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Abstract: Fuzziness or uncertainties arise due to insufficient knowledge,
experimental errors, operating conditions and parameters that provide inac-
curate information. The concepts of susceptible, infectious and recovered are
uncertain due to the different degrees in susceptibility, infectivity and recovery
among the individuals of the population. The differences can arise, when the
population groups under the consideration having distinct habits, customs and
different age groups have different degrees of resistance, etc. More realistic
models are needed which consider these different degrees of susceptibility
infectivity and recovery of the individuals. In this paper, a Susceptible, Infected
and Recovered (SIR) epidemic model with fuzzy parameters is discussed. The
infection, recovery and death rates due to the disease are considered as fuzzy
numbers. Fuzzy basic reproduction number and fuzzy equilibrium points have
been derived for the studied model. The model is then solved numerically with
three different techniques, forward Euler, Runge-Kutta fourth order method
(RK-4) and the nonstandard finite difference (NSFD) methods respectively.
The NSFD technique becomes more efficient and reliable among the others
and preserves all the essential features of a continuous dynamical system.

Keywords: Fuzzy parameters; SIR model; NSFD scheme; fuzzy equilibrium
points; fuzzy stability analysis

1 Introduction

The novel Covid-19 belongs to a large class of deadly viruses that have infected millions of people
worldwide and seriously challenged not only their individual lifestyles but also the economies and
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GDPs of the countries themselves. Like many other research questions regarding Covid-19 disease,
reliable estimation of transmission dynamics is an important part of the research. The novel Covid-
19 is still a huge panic for people around the world. Various approaches are being considered to
combat this deadly disease [1–12]. Noor et al. examined a Stochastic Susceptible, Exposed, Infected
and Recovered (SEIR) model of the novel coronavirus by applying various computational methods
such as Euler Maruyama, Euler Stochastic and Runge Kutta Stochastic to study the dynamics of
the mentioned model [13]. Afzal et al. examined the clustering of Covid-19 data with the c-Means
(cM) and Fuzy c-Means (Fc-M) algorithms [14]. Danane et al. examined the dynamics of a Covid-
19 stochastic model with an isolation strategy and the white noise and Lévy jump disturbances are
contained in all compartments of the proposed model [15]. Hussain et al. examined a stochastic model
to study the transmission dynamics of Covid-19 [16]. Singh et al. proposed a fractional-order Covid-
19 model based on the principle of the domain and memory discretization [17]. Baba et al. developed
a mathematical model that takes into account the imposition of lockdown in Nigeria [18]. Nisar
et al. developed a Susceptible, Infected, Recovered and Death (SIRD) model of Caputo’s Covid-19
disease in fractional order and examined its reproduction number and stability analysis. The Adams-
Bashforth fractional method is used for the model [19]. Shaikh et al. studied a Covid-19 model of bat-
host-reservoir-human fractional order transmission [20]. Raza et al. presented a Susceptible, Exposed,
Infected, Quarantined and Recovered (SEIQR) non-linear delayed coronavirus pandemic model and
examined Routh-Hurwitz criterion, Volterra-Lyapunov function, Lasalle invariance principle and
reproductive number [21]. Ghorui et al. developed a fuzzy analytical hierarchy process to determine
weights and finally hesitant fuzzy sets (HFS) using a similarity-based order preference technique to
determine the primary risk factor identification of Covid-19 [22]. Ahmad et al. proposed a fuzzy
model with a fractional order in the sense of Caputo using the Laplace fuzzy method and the
Adomian decomposition transformation [23]. Zamir et al. have developed a model that focuses on
the elimination and control of Covid-19 infection [24]. Fuzzy set theory was introduced by Zadeh in
1965 [25]. Diagnosis of infectious diseases has been studied by using fuzzy theory. Barros et al. [26]
proposed a new approach to integrating an ecological model with fuzzy criteria into the differential
equations describing a dynamic system. Barros et al. [27] and Mondal et al. [28] have studied the
epidemic models having the transmission coefficient as a fuzzy set. Verma et al. [29] have studied the
fuzzy epidemic model and performed comparative studies of the equilibrium points of the disease
for the classical and fuzzy models. In addition, the reproduction number of the classic and the fuzzy
system were compared. The obtained analytical results were supported by some numerical simulations.
Mishra et al. [30] have developed a fuzzy Susceptible–Infectious-Recovered–susceptible (SIRS) model
for the transmission of worms in a computer network. The low, medium and high cases of the epidemic
control of worms in the computer network were analyzed for a better understanding of the worms’
attack which may also control them. Some numerical methods were used for the solution of the
developed model. Ortega et al. [31] employed the fuzzy logic for the prediction in the epidemiology
related problems in the infectious disease. A model of rabies among the partially vaccinated dogs was
discussed. A comparison between the fuzzy linguistic rules and classical differential equations was
also done. Verma et al. [32] have studied the dynamics of Ebola virus disease by employing fuzziness
in all biological parameters. Some mathematical models were prosed for the transmission trajectories
of the Ebola outbreak. The existence of the equilibria and their stability were studied by employing
triangular fuzzy numbers. The stability of the equilibria was related to the basic reproduction number
which was calculated with the help of the next generation matrix and the numerical methods were
used to support theoretical work. Das and Pal developed an SIR model with imprecise biological
parameters [33]. The existence of equilibrium points and their feasibility criteria were discussed and
the numerical simulation was done to support the analytical results. Sadhukhan et al. [34] studied
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about food chain model with optimal harvesting in a fuzzy environment. Jafelice et al. introduced a
model for the evolution of the positive Human Immunodeficiency Virus (HIV) population and the
manifestation of Acquired Immunodeficiency Syndrome (AIDS) [35]. Since each community changes
with the evolution of the environment, even the biological parameters used in mathematical models
are not always fixed [36]. The change in temperature also affects the rate of transmission of the
virus in the population. Irfan et al. investigated the relationship between temperature and COVID-
19 transmission in different provinces of Pakistan [37]. Low-temperature provinces were found to
have strong associations between temperature and COVID-19 transmissibility. In this sense, fuzzy
mathematical models are more meaningful than crisp models.

