

Groups Sum Average Variance Sum Average Variance Sum Average Variance

No pruning, no
filtering

563.74 70.4675 381.489 528.64 66.08 371.1025 479.13 59.89125 180.7864

With pruning, no
filtering

549.09 68.6363 453.96 513.33 64.1663 387.5751 484.82 60.6025 225.5392

DROP3 filtering 499.57 62.4463 160.838 514.13 64.2663 226.9585 509.22 63.6525 157.574
DROP5 filtering 479.61 59.9513 120.801 481.1 60.1375 135.7991 468.39 58.54875 129.0992
ALLKNN filtering 589.02 73.6275 272.573 609.39 76.1738 182.5565 605.45 75.68125 200.7292
ENN filtering 592.97 74.1213 275.383 601.75 75.2188 210.4981 597.19 74.64875 222.1044
RENN filtering 613.22 76.6525 184.279 619.79 77.4738 157.0744 620.73 77.59125 150.9541
DROP3+pruned 446.79 55.8488 79.6985 457.62 57.2025 138.3458 453.52 56.69 135.6953
DROP5+pruned 453.3 56.6625 86.3477 445.87 55.7338 70.20786 428.75 53.59375 112.1549
ALLKNN+pruned 557.57 69.6963 300.423 563.89 70.4863 265.1169 571.33 71.41625 262.9937
ENN+pruned 531.55 66.4438 361.838 560.67 70.0838 214.7943 558.9 69.8625 251.6669
RENN+pruned 560.19 70.0238 235.237 571.9 71.4875 191.626 567.59 70.94875 227.4864

ANOVA
Source of variation F p-value F crit. F p-value F crit. F p-value F crit.
Between groups 1.56049 0.1258 1.905 2.010671 0.03716 1.9045 2.860114 0.00313 1.9045

The overall p-value for the 0% noise is 0.1258 > 0.05, indicating that there is no significant
difference among these treatments. The null hypothesis is accepted; therefore, there is no need to
perform paired t-Test for this case. This is not a surprising result as the superiority of applying noise
filtering techniques is expected to be more apparent in noisy domains.
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In Tab. 18, only DROP3-Pruned and DROP5-Pruned showed significant differences compared to
the base case with p-values less than 0.05. They are significantly worse than the baseline case with 95%
confidence.

Table 18: Paired t-test results for 5%-noise case

One-tailed p-value With pruning,
no filtering

Filtering techniques Filtering + pruning

DROP3 DROP5 ALKNN ENN RENN DROP3 DROP5 ALKNN ENN RENN

No pruning,
no filtering

0.0965 0.3366 0.1426 0.1020 0.1153 0.0890 0.0363 0.0274 0.2971 0.3021 0.2570

With pruning,
no filtering

0.4917 0.2428 0.0708 0.0808 0.0662 0.0557 0.0561 0.2144 0.2166 0.1858

Filtering
techniques

DROP3 0.0586 0.0460 0.0479 0.0386 0.0569 0.0141 0.2143 0.2137 0.1782
DROP5 0.0026 0.0022 0.0025 0.2422 0.0516 0.0544 0.0463 0.0380
ALLKNN 0.1751 0.1941 0.0077 0.0013 0.0374 0.0119 0.0467
ENN 0.1213 0.0105 0.0019 0.0988 0.0519 0.1394
RENN 0.0082 0.0013 0.0478 0.0190 0.0326

Filtering +
pruning

DROP3 0.2605 0.0323 0.0300 0.0251
DROP5 0.0143 0.0107 0.0085
ALLKNN 0.3336 0.2638
ENN 0.1005
RENN -

The p-value for the 5% noise is 0.03716, which is less than 0.05, and it means that the reported
improvement is statistically significant. The next step is to determine what treatments produced a
significant improvement. Tab. 18 shows the results of paired t-Test for the 5%-noise case. P-values less
than 0.05 indicate a significant difference. There is a particular interest in the difference compared to
the base case (no pruning, no filtering). These values are marked in boldface.

Similarly, the p-value for the 10% noise (from Tab. 17) is 0.0313, which is less than 0.05, which
means that the reported improvement is statistically significant. The next step is to determine what
treatments produced a significant improvement. Tab. 19 shows the results of paired t-Test for the 10%-
noise case. P-values less than 0.05 indicate a significant difference. Particular interest in the difference
compared to the base case (no pruning, no filtering). These values are marked in boldface. In Tab. 19,
RENN, ALKNN, and ENN showed significant differences compared to the base case with p-values
less than 0.05. They are significantly better than the baseline case with 95% confidence. On the other
hand, DROP5-Pruned is significantly worse than the baseline with 95% confidence.

