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Abstract: Resource management in Underground Wireless Sensor Networks
(UWSNs) is one of the pillars to extend the network lifetime. An intriguing
design goal for such networks is to achieve balanced energy and spectral
resource utilization. This paper focuses on optimizing the resource efficiency
in UWSNs where underground relay nodes amplify and forward sensed data,
received from the buried source nodes through a lossy soil medium, to the
aboveground base station. A new algorithm called the Hybrid Chaotic Salp
Swarm and Crossover (HCSSC) algorithm is proposed to obtain the optimal
source and relay transmission powers to maximize the network resource effi-
ciency. The proposed algorithm improves the standard Salp Swarm Algorithm
(SSA) by considering a chaotic map to initialize the population along with
performing the crossover technique in the position updates of salps. Through
experimental results, the HCSSC algorithm proves its outstanding superi-
ority to the standard SSA for resource efficiency optimization. Hence, the
network’s lifetime is prolonged. Indeed, the proposed algorithm achieves an
improvement performance of 23.6% and 20.4% for the resource efficiency and
average remaining relay battery per transmission, respectively. Furthermore,
simulation results demonstrate that the HCSSC algorithm proves its efficacy
in the case of both equal and different node battery capacities.

Keywords: Underground wireless sensor networks; resource efficiency; chaotic
theory; crossover algorithm; salp swarm algorithm

1 Introduction

With the precipitous growth of microelectronics and sensing technologies, Wireless Sensor Net-
works (WSNs) have been categorized as an intense research arena. The outstanding privileges of such
networks, including their easy configuration, mobility, and flexibility, lead to their deployment in many
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environments. UWSNs are an important extension of WSNs applications for use in the underground
world. These underground networks have a broad range of applications including tracking coal mining
facilities, soil monitoring, and gas/oil pipeline control. In such networks, buried sensors continuously
collect sensitive data regarding the sensed environment and forward it to the base station [1]. However,
the limited communication range and the energy constraints along with the complex and unpredictable
conditions of the underground medium are the primary challenges of UWSNs. Thus, the role of relay
nodes is vital in UWSNs because they represent a promising method for achieving high bandwidth and
expanding network coverage [2]. In UWSNs, communications among nodes come in three distinct
channels: UnderGround-to-AboveGround (UG2AG), UnderGround-to-UnderGround (UG2UG),
and AboveGround-to-UnderGround (AG2UG) [3]. The UG2AG channel connection is mainly used
to transmit sensed data from buried sensors to relay nodes or aboveground base stations [3–5]. Relay
node deployment has been studied in UWSNs [5–8]. In [5], an underground coal mine was divided
into separate regions and addressed optimal relay node placement to support robust coverage of
the network. In [6], Wu targeted controlling the amount of energy used by underground sensors to
map water pipelines through optimal relay placement. In the same way, the optimum relay node
location was debated for the goal of extending the network’s duration subjected to reducing the
load balance and the number of relays [7]. In [8], two approximation algorithms for relay node
deployment and assignment to sensor nodes were introduced to reduce transmission loss among
nodes. Since high throughput and capacity are critically constrained by nodes energy consumption,
research work in WSN focus recently on studying the trade-off between spectral efficiency and energy
efficiency metrics called the resource efficiency [9–12]. The primary objective is to jointly evaluate
the efficient use of a limited frequency spectrum along with energy consumption. In UWSNs, this
problem was first addressed in [13], where optimal powers used by underground sources and relay
nodes for data forwarding to an aboveground base station were computed to maximize the energy
and spectral efficiency tradeoff. The work [13] proposes a power allocation algorithm that utilizes the
Salp Swarm Algorithm (SSA) [14] to solve the considered problem since the swarm intelligence models
are interesting for various computer science fields [15,16]. The SSA is suggested in [14] as a recent
metaheuristic algorithm which outperforms many other metaheuristic algorithms through tests on 19
different benchmark functions. In nearby research works, SSA proves its efficiency in node localization
optimization in WSN [17,18], energy consumption and lifetime optimization in WSN [19]. The work
[13] proves that the SSA-based scheme offers a better resource efficiency, given similar bandwidth and
battery cost resources, compared with the traditional UWSN scheme. In this paper, we propose to
further enhance the resource efficiency of the UWSN considered in [13] by modifying and improving
the SSA. A novel algorithm called Hybrid Chaotic Salp Swarm with Crossover (HCSSC) is proposed
to determine the optimal powers required by the source and relay nodes that enhance the network
resource efficiency considering the initial nodes’ battery capacities. The proposed algorithm uses chaos
theory [20] to generate feasible initial solutions. This can enhance the diversity of solutions due to the
randomness and dynamic features of the chaos. Moreover, to compute the final optimal solution, a
uniform crossover operator [21,22] is integrated in the exploration phase of the optimization algorithm.
This leads to accelerated algorithm convergence due to the wide exploration of the search space. The
proposed power optimization scheme is evaluated in terms of its effect on the average relay power
and battery remaining per transmission. Since the relay node can have a higher battery capacity than
the source node, we propose to study the efficiency of the proposed algorithm under both equal and
different node capacities.
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The main contributions of this work are listed as follows