Micken’s introduced the NSFD scheme [38]. Cresson et al. [39] studied the construction of the
NSFD numerical scheme and discussed its different properties like convergence and stability etc. Some
numerical examples were solved and a comparison with Euler, RK method of order 2 and 4 was done.
Anguelov et al. [40] developed an NSFD scheme and discussed its stability analysis and dynamics
preserving for a malaria model. The parameters used in existing SIR epidemic models employ crisp
numbers, whereas uncertainty in parameters and heterogeneity in the population is very likely to occur.
To make the model more realistic, the use of fuzzy parameters is very important. Abdy et al. presented
an SIR model considering the vaccination, treatment and implementation of health protocols as fuzzy
numbers and studied their effects on the spread of COVID-19 [41]. We have extended the work by
presenting the comparative numerical analysis of the model using Euler, RK-4 and NSFD schemes. We
started with a system of differential equations and calculated the fuzzy basic reproduction number and
fuzzy equilibrium points for the proposed model. We have developed Euler, RK-4 and NSFD schemes
for the studied model. Furthermore, we studied the fuzzy stability for the proposed NSFD scheme at
disease-free (DF) and endemic equilibrium (EE) points respectively. Moreover, we have presented the
simulation results of the developed schemes. The remaining of this article has been divided into various
segments. Section 2 lays down some basic definitions related to this study. A fuzzy SIR mathematical
model and its fuzziness are discussed in Section 3. The fuzzy basic reproductive number and the fuzzy
equilibrium points are also computed in this section. Section 4 contains numerical modeling of the
studied model. Section 5 is devoted to numerical results and discussions. This article is concluded in
Section 6.

2 Preliminaries

In this section, we mention some basic definitions which will be useful for this study [42,43].

2.1 Definition 1

A fuzzy subset A of the universe set X is represented by the membership function μA(x) : X →
[0, 1], where μA(x) indicates the degree of membership of x in the fuzzy set A.

