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Abstract: Millimeter-Wave (mmWave) Massive MIMO is one of the most
effective technology for the fifth-generation (5G) wireless networks. It
improves both the spectral and energy efficiency by utilizing the 30–300
GHz millimeter-wave bandwidth and a large number of antennas at the base
station. However, increasing the number of antennas requires a large number
of radio frequency (RF) chains which results in high power consumption. In
order to reduce the RF chain’s energy, cost and provide desirable quality-of-
service (QoS) to the subscribers, this paper proposes an energy-efficient hybrid
precoding algorithm for mmWave massive MIMO networks based on the idea
of RF chains selection. The sparse digital precoding problem is generated by
utilizing the analog precoding codebook. Then, it is jointly solved through
iterative fractional programming and successive convex optimization (SCA)
techniques. Simulation results show that the proposed scheme outperforms
the existing schemes and effectively improves the system performance under
different operating conditions.
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1 Introduction

The fifth generation of mobile communications (5G) intends to use millimeter-wave frequency
bands to provide higher system capacity for users in hot spots [1]. Millimeter-wave is considered
as one of the key technologies to solve the capacity demand in the fifth-generation (5G) mobile
communication system due to its large number of unused frequency bands [2]. The millimeter-wave has
a shorter wavelength, so the base station can configure more antennas with a smaller physical array
size [3]. In the traditional pure digital baseband precoding scheme, each antenna has a corresponding
baseband and radio frequency (RF) link structure [4]. These RF links are not only costly but also
consume large power and it is impractical. Compared with the microwave band, the aperture of
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antenna elements in the millimeter-wave band is usually smaller, and a large number of antenna
elements can be integrated at the transmitting end of the millimeter-wave system, thereby using
multiple-input multiple-output (MIMO) technology to improve antenna gain through beamforming;
at the same time, can solve the problem of high path loss and attenuation in the millimeter-wave
band, it also precode multiple data streams for multiple users, improving the spectral efficiency of
the system [5–8]. Generally, microwave band communication systems are precoded at the baseband
by digital signal processing (DSP) units. However, due to the hardware cost and power constraints in
a millimeter-wave system, the system cannot configure an RF link for each antenna, so it is difficult
to achieve pure digital precoding [9,10]. In order to achieve spatial multiplexing, a hybrid precoding
algorithm using fewer RF chains has become a cost-saving and power-saving alternative to millimeter-
wave MIMO systems [11]. In this hybrid structure, analog precoding is used to provide beamforming
gain, and digital precoding is used to provide multiplexing gain. In order to solve the above problems,
academia proposes to adopt a hybrid digital/analog precoding structure in a millimeter-wave MIMO
system [8]. Hybrid digital/analog precoding at the transmitting end maps the data stream to baseband
digital precoding processing and maps it to each RF link. Then, a constant mode phase shifter adjusts
the phase of the signal on each RF link to complete the analog precoding. In this structure, the number
of RF links is much smaller than the number of antennas, thereby reducing the hardware requirements
of the communication system without causing a significant loss to the system performance [9,10].

In recent years, due to energy shortages and the effects of the greenhouse effect, the energy
consumption of communication systems has also received widespread attention. Energy efficiency as
a performance indicator weighing system capacity and system energy consumption has become one
of the hotspots in future wireless communication research [5]. At present, there is a large amount of
literature that has extensively studied the energy efficiency optimization problem in mmWave MIMO
systems. For example, the authors in [12] proposed a beamforming scheme with optimal energy
efficiency in a multi-user MISO scenario. The reference [13] design an iterative algorithm to optimize
energy efficiency under the interfered with the broadcasting channel.

However, the proposed new hybrid precoding structure under the mmWave communication system
brings more new difficulties to the energy efficiency optimization problem:

1) The constant mode limit of the analog precoder brings non-convex limits to the original target
problem;

2) The number of RF links has a great impact on the energy efficiency of the system [14], but
because its value is directly related to the dimensions of the analog precoding matrix and the digital
precoding matrix, therefore, it is difficult to obtain its optimal solution through numerical analysis.