Table 19: Paired t-test results for 10%-noise case
One-tailed p-value With

pruning,
no

filtering

Filtering techniques Filtering + pruning

DROP3 DROP5 ALKNN ENN RENN DROP3 DROP5 ALKNN ENN RENN

No pruning,
no filtering

0.2507 0.2238 0.3549 0.0148 0.0198 0.0137 0.1070 0.0214 0.0599 0.0795 0.0685

With pruning,
no filtering

0.2607 0.2679 0.0182 0.0235 0.0182 0.0986 0.0276 0.0786 0.1044 0.0918

Filtering
techniques

DROP3 0.0434 0.0146 0.0165 0.0117 0.0722 0.0389 0.1261 0.1752 0.1525

(Continued)
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Table 19: Continued
One-tailed p-value With

pruning,
no

filtering

Filtering techniques Filtering + pruning

DROP3 DROP5 ALKNN ENN RENN DROP3 DROP5 ALKNN ENN RENN

DROP5 0.0028 0.0042 0.0033 0.2912 0.0940 0.0376 0.0555 0.0474
ALLKNN 0.1697 0.2081 0.0020 0.0010 0.0664 0.0318 0.0830
ENN 0.1061 0.0039 0.0022 0.1644 0.0789 0.1640
RENN 0.0032 0.0014 0.0540 0.0227 0.0328

Filtering
+ Pruning

DROP3 0.0183 0.0102 0.0165 0.0149
DROP5 0.0044 0.0068 0.0054
ALLKNN 0.0455 0.3660
ENN 0.1624
RENN -

4.6 Summary of Results per Dataset

To summarize the impact of using the best noise filtering algorithms on the eight datasets, Tab. 20
shows the number of datasets improved by applying ALLKNN, ENN and RENN compared with the
base case. These algorithms produced the highest average accuracy.

Table 20: Number of improved datasets with ENN and RENN

Number of improved datasets

Case 0% noise 5% noise 10% noise
No pruning + ALLKNN 5 6 7
No pruning + ENN 5 7 7
No pruning + RENN 5 7 7
With pruning + ALLKNN 4 5 5
With pruning + ENN 4 5 6
With pruning + RENN 5 6 5

RENN was the best noise filtering algorithm in terms of classification accuracy and the number
of improved datasets. It will further be analyzed to check its performance on each dataset. Tab. 21
compares the datasets that improved significantly with RENN compared to the baseline scenario using
0%, 5%, and 10% noise ratios. The + + implies a statistically significant improvement, while + implies
an improvement but not statistically significant. Similarly, the−−indicates that accuracy decreased
significantly, while-indicates that the decrease in accuracy was not significant. Comparing the number
of improved datasets based on the numbers in Tab. 21, it can be noticed that in the zero-noise case,
the classification accuracy with RENN improved statistically significantly in five out of eight datasets
compared to the baseline.

In the 5%-noise case, seven datasets improved. In six of them, RENN improvement was statisti-
cally significant than the base case. In the 10%-noise case, seven datasets improved. In six of them, the
improvement was statistically significant. For the remaining dataset, the difference was not significant.
The Voting dataset is the only dataset that did not improve the classification accuracy for all noise
ratios. A possible justification is that learners (in this case: Association rules) can be biased to specific
data sets. It does not necessarily mean the dataset itself is inaccurate or not balanced.
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Table 21: Comparison of significantly improved datasets with RENN for all noise-cases

Dataset 0% noise 5%-noise 10%-noise

Iris −− + ++
Glass ++ ++ ++
Voting −− −− −−
Breast cancer-diagnostic ++ ++ ++
Liver ++ ++ ++
Pima-indians-diabetes ++ ++ ++
Banknote authentication + ++ +
Heart-cleveland ++ ++ ++

5 Conclusions and Future Work
5.1 Conclusions

This research introduced a novel approach to increase association rules-based classification
accuracy in noisy domains. The proposed approach applied instance reduction techniques to the
datasets before generating association rules. This step works as a data cleaning procedure to eliminate
noisy instances as much as possible before building the classifier. Unlike pre and post-pruning
procedures that consume a large number of probably unnecessary computations, applying noise
filtering algorithms will result in cleaner datasets and avoid extracting low confident association rules,
leading to building an efficient association rules-based classifier on unseen examples.

The findings and contribution of this research are that:

- Five filtering algorithms were tested: DROP3, DROP5, ALLKNN, ENN, and RENN.
- The experiments were conducted on three noise levels: 0%, 5%, and 10% injected into datasets.
- Average classification accuracy improved remarkably compared to the base case where neither
noise filtering nor built-in pruning was applied.
- The improvement in the classification accuracy was even more apparent with the increase in
noise ratios, which is the intended goal of this research.
- Association rules’ classification accuracy remarkably improved when applying ALLKNN,
ENN and RENN, especially with higher noise levels, while the results of RENN were the most
promising with a significant improvement in 7 out of 8 datasets, with 5% and 10% noise.
- As the use of filtering techniques led to removing noisy instances, this saved the unnecessary
extraction of low confident association rules that contribute to the problem of overfitting.

RENN’s average classification accuracy for the eight datasets in the zero-noise case improved
from 70.47% to 76.65% compared to the base case when RENN was not used. The average accuracy
was improved from 66.08% to 77.47% for the 5%-noise case and finally, from 59.89% to 77.59% in
the 10%-noise case. This improvement in classification accuracy qualifies RENN to be an excellent
solution to increase the accuracy of association rules classification, especially in noisy domains. It can
be noticed that the improvement was more remarkable with the increase in noise levels.
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5.2 Future Work

The idea of applying noise filtering algorithms to improve association rules classification accuracy
can still be investigated to test its effectiveness on massive size datasets from different sources. Datasets
available at www.data.gov, an open-source data repository of the US government that contains a large
number of variant datasets in different fields.

Another research direction may involve applying instance reduction algorithms, as noise filters,
on other machine learning techniques to improve classification accuracy, especially in noisy domains.

Dimensionality reduction algorithms such as Principal Component Analysis (PCA) can also be
utilized to reduce the dimension of a learning problem. Dimensionality reduction minimizes the set
of attributes measured in each itemset without affecting classification accuracy. This may enhance
classification accuracy and reduce processing time significantly.
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