2.2 Definition 2

A fuzzy subset A in R is called fuzzy number when:

• All δ − levels of A are non-empty, with 0 ≤ δ ≤ 1, that is, A must be normal.
• All δ−levels of A are closed intervals of R.
• The support of A, that is, supportA = x ∈ R : A(x) > 0 is bounded.
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2.3 Definition 3

The number A = (l, m, n) is a triangular fuzzy number if its membership function is

μA(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ l
x − l
m − l

, l < x ≤ m

x − n
m − n

, m < x ≤ n

0, n ≤ x

where l ≤ m ≤ n.

2.4 Definition 4

A fuzzy number B = (k, l, m, n) is said to be trapezoidal if its membership function has the
form of a trapezoid and is given by

μB(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x − k
l − k

, k < x ≤ l

1, l < x ≤ m
n − x
n − m

, m < x ≤ n

0, otherwise

where k ≤ l ≤ m ≤ n.

2.5 Definition 5

The expected value of a TFN A is given by

E[A] = a + 2b + c
4

2.6 Definition 6

The fuzzy basic reproductive number Rc
f is defined as

Rc
f = E[Rc(υ)]

3 SIR Epidemic Model for COVID-19 Spread with Fuzzy Parameters

In this section, we study the fuzzy basic reproduction number and the fuzzy equilibrium points
respectively for the fuzzy SIR model. We considered the fuzzy SIR numerical model that has been
talked about by Abdy et al.⎧⎨
⎩

S′ = μ − β(ζ )(1 − �)(1 − �)SI − (μ + � + �)S
I ′ = β(ζ )(1 − �)(1 − �)SI − (μ + μc(ζ ) + θ + γ (ζ ))I
R′ = (θ + γ (ζ ))I − (� + �)S − μR

(1)

with S + I + R = 1. The parameters S, I and R denote proportions of susceptible, infected and
recovered individuals respectively. The detail of the remaining model parameters is given in Tab. 1.
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Table 1: Detail of the model parameters

Symbol Description

μ Natural birth/death rate
β(ζ ) Infection rate
γ (ζ ) Recovery rate
� Vaccine effectiveness
θ Treatment effectiveness
� Effectiveness of obedience of health protocols
μc(ζ ) The death rate due to covid

The presence or absence of the virus in epidemiology is essential to distinguish infected persons
from susceptible persons. We take into account the heterogeneity of the model by considering the
infection in each individual as a function of the virus-load. We assume that all infected persons
do not have the same contribution to the disease transmission process and each individual has a
different degree of infectivity which depends on the quantity of virus. Suppose the number of new
infections is proportional to the number of encounters between infected and susceptible people, since
the probability of transmission is uncertain, although it increases as infected people become more
contagious. By considering the virus load of each individual, the parameters β(ζ ), γ (ζ ) and μc(ζ )

can be displayed as a function of the coronavirus infection load ζ . The greatest chance of disease
transmission is when the coronavirus infection load ζ is at its highest, the disease transmission will be
negligible when the coronavirus infection load ζ is low and ζm is the minimum virus-load required for
disease transmission to occur. The transmission rate is maximum at a certain point ζ0 where it is equal
to (1 − �)(1 − �). The membership function of the β(ζ ) is shown in Fig. 1 and it is defined as

β(ζ ) =

⎧⎪⎨
⎪⎩

0, ζ < ζm

ζ − ζm

ζ0 − ζm

(1 − �)(1 − �), ζm ≤ ζ ≤ ζ0

1, ζ0 < ζ < ζM

(2)

Figure 1: The membership function of β(ζ )

The recovery rate γ = γ (ζ ) is also assumed to be a fuzzy number. The membership function of
γ (ζ ) is given by

γ (ζ ) =
⎧⎨
⎩

(γ0 − 1)(1 − θ)
ζ

ζ0

, 0 ≤ ζ ≤ ζ0

γ0(1 − θ) + θ , ζ0 ≤ ζ
(3)
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where the lowest recovery rate is γ0 > 0. The membership function of γ (ζ ) is shown in Fig. 2. The
higher the coronavirus infection load ζ , the more it will take to recuperate from it.