1. A new algorithm called HCSSC algorithm is proposed to improve the standard SSA by
considering a logistic chaotic map to initialize the population and integrating the uniform
crossover operator in the update of salps positions.

2. The resource efficiency performance is ameliorated compared to that obtained in the work
[13].

3. The average consumed relay power per transmission is minimized and the average remaining
relay battery per transmission is maximized.

4. The efficiency of the proposed algorithm is proved in case of both equal and different node
batteries capacities.

This paper is structured as follows. In Section 2, the UWSN system model is presented and the
considered problem is formulated. In Section 3, the proposed HCSSC algorithm is detailed. In Section
4, the experimental results and performance analysis are discussed, and finally, Section 5 concludes
the paper.

2 System Model and Problem Formulation

The considered UWSN model consists of sensor source node S that gathers and forwards sensory
data to an aboveground base station B through a half-duplex Amplify-and-Forward (AF) relay node
R. The communication link between S and R is an UG2UG link, whereas the communication link

between R and B is an UG2AG link. The mathematical expressions of the path losses for UG2UG
and UG2AG, the communication mechanism among nodes, and the optimization problem under
consideration are described in this section.

2.1 UG2UG and UG2AG Channel Model

Both source and relay nodes are buried in the soil in UWSNs. Here, the sensor nodes are buried
deeper than the relay nodes according to the ground surface. In Fig. 1, a two-dimensional plane
represents UWSN deployment where the nodes distances in the plane using Cartesian coordinates
defined on the x and y axes with origin O. The base station is positioned at the origin of x-axis whereas
the ground surface is represented as the origin of y-axis. dXG is the node burial depth at positions (xX , yY)

for node X ∈ {S, R}.

Figure 1: The topology of UWSN
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According to [23], the UG2UG path loss LuuSR is defined as

LuuSR = 6.4 + 20log10(dSR) + 20log10(β) + 8.69αdSR − 10log10(V) (1)

where dSR =
√

(xS − xR)
2 + (yS − yR)

2 is the distance in metres between S and R. The constants α and
β measure the attenuation and phase shifting, respectively. The factor V represents the attenuation of
the reflection path obtained when the wave is reflected by the ground surface. Hence, the UG2UG
communication results from the propagation of the signal in the reflection path and in the direct path
between the two sensors [22]. The authors in [24] utilize the electromagnetic propagation model to
provide the detailed expressions the constants α and β. The soil medium dielectric characteristics
along with the system operating frequency q, the sand and clay percentages, the bulk density and the
Volumetric Water Content constitute the main features that these constants depend on [25]. The soil
and air constitute the two media throughout passes the communication between R and B. Yet, there
is no refraction loss from under to aboveground transition due to the perpendicular propagation of
signal from higher to lower density medium [3,26]. Then, based on [3,26], the path loss LuaRB of the
channel between R and B is the result of adding the path losses for both underground and aboveground
portions as in Eq. (2)

LuaRB = LuRG + LaGB, (2)

LuRG = 6.4 + 20log10(dRG) + 20log10(β) + 8.69αdRG, (2.1)

LaGB, = −147.6 + 10η log10(dBG) + 20log10(q), (2.2)

dBG =
√

d2
OR + d2

OB, (2.3)

where dOR represents the horizontal distance between R and the origin O, dOB is the height of the
aboveground base station B and η is the attenuation coefficient on air [26].