Although there are currently limited literature focusing on energy efficiency optimization prob-
lems in mmWave hybrid precoding systems, for example, in [15], given the number of RF links, the
energy efficiency optimization problem of mmWave hybrid precoding is transformed into a Euclidean
solution. For the problem with the smallest distance, use the orthogonal matching pursuit (OMP)
algorithm to obtain the approximate optimal value of the original problem. Reference [16] also uses
the OMP method to obtain the optimal value of system energy efficiency after traversing each possible
number of RF links. However, the above literature ignores the difficulty 2), and the preset number of
RF links is used, which increases the difficulty of solving. Doing so, on the one hand, ignores the
impact of the number of RF links on the energy efficiency of the system; on the other hand, when
there are a large number of antennas, exhaustively searching for each possible number of RF links will
be very time-consuming.
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Based on the above research status, this paper proposes an energy efficiency optimization scheme
based on RF link selection in a multi-user mmWave MIMO system. Because the original problem
is difficult to solve directly, first a preset analog precoding codebook is introduced to convert the
problem equivalently to solving sparse digital precoding [17,18], while the analog precoding is an
NRF selected from the codebook codeword, where NRF is the optimal number of RF links. Then,
since the transformed problem is still a non-convex non-linear problem, we use sequential convex
approximation (SCA) theory and Dinkelbach’s theory to turn the problem into a convex problem and
solve iteratively. Simulation results show that the performance of the proposed algorithm is very close
to the performance of the exhaustive method, and is much higher than the performance of the equal
gain transmission (EGT) [19] and other existing algorithms.

The rest of the paper is organized as follows. In Section 2, the system model is described. In Section
3, the proposed algorithms and their principle are analyzed. Section 4 provides the simulation results,
while Section 6 concludes the paper.

2 System Model
2.1 Channel Model

Consider the mmWave single-cell downlink scenario, as shown in Fig. 1. The system consists of K
single-antenna users and a base station with Nt antennas. The number of RF links at the base station
is NRF, and its value range is [K, Nt]. The base station uses a fully connected hybrid digital/analog
precoding structure, including a NRF × K baseband digital precoder WBB and an Nt × NRF analog
precoder WRF composed of a constant-mode phase shifter.
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RF Link

RF Link

User 1

User 2

User K

1

2

Analog 
Precoding 
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Figure 1: System model

The signal received by the kth user can be expressed as

yk = hH
k WRFWBBS + nk (1)

where S = [s1, s2, . . . , sK ]T; sk ∼ CN (0, 1) represents the signal transmitted to the kth user.
nk∼CN

(
0, σ 2Ik

)
is an independent and identically distributed additive Gaussian white noise with a

mean of 0 and a variance of σ 2. The channel from the base station to the K users is H = [h1, h2, . . . , hK ]H,
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where hk represents the downlink channel from the base station to the kth user. In this paper, the Saleh-
Valenzuela model based on angular expansion is used to characterize mmWave channels [9], which is
currently widely used in the research of mmWave hybrid precoding. The downlink channel from the
base station to the kth user can be expressed as

hk =
√

Ntρk

Nray

Nray∑
i=1

αkiu (ϕi, θi) (2)

where Nray is the number of multipath from the base station to K users; ρk = ξ/rκ

k is a large-scale
attenuation factor; ξ is a random number that obeys the normal distribution, with a mean value of
0 and a variance of 9.7 dB [20]; rk is the distance between the base station and the kth user; κ is the
path loss index; αki is the complex gain of the ith transmission path from the base station to the kth
user; ϕi and θi are the azimuth and elevation angles of the antenna, respectively, and obey the uniform
distribution in the range

[− π

2
, π

2

]
. u (ϕi, θi) represents the transmitting antenna array response vector,

which is expressed as

u (ϕi, θi) = 1√
Nt

[
1, ej 2π

λ
d(p sin ϕi sin θi+q cos θi), . . . , e

j 2π
λ

d
((√

Nt−1
)

sin ϕi sin θi+
(√

Nt−1
)

cos θi

)]
(3)

where λ is the signal wavelength and d is the separation between the antenna elements which is half
the wavelength. p and q are the indexes of the antenna in the 2D plane. This article uses a square array,
so there are 0 ≤ p ≤ √

Nt − 1 and 0 ≤ q ≤ √
Nt − 1.