Figure 2: The membership function of γ (ζ )

The Covid-19 induced death rate μc can also be assumed as a fuzzy number and its membership
function μc(ζ ) is given by (depicted in Fig. 3):

μc (ζ ) =
⎧⎨
⎩

(1 − v − μ0
c)(1 − θ)

ζ

ζ0

+ μ0
c, 0 ≤ ζ ≤ ζ0

(1 − v)(1 − θ) + θμ0
c, ζ0 ≤ ζ

(4)

Figure 3: The membership function of μc(ζ )

The lowest death rate is μ0
c(0 < μ0

c < 1) and v is the effectiveness of immunity power and
availability of medicine, etc. The maximum death rate is (1 − v) (1 − θ) + θμ0

c and it may not reach
the maximum value 1 due to immunity power and availability of medicine, etc.

Since the amount of virus is different for each group of individuals. To make the model more
realistic, we consider only the human individuals in a given group N with classification (weak, medium
and strong) given by some expert which can be seen as a linguistic variable with membership function
Γ (ζ ) and is given by

Γ (ζ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, ζ < ζ0 − δ
δ + ζ − ζ0

δ
, ζ0 − δ ≤ ζ ≤ ζ0

δ + ζ0 − ζ

δ
, ζ0 ≤ ζ ≤ ζ0 + δ

0, ζ > ζ0 + δ

(5)
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3.1 Fuzzy Basic Reproduction Number

We find the value of R0 by incorporating the next generation matrix (NGM) method. Let X =
[S, I ]t, then dX

dt
= f (x) − g(x), where

f (x) =
[−β(ζ )(1 − �)(1 − �)SI
−β(ζ )(1 − �)(1 − �)SI

]
and g(x) =

[ −μ + (μ + � + �)S
(μ + μc(ζ ) + θ + γ (ζ ))I

]

The Jacobeans of f (x) and g(x) denoted by N and M are given below.

N =
[−β(ζ )(1 − �)(1 − �)I −β(ζ )(1 − �)(1 − �)S

β(ζ )(1 − �)(1 − �)I β(ζ )(1 − �)(1 − �)S

]
, and

M =
[
μ + � + � 0

0 μ + μc(ζ ) + θ + γ (ζ )

]

Substituting the DFE point
(

μ

μ + � + �
, 0,

� + �

μ + � + �

)
in the product NM−1 and calculating

its spectral radius we get, R0(ζ ) = μβ(ζ )(1 − �)(1 − �)

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))
.

Since R0(ζ ) is a function of the amount of virus ζ , we analyze it for different amounts of virus.

Case 1: If ζ < ζm, β(ζ ) = 0, γ (ζ ) > 0, μc (ζ ) > 0, then R0(ζ ) = 0.

Case 2: If ζm ≤ ζ ≤ ζ0, β(ζ ) = ζ − ζm

ζ0 − ζm

(1 − �)(1 − �), γ (ζ ) > 0 and μc (ζ ) > 0, then R0(ζ ) =
μβ(ζ )(1 − �)(1 − �)

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))
.

Case 3: If ζ0 < ζ < ζM , β(ζ ) = 1, γ (ζ ) > 0 and μc (ζ ) > 0, then R0(ζ ) =
μ(ζ )(1 − �)(1 − �)

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))
.

The basic reproduction number R0(υ) is an increasing function of the parasitic virus load υ and
it is well-defined as a fuzzy variable. Consequently, the expected value of R0(ζ ) is well-defined and it
can be expressed as a triangular fuzzy number as:

R0(ζ ) =
(

0,
μβ∗(ζ )(1 − �)(1 − �)

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))
,

μ(ζ )(1 − �)(1 − �)

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))

)

where β∗(ζ ) = ζ−ζm
ζ0−ζm

(1 − �)(1 − �).