2.2 UWSN System Model

Here, the uplink communication procedure among the trio link is presented. The Time Division
Multiple Access (TDMA) scheme is considered to mitigate the signal interference. Each node X ∈
{S, R} has a limited battery with power capacity CX . At each packet transmission, t, node X consumes
a power Pt

X ∈ [PXmin , PXmax ]. The communication process at each transmission t ∈ [1, τ ] needs two
phases.

In the first phase, the source node S transmits a data packet dt to the relay node R. The resulting
received signal yt

R at R is given by

yt
R = √

Pt
Sht

SRdt + nt
R (3)

such that ht
SR represents the gain of the UG2UG channel between the two nodes S and R, which obeys

to the Rayleigh distribution [23] with the underground path loss LuuSR calculated in Eq. (1) and nt
R

is the zero-mean complex Additive White Gaussian Noise (AWGN) vector with variance N0. Hence,
the Signal-to-Noise Ratio (SNR) between S and R designated by Γ t

SR, resulting of the communication
between S and R at transmission t, is as follows

Γ t
SR = Pt

S|ht
SR|2

b N0

(4)

Where b denotes the channel bandwidth in Hz, which is equal to the operating frequency q
when TDMA is applied. In the second phase, the signal yt

R is amplified and forwarded by R to B.
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Consequently, the received signal yt
B at B is calculated as follows.

yt
B = At

f

√
Pt

Rht
RByt

R + nt
B (5)

With ht
RB is the UG2AG Rayleigh distributed channel between R and B [23] with the underground

path loss LuaRB calculated in Eq. (2), nt
B is the zero-mean complex AWGN vector and At

f = 1√
Pt

S |ht
SR|2+ N0

is the amplification factor. Thus, the SNR, denoted by Γ t
RB, of the transmission between R and B is

computed as follows.

Γ t
RB = At

f
2Pt

RPt
S|ht

RB|2|ht
SR|2

b N0(At
f

2Pt
R|ht

RB|2 + 1)
(6)

With respect to Eqs. (4) and (6), the total SNR Γ t
tot and the maximum data rate Rt

tot for the trio
link are given respectively by

Γ t
tot = Γ t

SRΓ
t

RB

1 + Γ t
SR + Γ t

RB

(7)

Rt
tot = blog2(1 + �t

tot) (8)

2.3 Problem Formulation

The overall paper objective is to determine the power allocation vector P = [Pt
S, Pt

R] allowing an
efficient balance between two competing metrics: the energy efficiency EEt and spectral efficiency SEt

at each transmission t. Indeed, EEt. is the total bits generated per unit energy whereas SEt represents
the total delivered bits per unit bandwidth of link (S − R − B) at transmission t. Their expressions
are respectively as follows

EEt = Rt
tot

Pt
S + Pt

R

, (9)

SEt = Rt
tot

b
(10)

As discussed in [9], the resource efficiency metric REt is capable to exploit the trade-off between
EEt and SEt. It is given by

REt = EEt + ωSEt (11)

where the weighted factor ω is computed as ω = ω̄ b
Ptot

, with ω̄ is a constant and Ptot = PSmax + PRmax is
the total power budget allocated to the link (S − R − B) at each transmission. Since, SEt is practically
smaller than EEt, this weighted factor ω is utilized to achieve the balance between EEt and SEt. In fact,
it solves the inconsistence of adding two metrics with different units since the unit of EEt is bits/Joule
while the unit of SEt is bits/s/Hz. Then, the unit of REt is equivalent to EEt which is still bits/Joule.
Besides, maximizing REt is simply maximizing EEt if ω̄ = 0 and SEt if ω̄ = ∞. The selection of this
constant value in the UWSN model is described in [13].

