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Abstract: Atherosclerosis diagnosis is an inarticulate and complicated cog-
nitive process. Researches on medical diagnosis necessitate maximum accu-
racy and performance to make optimal clinical decisions. Since the medical
diagnostic outcomes need to be prompt and accurate, the recently developed
artificial intelligence (AI) and deep learning (DL) models have received con-
siderable attention among research communities. This study develops a novel
Metaheuristics with Deep Learning Empowered Biomedical Atherosclero-
sis Disease Diagnosis and Classification (MDL-BADDC) model. The pro-
posed MDL-BADDC technique encompasses several stages of operations
such as pre-processing, feature selection, classification, and parameter tun-
ing. Besides, the proposed MDL-BADDC technique designs a novel Quasi-
Oppositional Barnacles Mating Optimizer (QOBMO) based feature selection
technique. Moreover, the deep stacked autoencoder (DSAE) based classifica-
tion model is designed for the detection and classification of atherosclerosis
disease. Furthermore, the krill herd algorithm (KHA) based parameter tuning
technique is applied to properly adjust the parameter values. In order to
showcase the enhanced classification performance of the MDL-BADDC tech-
nique, a wide range of simulations take place on three benchmarks biomedical
datasets. The comparative result analysis reported the better performance of
the MDL-BADDC technique over the compared methods.

Keywords: Atherosclerosis disease; biomedical data; data classification;
machine learning; disease diagnosis; deep learning

1 Introduction

Cardiovascular disease (CVD) is a common term for a multitude of heart illness conditions
and disorders. There is another form of CVD, particularly coronary artery disease (CAD), so called
atherosclerosis [1]. The number of persons are impacted by heart disease, particularly atherosclerosis.
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This disease is the major cause of mortality in many nations as per the World Health Organization
(WHO). For clinical diagnoses, automatic extraction of data from individual records is problematic
[2]. Henceforth, the significance of developing and establishing a Medicinal Diagnostic Support
Scheme (MDSS) for automating patients’ prediction and classification of CVD. But healthcare
diagnoses study needs higher efficiency and accuracy for making a better medical decision. Although
classical MDSS has demonstrated the ability to cover many diagnosis problems, they provide a low
precision rate and could not offer accurate diagnoses [3]. In the past few decades, clinical therapy
and diagnoses schemes utilizing Machine Learning (ML) and artificial intelligence (AI) techniques
have received much recognition. Therefore, this study topic has influenced academic fields namely
applied sciences, finances, medical, and biology applications. Subsequently, various studies were
introduced for developing MDSS to classify or predict patients with CVD to enhance healthcare [4].
The abovementioned methods predict the existence of disease by using statistical models that need
tested objects which should meet the precondition of the models, like logistic regression, time series
models, etc. for evaluating the occurrence of disease [5].

Current researches have employed machine learning (ML) methods for diagnosing distinct CVD
issues and making a calculation. Fig. 1 illustrates the applications involved in computer aided health-
care. A main challenge of ML is the higher dimension of the data set [6]. The study of various features
needs a massive number of storage and results in over-fitting; hence the weighting feature decreases
processing time and unwanted information, therefore enhancing the efficiency of the model [7].
Finding a smaller set of features describes distinct diseases of medical images, health management, IoT,
and genome expression. Reduction Dimension employs feature extraction to simplify and transform
information, whereas feature selection decreases the data set by eliminating unwanted features.

Figure 1: Applications of computer aided healthcare

He et al. [8] presented an evolutionary classification method. The fundamental of the predictive
method is a kernel extreme learning machine (KELM) enhanced using salp swarm algorithm (SSA).
For getting a good set of features and parameters, the space transformation method is presented
from the optimization for improving SSA to obtain an optimum KELM method. Terrada et al. [9]
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determined an MDSS of CAD disease. This method is capable of giving heart disease predictions via
the patient medical information. This MDSS is depending on ML methods like k-means clustering and
K-medoids for K-Nearest Neighbor (KNN), classification, and Artificial Neural Network (ANN) for
forecasting the absence and presence of Atherosclerosis diseases.

Terrada et al. [10] apply KNN and ANN for predicting patients with or without CVD disease.
The method is authorized on Hungarian, Cleveland heart disease, Long Beach VA, and Switzerland
datasets. This MDSS is depending on supervised ML models. Munger et al. [11] aim at the present
application of ML for providing insights into the atherosclerotic plaque formation and good under-
standing of atherosclerotic plaque evolution in patients with CVD.