Now we find the fuzzy basic reproduction number as follows

R0
f = E[R0(ζ )]

R0
f = μ(1 − �)(1 − �)

4

(
2β(ζ )(+1

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))

)

where β∗(ζ ) = ζ−ζm
ζ0−ζm

(1 − �)(1 − �).
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3.2 Fuzzy Equilibrium Points

Case 1: If ζ < ζm, then β(ζ ) = 0, γ (ζ ) > 0 and μc (ζ ) > 0. From system (1), we get S =
μ

μ + � + �
, I = 0 and R = � + �

μ + � + �
. Therefore, we obtain

C0(S0, I 0, R0) =
(

μ

μ + � + �
, 0,

� + �

μ + � + �

)

which is the disease-free equilibrium point. It is the situation when there is no virus in the population.
Biologically, when the amount of virus is less than a minimum amount required in the population for
disease transmission, the disease will die out.

Case 2: If ζm ≤ ζ ≤ ζ0, then β(ζ ) = ζ − ζm

ζ0 − ζm

(1 − �)(1 − �), γ (ζ ) > 0 and μc (ζ ) > 0. From

system (1), we obtain,

C∗(S∗, I ∗, R∗) =
(

μ + μc(ζ ) + θ + γ (ζ )

β(ζ )(1 − �)(1 − �)
,

μ

μ + μc(ζ ) + θ + γ (ζ )
− μ + � + �

β(ζ )(1 − �)(1 − �)
,

(θ + γ (ζ ))I ∗(� + �)S∗

μ

)

Case 3: If ζ0 < ζ < ζM , then β(ζ ) = 1, γ (ζ ) > 0 and μc (ζ ) > 0. From system (1), we obtain

C∗∗(S∗∗, I ∗∗, R∗∗) =
(

μ + μc(ζ ) + θ + γ (ζ )

(ζ )(1 − �)(1 − �)
,

μ

μ + μc(ζ ) + θ + γ (ζ )
− μ + � + �

(ζ)(1 − �)(1 − �)
,

(θ + γ (ζ ))I ∗∗(� + �)S∗∗

μ

)

The equilibrium points C∗( S∗, I ∗, R∗) and C∗∗( S∗∗, I ∗∗, R∗∗) are called endemic equilibrium points.
These equilibriums occur when the virus is greater than the minimum amount required and it persists
in the population.

4 Numerical Modeling

In this section, we will construct three numerical schemes, i.e., Euler, RK-4 and NSFD to
solve the system of differential equations corresponding to the fuzzy SIR model. Furthermore,
we will discuss the fuzzy stability of the NSFD scheme for the fuzzy SIR model at DFE point(

μ

μ + � + �
, 0,

� + �

μ + � + �

)
and EE points C∗( S∗, I ∗, R∗) and C∗∗( S∗∗, I ∗∗, R∗∗) respectively.

4.1 Forward Euler Method

Forward Euler strategy is a notable time forward finite difference scheme which is expressed in
nature. This finite difference method is produced for the above system as,

sn+1 = sn + h[μ − β(ζ )(1 − �)(1 − �)snin − (μ + � + �)sn] (6)

in+1 = in + hin[β(ζ )(1 − �)(1 − �)sn − (μ + μc(ζ ) + θ + γ (ζ ))] (7)

rn+1 = rn + h[(θ + γ (ζ ))in − (� + �)sn − μrn] (8)

where, h is the step at any time.
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4.2 Runge-Kutta Method

RK-4 is also a notable time forward explicit finite difference scheme. To develop an explicit RK-4
method we again consider the above the above system, we have

Step 1

k1 = h[μ − β(ζ )(1 − �)(1 − �)snin − (μ + � + �)sn]

m1 = hin[β(ζ )(1 − �)(1 − �)sn − (μ + μc(ζ ) + θ + γ (ζ ))]

n1 = h[(θ + γ (ζ ))in − (� + �)sn − μrn]

Step 2

k2 = h
[
μ − β(ζ )(1 − �)(1 − �)

(
sn + k1

2

) (
in + m1

2

)
− (μ + � + �)

(
sn + k1

2

)]

m2 = h
(

in + m1

2

) [
β(ζ )(1 − �)(1 − �)

(
sn + k1

2

)
− (μ + μc(ζ ) + θ + γ (ζ ))

]

n2 = h
[
(θ + γ (ζ ))

(
in + m1

2

)
− (� + �)

(
sn + k1

2

)
− μ

(
rn + n1

2

)]