For each node X , optimizing the power Pt
X at each transmission t is a mandatory requirement

because it depends on the limited battery capacity CX of the buried node, the spent powers for
transmissions [P1

X , . . . , Pt−1
X ] and the allowed power limitation range at each transmission [PXmin , PXmax ].
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Then, the proposed optimization problem is stated as

Maximize RE =
τ∑

t=1

REt (12)

Subject to
(

τ∑
t=1

Pt
X

)
≤ CX ,

where Pt
X ∈ [PXmin , PXmax ] for X ∈ [S, R].

In Eq. (12), the maximization problem presented is considered a NP-hard problem that requires
an efficient optimization algorithm to solve it. Therefore, a hybrid meta-heuristic algorithm based on
SSA is proposed to obtain optimal values of nodes powers considering the resource efficiency RE to
be maximized.

3 The Proposed HCSSC for Resource Efficiency

In this section, the main structure of the standard Salp Swarm Algorithm (SSA) is first reviewed.
Then, the detailed steps of the proposed Hybrid Chaotic Salp Swarm with Crossover (HCSSC) scheme
for maximizing the resource efficiency in the considered UWSN are addressed.

3.1 Salp Swarm Algorithm (SSA)

The Salp Swarm Algorithm (SSA) is one of the recent swam algorithms proposed in 2017 [14] and
widely used in solving many optimization problems [27,28]. SSA emulates the motion of Salpidae that
have a transparent barrel-shaped body and live-in deep oceans [29]. Salps are organized in a form of
swarm called salp chain. Mathematically, the salp chain is divided into two groups: leader (i.e., the
first salp of the chain and followers (i.e., the remaining salps of the chain which follow the leader).
Researchers viewed that their searching for food is an indicator to their behavior [30].

The leader in the swarm updates its position relative to the food source F according to Eq. (13)

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0
Fj − c1((ubj − lbj)c2 + lbj) c3 < 0 (13)

Where x1
j is the position of the leader in the jth dimension, lbj and ubj are the lower and the upper

bound of the jth dimension, respectively, and Fj is the position of food source in the jth dimension.
The parameter c1 balances the scale between exploration and exploitation and is computed according
to Eq. (14). The coefficients c2 and c3 are random numbers between [−1, 1]. Also, c3 determines the
direction of moving the leader towards a positive infinity or negative infinity.

c1 = 2e−( 4l
L )

2

(14)

where l is the current iteration and L is the maximum number of iterations.

The remaining of the salps in the chain (i.e., followers) update their positions based on the
Newton’s law of motion as in Eq. (15)

xi
j = 1

2
at2c + v0t ∀ i ≥ 2 (15)

where a = vfinal

v0

and v = x − x0

t
(16)

With x1
j is the ith salp in the jth dimension,t is the time,v0 is the initial speed.
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In the optimization problems, the time is considered as an iteration where the conflict between
iterations is equal to 1 and v0 is set to 0. Then, Eq. (15) can be reformulated in Eq. (17) for updating
the positions of followers.

xi
j = 1

2
(xi

j + xi−1
j ) ∀i ≥ 2 (17)

While the global optimal solution of any optimization problem is unknown, the best solution can
be obtained by moving the leader, followed by the followers, towards the food source. As a result, the
salp chain moves towards the global optimum. The overall steps of the SSA are described below.

Algorithm 1: Salp Swarm Algorithm (SSA)
Input: initial population: initialize the number of salps N in the population randomly in the range
[lbj, ubj], xi

j, i = {1, . . . , n}, j = {1, . . . , m}
Steps:

1. Each salp in the population is evaluated according to a fitness function and the global best
fittest one is assigned to F (i.e., food source).

2. The parameter c1 is updated according to Eq. (14).
3. The position of the leader (i.e., i = 1) and the followers (i.e., i ≥ 2) are updated according to

Eq. (13) and (17), respectively.
4. The steps from 1 to 4 are repeated until a termination condition, as reaching a maximum

number of iterations, is satisfied.
Output: Report the global best final solution F

3.2 Hybrid Chaotic Salp Swarm with Crossover (HCSSC) Algorithm for RE

This subsection discusses the main steps of the proposed HCSSC algorithm to find the optimal
source and relay nodes powers for maximizing the resource efficiency REt at each packet transmission t
in the UWSN. Assuming that B has perfect Channel State Information (CSI) awareness, the proposed
HCSSC algorithm is implemented at B which will send the obtained powers values to source and
relay nodes prior to their packets’ transmissions. The hybrid algorithm uses a logistic chaotic map
to generate a feasible initial population at random. Furthermore, improving the solution during the
number of iterations through the uniform crossover operator and chaotic map can guarantee that the
optimal solution is the final solution. The steps of the proposed HCSSC are discussed in detail as
follows.