2.2 Energy Consumption Model

Because the base station accounts for the main power consumption in mobile communication
systems, this article does not consider the user’s power consumption. The total power consumption of
a base station usually includes signal transmission power consumption and circuit power consumption,
so the general power consumption model of a mmWave communication system [8] is

Ptotal = 1
ε

Pt + NRFPRF + Pc (4)

where the coefficient ε < 1 of the power amplifier is a constant; Pt is the transmission power
consumption and has Pt = ‖WRFWBB‖2

F. For the sake of convenience, all power consumption unrelated
to the transmission power consumption Pt is represented as the circuit power consumption, which
includes the dynamic circuit power consumption NRFPRF caused by the radio frequency link, and
the basic power at the base station end which is independent of the number of antennas and radio
frequency links consume Pc. PRF refers to the power consumption of RF devices, including the sum
of all power consumption of the transmit filter, mixer, frequency synthesizer, and A/D and D/A
converters.

3 Proposed Hybrid Precoding Algorithm
3.1 Problem Formulation

The energy efficiency optimization problem under the above millimeter-wave system model can
be modeled as follows
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max
WRF,WBB,NRF

Rsum

Ptotal

Subject to |WRF (i, j)|2 = 1√
Nt

Rk ≥ γk, ∀k = 1, 2, . . . , K

K∑
k=1

∥∥WRFWBB,k

∥∥2 ≤ Pmax

NRF ≥ K (5)

where Pmax is the maximum transmit power; Rk is the rate of the kth user, which can be expressed as

Rk = log2

(
1 + hkWRFWBB,kW

H
BB,kW

H
RFhH

k∑K

i=1,i �=k hkWRFWBB,iW
H
BB,iW

H
RFhH

k + σ 2

)
(6)

The user’s sum rate is Rsum = ∑K

k=1 Rk; γk is the minimum rate requirement for the kth user.
This article defines that when each user’s rate meets this minimum rate requirement, the system’s
quality of service (QoS) is guaranteed. The analog precoder is composed of a constant-mode phase
shifter, so each element in the analog precoding matrix satisfies the condition of amplitude 1, which
is |WRF (i, j)|2 = 1

Nt
. In Eq. (5), the dimensions of WRF and WBB change with the number of RF links

NRF, and the number of RF links NRF must satisfy the condition of not less than the number of users.
From Eq. (5), it can be seen that the energy efficiency of the system, that is, Rsum

Ptotal
is affected by the

precoding matrix WRF and WBB, and the maximum transmission power of the system is limited by Pmax,
the number of antennas in the system, Nt, and the number of RF links NRF will affect the amplitude
and dimensions of the precoding matrix WRF and WBB. When Pmax is larger, the more power can be
transmitted on each antenna, the amplitude of the precoding matrix becomes larger, so the user and
rate increase, but at the same time the system power consumption also increases. Therefore, the energy
efficiency of the system increases with the increase of Pmax in a certain range. At this time, the impact of
Pmax on the sum-rate exceeds the impact on system energy consumption. The improvement is limited,
while the energy consumption is still increasing linearly. At this time, the energy efficiency of the system
will not increase and should remain unchanged. The number of systems transmitting antennas Nt and
the number of radiofrequency links NRF will change the dimension of the precoding matrix. When
the two become larger, the dimension of the precoding matrix increases, the corresponding sum rate
increases, and the energy consumption also increase. This article will further illustrate the impact of
the above system parameters on system energy efficiency through simulation in Section 4.