Step 3

k3 = h
[
μ − β(ζ )(1 − �)(1 − �)

(
sn + k2

2

) (
in + m2

2

)
− (μ + � + �)

(
sn + k2

2

)]

m3 = h
(

in + m2

2

) [
β(ζ )(1 − �)(1 − �)

(
sn + k2

2

)
− (μ + μc(ζ ) + θ + γ (ζ ))

]

n3 = h
[
(θ + γ (ζ ))

(
in + m2

2

)
− (� + �)

(
sn + k2

2

)
− μ

(
rn + n2

2

)]

Step 4

k3 = h[μ − β(ζ )(1 − �)(1 − �)(sn + k3)(in + m3) − (μ + � + �)(sn + k3)]

m3 = h(in + m3)[β(ζ )(1 − �)(1 − �)(sn + k3) − (μ + μc(ζ ) + θ + γ (ζ ))]

n3 = h[(θ + γ (ζ ))(in + m3) − (� + �)(sn + k3) − μ(rn + n3)]

The final results of RK-4 are

sn+1 = sn + 1
6

[k1 + 2k2 + 2k3 + k4] (9)

in+1 = in + 1
6

[m1 + 2m2 + 2m3 + m4] (10)

rn+1 = rn + 1
6

[n1 + 2n2 + 2n3 + n4] (11)
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4.3 Non-Standard Finite Difference Method

Now we will build NSFD scheme for the fuzzy SIR model, based on Micken’s theory. To develop
an explicit NSFD scheme we again consider the system (1), we have

sn+1 = sn + hμ

1 + h[μ − β(ζ )(1 − �)(1 − �)in − (μ + � + �)]
(12)

in+1 = hin[β(ζ )(1 − �)(1 − �)sn+1]
1 + h(μ + μc(ζ ) + θ + γ (ζ ))

(13)

rn+1 = rn + h[(θ + γ (ζ ))in+1 + (� + �)sn+1]
1 + hμ

(14)

where, h is the step at any time.

4.4 Fuzzy Stability of the NSFD Scheme

To check the stability of the NSFD scheme of the fuzzy SIR model at DFE point
(

μ

μ+�+�
, 0, �+�

μ+�+�

)
and EE points C∗( S∗, I ∗, R∗) and C∗∗( S∗∗, I ∗∗, R∗∗) respectively, let

F = s + hμ

1 + h[μ − β(ζ )(1 − �)(1 − �)i − (μ + � + �)]
(15)

G = hi[β(ζ )(1 − �)(1 − �)s]
1 + h(μ + μc(ζ ) + θ + γ (ζ ))

(16)

H = r + h[(θ + γ (ζ ))i + (� + �)s]
1 + hμ

(17)

Jacobean matrix of Eqs. (14) to (16) is

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + h[μ − β(ζ )(1 − �)(1 − �)i − (μ + � + �)]

−h(s + hμ)β(ζ )(1 − �)(1 − �)

[1 + h[μ − β(ζ )(1 − �)(1 − �)i − (μ + � + �)]]2
0

hβ(ζ )(1 − �)(1 − �)i
1 + h(μ + μc(ζ ) + θ + γ (ζ ))

1 + hβ(ζ )(1 − �)(1 − �)s
1 + h(μ + μc(ζ ) + θ + γ (ζ ))

0

h(� + �)

1 + hμ

h(θ + γ (ζ ))

1 + hμ

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Case 1: If ζ < ζm, then β(ζ ) = 0, γ (ζ ) > 0, and μc (ζ ) > 0.

Jacobean at the DFE point C0(S0, I 0, R0) =
(

μ

μ + � + �
, 0,

� + �

μ + � + �

)
is

J0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1 + h(μ + � + �)

0 0

0
1

1 + h(μ + μc(ζ ) + θ + γ (ζ ))
0

h(� + �)

1 + hμ

h(θ + γ (ζ ))

1 + hμ

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎦

The above numerical scheme will be unconditionally convergent if the absolute eigenvalue of the
above Jacobean matrix at the DFE point is less than unity, i.e., |λi| < 1, i = 1, 2, 3. From above
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Jacobean matrix J0 we obtain the eigenvalues λ1 = 1
1 + hμ

< 1, λ2 = 1
1 + h(μ + � + �)

< 1 and

λ3 = 1
1 + h(μ + μc(ζ ) + θ + γ (ζ ))

< 1.