3.2.1 Initial Population

Each salp (i.e.,xi, i = {1, . . . , n}) in the HCSSC population N corresponds to a possible solution for
the resource efficiency optimization problem. Moreover, each salp consists of many variables (i.e.,var(j),
j = {1, . . . , m}) that affect the optimization of the resource efficiency as shown in Fig. 2. This paper
considers a salp x consists of two variables which are PS and PR. An illustrative example of a salp x is
shown in Fig. 3. The value for each variable can be generated within the lower PXmin

and upper PXmax

bounds, respectively.
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Figure 2: HCSSC population

Figure 3: An illustrative example of salp x

The diversity of the initial population has a great impact on spreading effectively in the search
space. Therefore, for generating an effective initial population, a chaotic map is used in the proposed
algorithm. One of the simplest maps is the logistic map that appears in the nonlinear dynamics of a
biological population that evidences the chaotic behavior [31] and it is represented mathematically by
Eq. (18).

ck+1 = rck(1 − ck) (18)

where ck is the chaotic value at each independent run k (i.e.,ck ∈ (0, 1)), r is the growth rate that controls
the behavior of chaotic value at a certain time (r = 4). To be more specific, the generated random value
of resources at any given time (round) is a function of the growth rate parameter and the previous time
step’s resource’s value. Consequently, the initial population N of the proposed HCSSC algorithm is
generated according to the following pseudo code.

Pseudo code 1: Initial population N generation using logistic chaotic map
For i = 1 to n
For j = 1 to m
xi

j = lbi + ck(ubj − lbj)

End For
xi = (xi

1, xi
2, . . . , xi

m)

End For

Each variable is bounded within lower and upper values [lbj, ubj], ck is the chaotic sequence that is
generated by logistic chaotic map. The integration of chaotic maps with salp swarm algorithm leads
to produce a proper distribution through the characteristic of random and stochasticity of chaos.

3.2.2 Evaluation of Salps

The resource efficiency optimization can be modelled as an optimization problem with a maxi-
mized objective function. Therefore, each individual (i.e., salp) in the population is evaluated according
to Eq. (12) and the fittest one is assigned to F .
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3.2.3 Updating Salps

The first salp in the population is called the leader which is responsible for guiding the salp chain
and is continuously updating its position towards the direction of the source food. The rest salps in the
population are called the followers because they follow the leader in updating their positions. Leader’s
and followers’ updates are illustrated below.

• Leader’s update

Since the leader updates its position in a positive direction, we ignore the negative direction. Also,
the random numbers c2 and c3 are replaced by a chaotic sequences c1

k and c2
k computed according to

Eq. (18) while c1 is calculated according to Eq. (14). Thus, Eq. (13) is modified and represented in
Eq. (19)

x1
j = Fj + c1((ubj − lbj)c1

k + lbj) c2
k ≥ 0 (19)

• Follower’s updates

Each follower xi
j; i ≥ 2 in the population updates its position based on how far the current position

from the best salp’s position. To achieve a better follow to the leader, we mate the best individual
with the current individual through the uniform crossover [21,32]. The uniform crossover proves its
efficiency compared to other crossover operators [20]. An illustrative example of uniform crossover is
shown in Fig. 4.