3.2 Problem Model Transformation

In order to maximize the energy efficiency of the system, three variables in Eq. (5) need to be
optimized simultaneously: WRF, WBB, and NRF. Since the size of WRF and WBB is directly related to NRF,
and the target problem is non-convex and nonlinear, Eq. (5) becomes very complicated and difficult
to solve directly. Although the reference [16] searched the energy efficiency of the system under each
possible NRF by the exhaustive method to obtain the optimal value, when the number of antennas is
large, this reference [16] algorithm takes too much time and the complexity is too high. In order to avoid
exhaustive search and make the problem solvable, the original problem will be further transformed
to make the original ternary coupled variable optimization problem into a sparse digital precoding
optimization problem that contains only one variable. Consider that the analog precoding matrix WRF



2802 CMC, 2022, vol.72, no.2

is composed of NRF codewords selected from a preset codebook. Here, the codebook is represented
by the symbol WRF, and the modulus values of all elements in the codebook are constant 1/

√
Nt. An

Nt × Nt-sized discrete Fourier transform (DFT) matrix [21] is used to represent the codebook. The
reason for this is

1. Each column vector in the DFT matrix is irrelevant;
2. The column vectors in the DFT matrix can be combined linearly to synthesize the array

response vectors in any direction in space. The Nt × Nt DFT matrix can be expressed as

1√
Nt

[
1, ej 2π

Nt
(k−1), . . . , ej 2π

Nt
(k−1)(Nt−1)

]T

, k = 1, 2, . . . , Nt (7)

Each column represents a codeword in the codebook WRF. Therefore, the design of analog
precoding can be seen as selecting the appropriate codeword from the codebook WRF. Let W̃RF =
WRFQ be the sparse form of WRF, which means that the matrix after selecting NRF codewords from
the codebook WRF and filling them with Nt − NRF all-zero column vectors have a size of Nt × Nt. Q
is a diagonal matrix, and the element on the diagonal is a binary 0-1 variable. When the element on
the diagonal is 1, it indicates that the column vector in the codebook corresponding to the subscript is
selected. Let W̃BB be a Nt × K matrix, which contains Nt − NRF all-zero rows and all elements of WBB

is a sparse representation of W̃BB, and satisfies W̃BB all-zero row index corresponding to W̃RF all-zero
column index. In summary, the following equation holds

WRFWBB = W̃RFW̃BB = WRFQW̃BB = WRFW̃BB (8)

where NRF is equal to the number of non-zero rows in W̃BB.

Using Eq. (8), Eq. (5) can be equivalently transformed into

max
W̃BB

Rsum

Ptotal

Subject to Rk = log2

(
1 + |h̃kW̃BB,k|2

∑K
i �=k|h̃kW̃BB,k|2+σ2

)
≥ γk, ∀k

‖WRFWBB‖2
F ≤ Pmax∥∥∥diag

(
W̃BBW̃

H

BB

)∥∥∥
0
≥ K (9)

The total power consumption of the system is that Ptotal = 1
ε
‖WRFWBB‖2

F+
∥∥∥diag

(
W̃BBW̃

H

BB

)∥∥∥
0
PRF+

Pc and W̃BB,k is the kth column vector of W̃BB, and h̃k = hkWRF, ∀k, which is the equivalent channel of
the kth user.

Through the above conversion, Eq. (9) contains only one unknown variable, that is, a sparse digital
precoding matrix W̃BB. The original problem can be seen as a process of sparse digital precoding matrix
and codeword selection. Each codeword in the codebookWRF can be regarded as a virtual transmitting
antenna, and the virtual channel to the kth user is h̃k. When the ith row of W̃BB is all zero, it indicates
that the ith codeword of WRF is not selected.

3.3 Algorithm Design

The problem in Eq. (9) is a classic fractional programming problem. Using Dinkelbach’s theory
[22,23], the fractional programming problem is transformed into an equivalent linear programming
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problem by introducing the parameter η, so as to optimize the single precoding matrix which can be
obtained by solving J(η) = 0, where J(η) is expressed as

J(η) = max
W̃BB

K∑
k=1

Rk − ηPtotal (10)

The meaning of the equivalence relationship is that if an optimal value ηopt can be found, so
that J(η) = 0 holds, then its corresponding optimal solution W̃

opt

BB is the optimal solution to the
optimization problem (9). This paper uses the classic binary search method to solve J(η) = 0 [22].
It can be seen that the key step in solving the optimization problem in this paper is still to solve the
corresponding optimal solution W̃

opt

BB under a given η. Therefore, the following section will discuss the
solution method of the given η subproblem.