Case 2: If ζm ≤ ζ ≤ ζ0, then β(ζ ) = ζ − ζm

ζ0 − ζm

(1 − �)(1 − �), γ (ζ ) > 0 and μc (ζ ) > 0.

Jacobean at the point C∗(S∗, I ∗, R∗) is given as

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + h[μ − β∗(ζ )(1 − �)(1 − �)i∗ − (μ + � + �)]

−h(s∗ + hμ)β∗(ζ )(1 − �)(1 − �)

[1 + h[μ − β∗(ζ )(1 − �)(1 − �)i∗ − (μ + � + �)]]2
0

hβ∗(ζ )(1 − �)(1 − �)i∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))

1 + hβ∗(ζ )(1 − �)(1 − �)s∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))
0

h(� + �)

1 + hμ

h(θ + γ (ζ ))

1 + hμ

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where i∗ = μ

μ + μc(ζ ) + θ + γ (ζ )
− μ + � + �

β(ζ )(1 − �)(1 − �)
, s∗ = μ + μc(ζ ) + θ + γ (ζ )

β∗(ζ )(1 − �)(1 − �)
and β∗(ζ ) =

ζ − ζm

ζ0 − ζm

(1 − �)(1 − �).

From above Jacobean matrix we obtain the eigenvalue λ1 = 1
1 + hμ

. The other eigenvalues can

be obtained from the following matrix

J1
∗ =

⎡
⎢⎢⎢⎣

1
1 + h[μ − β∗(ζ )(1 − �)(1 − �)i∗ − (μ + � + �)]

−h(s∗ + hμ)β∗(ζ )(1 − �)(1 − �)

[1 + h[μ − β∗(ζ )(1 − �)(1 − �)i∗ − (μ + � + �)]]2

hβ∗(ζ )(1 − �)(1 − �)i∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))

1 + hβ∗(ζ )(1 − �)(1 − �)s∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))

⎤
⎥⎥⎥⎦

The largest eigenvalue has been plotted by using the MATLAB database and shown in Fig. 4a.

Figure 4: Eigen values of the Jacobean at the endemic equilibrium points (a) Case 2 (b) Case 3
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Case 3: If ζ0 < ζ < ζM , β(ζ ) = 1, γ (ζ ) > 0 and μc (ζ ) > 0, then R0(ζ ) =
μ(ζ )(1 − �)(1 − �)

(μ + � + �)(μ + μc(ζ ) + θ + γ (ζ ))
.

Jacobean at the point C∗∗(S∗∗, I ∗∗, R∗∗) is given as

J2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + h[μ − (1 − �)(1 − �)i∗∗ − (μ + � + �)]

−h(s∗∗ + hμ)(1 − �)(1 − �)

[1 + h[μ − (1 − �)(1 − �)i∗∗ − (μ + � + �)]]2
0

h(1 − �)(1 − �)i∗∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))

1 + h(1 − �)(1 − �)s∗∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))
0

h(� + �)

1 + hμ

h(θ + γ (ζ ))

1 + hμ

1
1 + hμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where i∗∗ = μ

μ + μc(ζ ) + θ + γ (ζ )
− μ + � + �

(1 − �)(1 − �)
and s∗∗ = μ + μc(ζ ) + θ + γ (ζ )

(1 − �)(1 − �)
.

From above Jacobean matrix, we obtain the eigenvalue λ1 = 1
1 + hμ

. The other eigenvalues can

be obtained from the following matrix

J2
∗ =

⎡
⎢⎢⎢⎣

1
1 + h[μ − (1 − �)(1 − �)i∗∗ − (μ + � + �)]

−h(s∗∗ + hμ)(1 − �)(1 − �)

[1 + h[μ − (1 − �)(1 − �)i∗∗ − (μ + � + �)]]2

h(1 − �)(1 − �)i∗∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))

1 + h(1 − �)(1 − �)s∗∗

1 + h(μ + μc(ζ ) + θ + γ (ζ ))

⎤
⎥⎥⎥⎦

Again the largest eigenvalue has been plotted by using the MATLAB database and shown in
Fig. 4b.