Figure 4: An illustrative example of uniform crossover

In the process of crossover, two parents (a and b) are selected and a binary mask consists of 1/0
digits is generated randomly with the same length of the individual. The result of this operation is
generating two offsprings (ã and b̃) based on the corresponding digit in the binary mask. For the first
offspring (ã), if the digit in a mask is 1, then the digit it is taken from (a) otherwise from (b). Regarding
the generation offspring (̃b), the complementary of mask is used. The two obtained offsprings ã and b̃
are considered as two new salps in the population. Each offspring x̃ ∈ {ã, b̃} is a vector of two variables
x̃=[Pt

S, Pt
R]. Then, the objective function, which is the resource efficiency at each transmission, t, REt

of each offspring x̃ ∈ {ã, b̃} denoted by REt(x̃) is evaluated as follows

REt(x̃) = REt(Pt
S, Pt

R) = EEt(Pt
S, Pt

R) + ωSEt(Pt
S, Pt

R) (20)
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Further, REt(ã) and REt(b̃) are compared. If REt(ã) > REt(b̃), then, ã is chosen to be xucross, else,
b̃ is chosen to be xucross. Therefore, each follower in the salp chain updates its position as follows

xi
j = 1

2
(xucross + xi−1

j ) ∀ i ≥ 2 (21)

3.2.4 Test the Termination Condition

The leader and followers are updating their positions iteratively until reaching a maximum number
of iterations. Once the HCSSC algorithm reached the termination condition, the global best salp is
returned as the best solution so far for the resource efficiency REt at each packet transmission t. The
overall steps of the HCSSC algorithm for optimizing the resource efficiency in UWSN are described
in the Fig. 5.

Figure 5: Flowchart of the proposed HCSSC algorithm

4 Experimental Results and Analysis

This section presents the numerical results illustrating the performance of the proposed HCSSC
based power optimization scheme. Simulations are done using MATLAB-R2015a running on Win-
dows 7 with 2 GB RAM memory. Simulation results are obtained by averaging over 1000 channel
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iterations. We assume that source and relay nodes have equal batteries power capacities C(i.e., C = CX )
and equal maximum allowed powers PXmax = Pmax. Authors in [13] determine the mathematical
computation of UG2UG and UG2AG path losses. Tab. 1 summarizes the set of the system parameters
and their corresponding values.

Table 1: Simulation parameters

Parameter Value

PXmin
for X ∈ {S, R} 5 mw

xX for X ∈ {S, R} 0.2 m
yS 0.6 m
yR 0.1 m
hB 0.7 m

The improvement of the resource efficiency using the proposed HCSSC algorithm, REHCSSC,
against the resource efficiency, which uses the standard SSA, RESSA, is computed as follows:

impovement performance (%) = REHCSSC − RESSA

RE SSA

× 100 (22)

In order to demonstrate the effectiveness of chaos theory for generating the initial population, a
set of experiments have been conducted with various number of individuals, as shown in Fig. 5, for the
standard SSA ( i.e., with random initial salp positions) and SSA using chaotic map for initial positions
generation with power capacity C = 3w and maximum transmission power Pmax = 50mw.

Fig. 6 illustrates the convergence of the resource efficiency RE obtained using both algorithms for
different number of salp. Clearly, the generation of initial population using chaotic map has achieved
better results in maximizing the resource efficiency compared to the standard SSA, during the number
of iterations, due to the better exploration of the search space. The improvement is increased with the
increase of N. Indeed, for N = 5, the SSA with chaotic initial positions gains 4.9% better than standard
SSA while at N = 40, it gains 7% better.

Figure 6: Convergence curves of the standard SSA and SSA using chaotic initial positions
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To demonstrate the efficiency of using the chaos theory and the crossover operator to achieve a
maximum resource efficiency, the proposed HCSSC algorithm has been tested for different number
of salps N ∈ {5, 10, 20, 40} at C = 3w and Pmax = 50mw, as shown in Fig. 7. The figure depicts the
convergence of resource efficiency as a function of iterations numbers obtained using the proposed
HCSSC algorithm in the nodes powers.

Figure 7: Convergence curve of the resource efficiency using the HCSSC algorithm

From the figure, the convergence of the proposed algorithm is rapidly obtained for various
number of salps to reach the optimal RE values. Also, the increase in the number of salps enhances
the computation accuracy of the optimal RE. Therefore, the proposed algorithm can be efficiently
implemented with acceptable cost of computational complexity.