First, since the DFT matrix is a unitary matrix, there isWH
RFWRF = INt . According to this equation,

the total power consumption can be written as Ptotal = 1
ε

∥∥∥W̃BB

∥∥∥2

F
+

∥∥∥diag
(

W̃BBW̃
H

BB

)∥∥∥
0
PRF + Pc, and

the second constraint in Eq. (9) is also transformed into
∥∥∥WRFW̃BB

∥∥∥2

F
=

∥∥∥W̃BB

∥∥∥2

F
≤ Pmax.

Next, introduce a few auxiliary variables, and combine the constraints in Eqs. (10) and (9) and get

max τ

Subject to
∑K

k=1 log2 (βk + 1) ≥ τ + ηPtotal∥∥∥W̃BB

∥∥∥2

F
≤ Pmax

h̃kW̃BB,k ≥ √
βkzk

zk ≥
√√√√ K∑

i �=k

∥∥∥h̃kW̃BB,i

∥∥∥2

+ σ 2

1√
γ k

h̃kW̃BB,i ≥
√√√√ K∑

m�=k

∥∥∥h̃kW̃BB,m

∥∥∥2

+ σ 2

Im
(

h̃kW̃BB,k

)
= 0∥∥∥diag

(
W̃BBW̃

H

BB

)∥∥∥
0
≥ K (11)

Obviously, all constraints in Eq. (11) are optimal when they take the equal sign, so Eq. (11) is
the equivalent transformation form of sub-problems. The difficulty in solving the problem (11) lies

in its existence of non-convex constraints h̃kW̃BB,k ≥ √
βkzk and zero norm

∥∥∥diag
(

W̃BBW̃
H

BB

)∥∥∥
0
. For

non-convex constraints, h̃kW̃BB,k ≥ √
βkzk uses the order convex approximation [24] to approximate it.

Reference [24] showed that
√

βkzk can be replaced by its convex upper bound and the parameters in
it are updated iteratively during the solution process. Specifically, define G (φk, βk, zk) = φk

2
z2

k + 1
2φk

βk,

for a fixed φk, φk > 0, there is G (φk, βk, zk) ≥ √
βkzk. Therefore, h̃kW̃BB,k ≥ √

βkzk can be converted to
h̃kW̃BB,k ≥ G (φk, βk, zk), in each iteration, for a fixed φk, h̃kW̃BB,k ≥ G (φk, βk, zk) it is a convex constraint.

Second, consider the l0 norm of
∥∥∥diag

(
W̃BBW̃

H

BB

)∥∥∥
0
. Introduce a selection variable xi ∈ {0, 1}, which

indicates whether the ith codeword is selected, 1 for selected, and 0 for unselected. Obviously, when the
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ith codeword is not selected, for all users, the ith element of W̃BB,k is 0, that is, xi = 0 → W i = 0, W i �
[[W 1]i , [W 2]i , . . . , [WK ]i]

T ∈ C
K×1 is the ith row vector of W̃BB. The above process is transformed into

a constraint form, which can be written as
∥∥W i

∥∥2

2
< fixi, where fi is regarded as the power level

corresponding to each codeword. When xi, is relaxed into a continuous variable between 0 and 1,

the second-order cone constraint of
∥∥W i

∥∥2

2
< fixi can be written as

∥∥∥W̃
T

i , 1
2
(fi − xi)

∥∥∥2

< 1
2
(fi + xi).

Combining all the above results, the solution of the subproblem (11) with a given η is transformed
into a convex problem, and the mathematical description of the problem is shown in Eq. (12)

max τ

Subject to
∑K

k=1 log2 (βk + 1) ≥ τ + η
(

1
ε

∑Nt
i=1 fi + ∑Nt

i=1 xi × PRF + Pc

)
∥∥∥∥W̃

T

i ,
1
2

(fi − xi)

∥∥∥∥
2

<
1
2

(fi + xi)

h̃kW̃BB,k ≥ φk

2
z2

k + 1
2φk

βk, ∀k

Nt∑
i=1

fi ≤ Pmax;

0 ≤ xi ≤ 1, ∀i;

Nt∑
i=1

xi ≥ K

zk ≥
√√√√ K∑

i �=k

∥∥∥h̃kW̃BB,i

∥∥∥2

+ σ 2

1√
γ k

h̃kW̃BB,k ≥
√√√√ K∑

i �=k

∥∥∥h̃kW̃BB,i

∥∥∥2

+ σ 2

Im
(

h̃kW̃BB,k

)
= 0 (12)

The algorithm solving steps for the entire problem is shown in Algorithm 1. It includes two nested
loops. The outer binary search η makes J(η) = 0 and the inner loop solves the optimal energy efficiency
value corresponding to Eq. (12) under the condition of fixed η.