5 Numerical Simulation

In this segment we present the simulation results of our findings and the comparative analysis of
the Euler, RK-4 and NSFD methods for the studied model.

We can examine the behavior of the fuzzy SIR epidemic model for COVID-19 spread in the above
graphs. The behavior of the graphs is investigated for various values of h. Fig. 5 shows the positive
behavior and convergence of Euler’s method at small step sizes 0.1 and 1 respectively but diverges
at step size 10. From this, we conclude that Euler’s method cannot illustrate the actual behavior of
the disease dynamics. In Fig. 6, the RK-4 method shows positive behavior and convergence at step
sizes 0.1 and 1 but starts divergence and shows negative behavior at large step size 10. Again, we
conclude that this method is also not a reliable tool for reflecting the actual behavior of the model.
In Fig. 7, the NSFD method is converging to the same equilibrium points at step sizes 0.1, 1 and
10 respectively. The results show that this technique converges towards the equilibrium solution for
each of the observed values of h, using step sizes 0.1, 1 and 10 with little computational effort. In
this sense, this method is more robust and reliable than the standard approaches used for comparison
purposes. Fig. 8, represents a comparison of Euler, RK-4 and NSFD methods at step sizes 0.1, 1 and
10 respectively. It is clear from the graphs that the NSFD method is stable, converging to equilibria
and also containing positivity at all step sizes while the classical Euler and RK-4 show positivity and
convergence solution at small step size only.
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Figure 5: Portion of infected population by using Euler scheme at different step sizes (a) Infected
population at h = 0.1, (b) Infected population at h = 1 (c) Infected population at h = 10

Figure 6: Portion of infected population by using RK-4 scheme at different step sizes (a) Infected
population at h = 0.1, (b) Infected population at h = 1 (c) Infected population at h = 10
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Figure 7: Portion of infected population by using NSFD scheme at different step sizes (a) Infected
population at h = 0.1, (b) Infected population at h = 1 (c) Infected population at h = 10

Figure 8: Comparison of Euler, RK-4 and NSFD schemes at different step sizes (a) Infected population
at h = 0.1, (b) Infected population at h = 1 (c) Infected population at h = 10
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6 Conclusion

In this article, we have presented the numerical analysis of the SIR epidemic model for COVID-
19 spread with fuzzy parameters. We assumed that all infected persons do not transmit the disease
equally and each individual has a different degree of transfer of disease infectivity which depends
on the quantity of virus. Similarly, the recovery rate and disease induced death rate are also not
same for each individual. Keeping this in mind, the parameters β, γ and μc have been treated as
membership functions of fuzzy numbers which depend directly on the individual’s virus load. These
parameters have fixed values in deterministic models and do not depend on the virus load directly.
Thus the fuzzy SIR model is more realistic than the corresponding crisp model. Fuzzy equilibrium
points of the studied model by considering the amounts of virus in the population have been discussed.
A disease-free and two endemic equilibrium points of the fuzzy SIR model have been derived. We
calculated the fuzzy basic reproduction number by utilizing next generation matrix method and the
expected value of a fuzzy number. The fuzzy stability of the NSFD method has been discussed
and it is shown that all of the equilibrium points have the same stability properties for the studied
model. Furthermore, three numerical schemes Euler, RK-4 and NSFD are developed for our studied
model. The simulation results show that the proposed NSFD technique describes the convergence
solution at each time step size. While the classical Euler and RK-4 show positivity and convergence
solutions at small step sizes only. The NSFD technique is an explicit numerical scheme therefore easy
to implement, shows stable behavior numerically and demonstrates a good agreement with analytic
results possessed by continuous model. It describes that NSFD is more reliable as compared to the
other two techniques and preserves all the essential features of a continuous dynamical system. The
numerical and simulations results presented in this work will provide a tribune for the researchers to
compare their studies.
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