For a fair comparison, the individuals number involved in the swarm population and the
maximum number of iterations are equal for both standard SSA and the proposed HCSSC algorithms.
Tab. 2 illustrates the maximum (Max.), minimum (Min.), Average (Avg.) and Standard deviation (Std.)
of RE at various N and various Pmax at C = 3w. The best results are shown in bold.

Table 2: Statistical results of RE (Mbits/Joule) for C = 3w

N Pmax(mw) SSA HCSSC
Avg. Max. Min. Std. Avg. Max. Min. Std.

5 50 561.98 1297 172.94 138.54 610.11 1353 276.21 154.05
300 146.8785 638.6622 3.0190 80.4059 166.576 642.4605 22.5500 86.0926
600 77.5271 418.7184 4.0183 52.5403 89.9588 427.9407 6.2260 59.1111

20 50 573.0342 1361 244.7552 145.3766 680.53 1340 238.48 180.43
300 151.4191 658.4308 19.0465 86.4999 168.89 828.68 26.56 99.85
600 78.2166 482.6424 4.4647 54.0314 101.43 600 6.063 72.053

40 50 592.1117 1308 279.2015 159.5827 681.45 1413 330.57 176.21
300 156.5011 533.7262 20.2041 83.3139 184.65 809.02 23.108 96.072

(Continued)



CMC, 2022, vol.72, no.2 2975

Table 2: Continued
N Pmax(mw) SSA HCSSC

Avg. Max. Min. Std. Avg. Max. Min. Std.

600 85.7410 432.3858 3.8117 60.1572 102.93 586.96 7.174 7.3319

In comparison with the traditional SSA based optimization scheme, the proposed HCSSC
outperforms it in all evaluated performance measurements. According to Tab. 2, for N = 5 and
Pmax = 300mw, the average value of the RE based HCSSC reaches 166.576 (Mbits/Joule) and the
average value of the RE based SSA reaches 146.8785 (Mbits/Joule). Hence, the gain is about 13%.
While for N = 40 and Pmax = 50mw, the average value of RE based HCSSC is 681.45 (Mbits/Joule)
while the average value of the RE based SSA equals 592.1117 (Mbits/Joule). So, the gain reaches 15%.

Fig. 8 shows the convergence behavior of the resource efficiency using the proposed algorithm
HCSSC against the standard SSA, in nodes power optimization, with different number of salps N ∈
{5, 20, 40} at C = 3w and Pmax = 50mw.

Figure 8: Convergence curve of HCSSC against standard SSA

With different number of salps, the proposed HCSSC obtains a better RE convergence than
standard SSA for different number of iterations. The amelioration is raising with the increase of N.
At N = 5, 20 and 40 the RE of HCSSC is raising up to 9%, 15% and 16%, respectively.

Furthermore, Fig. 9 illustrates the effect of the maximum power permitted for a single transmis-
sion Pmax on resource efficiency for both HCSSC and SSA with respect to different power capacity
C ∈ {2, 3, 4}w and N = 20.
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Figure 9: Resource efficiency of HCSSC and SSA vs. the maximum allowed power Pmax

Once more, compared to the power optimized SSA scheme, the HCSSC achieves a higher resource
efficiency at the same power cost. Indeed, the combination of chaotic map and the cross over
operations in the proposed power algorithm improves the search of optimal nodes powers considering
the power physical limitations. Hence, the resource efficiency RE increases with the increase of nodes
batteries capacity. Notably, the gain gap between HCSSC and SSA schemes is higher as C increases.
In fact, for C = 2w, the RE improvement reaches 15.3% at Pmax = 50mw and reaches 19% at
Pmax = 400mw. While for C = 4w, the gain in RE is 15.5% at Pmax = 50mw and is 23.6% at
Pmax = 400mw.Since the increase in the maximum allowed power Pmax degrades the energy efficiency
EE and the weighted spectral efficiency ωSE as well, the resource efficiency diminishes when Pmax

increases. In addition, network designers can regulate Pmax depending on the accessible power resource
of batteries capacities for a given resource efficiency specification.

The average consumed relay power and the average remaining relay battery per transmission for
HCSSC and SSA vs.Pmax with N = 20 are shown in Figs. 10 and 11, respectively. In Fig. 10, The average
consumed relay power is shown for C = 3w.