Algorithm 1: Proposed Sparse Digital Precoding Algorithm

Initialize: ηmin = 0, ηmax = ∑K

k=1 log2

(
Pmax
σ2

∥∥∥h̃k

∥∥∥2

+ 1
)

/KPc

1: While |F (η)| ≤ gap, repeat steps 3∼8.
2: η = 0.5 × (ηmax + ηmin)

3: Initialize n = 0, φ(n)

k .
4: Solve the convex problem (12) with φ

(n)

k .

5: Determine the optimal value (βk, zk), and record it as
(
β∗

kk
, z∗

k

)
.

(Continued)
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Algorithm 1: Continued

6: Update
(
β∗

kk
, z∗

k

)
with

(
β

(n+1)

k , z(n+1)

k

)
, let φ

(n+1)

k =
√

β
(n+1)
k

z(n+1)
k

, n = n + 1.

7: Repeat steps 5∼6 until convergence.
8: If |F (η)| ≤ 0, ηmax = η; otherwise ηmin = η.
9: End While

In Eq. (12), since xiis relaxed into a continuous variable on [0,1], a simple matching principle is
adopted: for xi > 1− ξ , let xi = 1; otherwise, let xi = 0. Here ξ is a very small number. The simulation
results in the next section show that the impact of this matching algorithm on performance is almost
negligible because of most of the xi obtained from the solution are very close to 1 or 0. Through
the matched xi, the selected codewords in the codebook can be found, thereby forming an analog
precoding matrix WRF. Use h̃k = hkWRF and Ptotal = 1

ε
‖WRFWBB‖2

F + ∑K

k=1 xiPRF + Pc to replace the
new Eq. (12), repeat the steps in Algorithm 1 again, and solve the digital precoding matrix WBB to
obtain the optimal value of system energy efficiency.

3.4 Complexity Analysis

The complexity of the proposed algorithm is compared with reference [25] and conventional OMP
algorithm [7] in Tab. 1. As can be seen from Tab. 1, the proposed algorithm has a lower computational
complexity than the competing alternative which means that the proposed algorithm is easy to
implement with simple hardware and less signal processing requirement.

Table 1: Computational complexity comparison

Algorithm Complexity

Reference [25] O
(
Nt

RFN2
t N2

s

)
Conventional OMP [7] O

(
Nt

RFN2
t Ns

)
Proposed O

(
Nt

RFNtNs

)

4 Simulation Results and Analysis

This section verify the simulation performance of the above algorithm. Some parameters [8–16]
used in the simulation are shown in Tab. 2. The number of users is K = 4, the number of transmitting
antennas is Nt = 64 and the maximum transmission power is Pmax = 30 dBm.

Fig. 2 compares the spectral efficiency of the proposed algorithm with optimal digital, reference
[25] and conventional OMP algorithm [7] under different antenna configurations and SNR levels. In
Fig. 2a, the system configuration of NRF = 4, Nt = 64, Nr = 16 is used to evaluate the achievable
spectral efficiency of the algorithms under different SNR values. As can be seen from Fig. 2a, the
spectral efficiencies of all algorithms increase with increasing SNR. It is also clear from the results
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that the spectral efficiency of the proposed algorithm is better than reference [25] and conventional
OMP algorithm [7]. The proposed algorithm also gives closed performance with the fully digital
precoding which verifies it effectiveness. On the other hand, the spectral efficiency of the conventional
OMP algorithm [7] is lower than the other algorithms and the rate gap increases with increasing
SNR, which makes OMP scheme worst in high SNR channel conditions. In Fig. 2b, the system
configuration of NRF = 4, Nt = 256, Nr = 16 is used to evaluate the performance of the proposed
and existing algorithms. It can be seen from Fig. 2b that; the proposed algorithm gives better spectral
efficiency as compared with reference [25] and conventional OMP algorithm [7] and it also shows
closed performance with the optimal digital precoding scheme. It is worth notable that with increasing
the number of transmitter antennas Nt, the rate gap between the proposed algorithm and reference
[25] and conventional OMP algorithm [7] gets larger whereas, the spectral efficiency of the proposed
algorithm reaches that of the optimal digital precoding algorithm. Fig. 2c compare the spectral
efficiency performance with system configuration of NRF = 4, Nt = 1024, Nr = 16. It can be seen
from Fig. 2c that the spectral efficiency of the proposed algorithm is better than the reference [25]
and conventional OMP algorithm [7]. The rate gap of the OMP algorithm [7] gets much larger as in
contrast to Figs. 2a and 2b respectively.

Table 2: Simulation parameters

Parameter Value

Number of antennas Nt 64∼1024
Cell radius 200 m
Number of multipath Nray 7
Number of phase shifters Nc 30
Carrier frequency band 28 GHz
Noise power spectral density –174 dbm/Hz
Minimum distance from user to the base station 10 m
User minimum rate 2 bit/s/Hz
Circuit power consumption of the RF link PRF 48 mW
Remaining circuit power Pc 8 W
Path loss factor κ 4.6
Power amplifier coefficient ε 0.388

Fig. 3 compares the NMSE of the proposed algorithm with fully digital, reference [25] and
conventional OMP [7] algorithm under various SNR values. As can be seen from Fig. 3, the NMSE
of all algorithms decreases with increasing SNR. It is also clear from the results that the NMSE of the
proposed algorithm is much better than reference [25] and conventional OMP [7] algorithms and gets
improved with increasing SNR. This means that the channel quality and quality of service (QoS) to
the subscribers is better using the proposed algorithm, and has reliable data transmission. Moreover,
the proposed algorithm closely perform with the fully-digital precoding, which also validates the
effectiveness of the proposed algorithm.
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To elaborate the effectiveness of the proposed algorithms in terms of hardware energy consump-
tion (energy efficiency), Fig. 4 compares the energy efficiency of algorithms under increasing number
of RF chains. As can be seen from Fig. 4, the energy efficiency of all algorithms increases when
the number of RF chains range is from 1 to 10. However, when the number of RF chains increases
above 10, the energy efficiency of all algorithms starts declining. It can also be seen from the results
that the energy efficiency of the proposed algorithm is much better than that of reference [25] and
conventional OMP [7] algorithm for each number of RF chains, which makes it more effective from
practical implementation perspective which will require less amount of energy per hardware module.

(a) (b)

(c)

Figure 2: Comparison of the spectral efficiency of the algorithms under different SNR values. (a)
NRF = 4, Nt = 64, Nr = 16; (b) NRF = 4, Nt = 256, Nr = 16; (c) NRF = 4, Nt = 1024, Nr = 16
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Figure 3: Comparison of the NMSE of the algorithms under different SNR values

Figure 4: Comparison of the energy efficiency of the algorithms under different number of RF chains

5 Conclusion

With the millimeter-wave hybrid precoding structure, the optimization of system energy efficiency
and the number of RF links is very challenging. This paper proposes an energy-efficient hybrid
precoding algorithm based on RF link selection. First, using the preset analog precoding codebook,
the original problem is equivalently converted into a sparse digital precoding optimization problem,
so that the three coupling variables of the original problem are converted into one unknown variable.
Then an iterative solution algorithm was designed using Dinkelbach’s theory combined with sequential
convex approximation. The results show that the algorithm proposed in this paper can optimize
the number of RF links and effectively improve the energy efficiency of the system while avoiding
exhaustive search. The results are very close to the performance obtained by the fully digital method
and significantly higher than other commonly used algorithms, such as reference [25] and conventional
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OMP [7]. This work can further be improved by considering the hardware impairment and low-
resolution ADC issues and evaluation in different deployment scenarios.
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