Figure 10: Average consumed relay energy per transmission (HCSSC and SSA)
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Figure 11: Average remaining relay battery per transmission (HCSSC and SSA)

Clearly, the deployment of HCSSC in nodes powers optimization allows a better relay power
conservation since the average consumed relay power per transmission is minimized compared with
the standard SSA along with Pmax values. In Fig. 11, the effect of the HCSSC algorithm on the average
remaining relay battery per transmission compared to the SSA is illustrated for C ∈ {2, 3, 4}w. The
proposed HCSSC based scheme significantly ameliorates the average remaining relay battery per
transmission for all battery capacity value C. At Pmax = 350mw, the obtained gain equals 23% at
C = 2w, it equals 21.6% at C = 3w and it reaches 20.4% at C = 4w. Thus, the proposed HCSSC
based power optimization extends the nodes batteries lifetime and consequently the whole network
lifetime.

In Fig. 12, we propose to study the resource efficiency performance in the case where the relay
node has a higher battery capacity than the source node and can forward packets considering higher
maximum allowed power. In fact, the relay node is expected to consume more power than the
source node since it collects data from different sources to forward it to the sink node and, possibly,
retransmits lost packets. Interestingly, the proposed algorithm proves its efficiency, not only in the
case of equal source and relay batteries capacities, but also in the case of different source and relay
batteries capacities as clearly shown in Fig. 12. We assume that PRmax = 2PSmax and N = 20. The
proposed HCSSC based power optimization scheme achieves higher resource efficiency performance
than the SSA as CS and CR increase. At CS = 2w and CR = 3w, the HCSSC algorithm achieves a gain
of 21% better than the SSA at Psmax = 50mw. While at CS = 3w and CR = 4w, the HCSSC algorithm
achieves a gain of 28% better than the SSA at PSmax = 200mw.
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Figure 12: Resource efficiency of HCSSC and SSA for PRmax = 2PSmax for different source and relay
batteries capacities

In some applications, the benefit from of sensor nodes in UWSNs is restricteddue to harsh
environmental conditions. For agricultural application for example, authors in [4] mention that if
the water volume fraction of the mixture is high (passed 25%), the UG2UG communication link is
interrupted specially with some particular soil type whose the capacity to hold the bound water is low.
Consequently, the UG2UG communication can be interrupted for a long period in case of a rainfall.
Also, for underground mine applications, UG2UG communications may be interrupted in many
unpredictable situations such as rock falls or explosions. Moreover, we notice that the base station
should implement a powerful operating system to support the additional computing complexity of
the HCSSC algorithm.

5 Conclusions

This paper proposed a Hybrid Chaotic Salp Swarm with Crossover (HCSSC) algorithm for an
UWSN to maximize the network resource efficiency. This last is a global metric that jointly considers
the energy and the spectral efficiencies to balance the power consumption and the bandwidth usage.
The algorithm improves the standard metaheuristic SSA by the use of logistic chaotic map in the
generation of the initial population and the deployment of the uniform crossover operator to compute
the final solution. At each packet transmission, the HCSSC is applied to provide the optimal source
and relay nodes powers considering the remaining nodes batteries capacities constraints. Simulations
showed that the integration of the chaotic map in the population initialization and the use of the
crossover method in the positions’ updates improved the resource efficiency compared to the standard
SSA for different nodes batteries capacities and different maximum allowed powers. Also, the use
of the HCSSC algorithm offered a better relay power conservation proved by the minimization of
the average consumed relay power per transmission and the maximization of the average remaining
relay battery per transmission. Moreover, the efficiency of the proposed algorithm is demonstrated
in the case where the relay node has a higher battery capacity than the source node and can forward
packets considering higher maximum power. As future work, the efficiency of the proposed HCSSC
algorithm in multi-relay UWSN, where many relay nodes cooperate with source nodes to transmit
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sensory data to the base station, will be addressed. Thus, the impact of the numbers of variables on
HCSSC algorithm performance will be effectively studied. Moreover, the impact of the data packet
size on the RE performance will be studied.
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