Zhao et al. [12] presented an automated multiclass coronary atherosclerosis plaque classification
and detection architecture. First, recovered the transverse cross section and centrelines from the CT
angiography. Next, extract the ROI according to the coarse segmentation. Then, extract a random
radius symmetry (RRS) feature vector that integrates various determinations into a random approach
and significantly increases the trained data. Lastly, fed the RRS feature vectors to the multiclass
coronary plaque classifiers.

Parameswari et al. [13] aims at decreasing the disease independent variation without damaging
data-based variances among the atherosclerotic eyes and images of healthy. The presented approach
allows improvement of illumination in the blood vessel, via renovating them. Lastly, Enhanced
Bayesian Arithmetic Classifier (EBAC) is executed for efficient classifier. Cherradi et al. [14] presented
a CAD scheme based on KNN and ANN models. Next, employed K-fold cross-validation for splitting
the datasets and attaining the optimal method with greater precision and lesser results.

This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical
Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model. The proposed MDL-
BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer (QOBMO) based
feature selection technique. In addition, the deep stacked autoencoder (DSAE) based classification
model is designed for the detection and classification of atherosclerosis disease. Finally, the krill herd
algorithm (KHA) based parameter tuning technique is applied to properly adjust the parameter values.
To showcase the enhanced classification performance of the MDL-BADDC approach, a wide range
of simulations take place on three benchmarks biomedical datasets.

2 The Proposed Model

In this study, a novel MDL-BADDC technique has been developed for atherosclerosis disease
diagnosis and classification. The MDL-BADDC technique incorporates pre-processing, QOBMO
based feature selection, DSAE based classification, and KHA based parameter tuning. The appli-
cation of KHA helps to properly tune the parameters contained in the DSAE model and thereby
enhances the detection outcomes. Fig. 2 illustrates the overall process of MDL-BADDC technique.
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Figure 2: Overall process of MDL-BADDC technique

2.1 Data Pre-Processing

At first, the preprocessing method takes place for the conversion of non-traditional data set
into traditional data set for improving the performance of the presented method. For this, min-max
normalization method is performed. NN training is developed an effective on the achievement of pre-
processing phase on the network targets inputs. The normalization process for raw input has a better
result on making the data that suitable for training [15]. Generally, the feature is being rescaled to be
in the interval of [0, 1] or from [−1, 1].

y′ = (ymax − ymin) × (xi − xmin)

(xmax − xmin)
+ xmin (1)

In which (ymax − ymin) = 0; when (xmax − xmin) = 0 to a feature, it designates a constant rate for that
feature in the data. When the feature value is identified with a constant value, it should be unconcerned
since it doesn’t transport any data to NNs. After the min-max normalization has been performed, all
the features would be in the novel range of value that remains unchanged.

2.2 Design of QOBMO Based Feature Selection

At this stage, the pre-processed biomedical data is passed into the QOBMO algorithm to choose
an optimum subset of features. A barnacle is a microorganism that attaches itself to object in the
water. The mating groups comprise each neighbor and competitor within reach of the penis. BMO
is stimulated by the mating procedure. With simulates initialization, selection, and reproduction
processes the realtime optimization issue was resolved [16]: First, considered the candidate solution is
barnacle, in which the matrix of the population is formulated by Eq. (2). The calculation of population
and sorting procedure are performed for locating the optimal solution at X .

X =
⎡
⎢⎣

x1
1 · · ·xn

1
...

. . .
...

x1
N · · ·xn

N

⎤
⎥⎦ (2)

barnacle−d = randperm(N) (3)
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barnacle−m = randperm(N) (4)

Whereas N represent the barnacle population count, n indicates the amount of control parameters
and barnacle−d and barnacle−m represent the parent that mated. As there is no certain equation to
derive the reproduction method of barnacles, BMO emphasizes the genotype frequency of parent to
yield of springs according to the Hardy-Weinberg principles. It is noteworthy that the length of the
penis (pl) plays a significant part in defining the exploration and exploitation methods [17].

xN−new
i = pxN

barnacle−d + qxN
barnacle−m (5)

whereas p represent the random distribution numbers from the range of zero and one, q = (1 − p),
xN

barnacle−d and xN
barnacle−m represents the variable of Dad and Mum barnacles. p and q denote the genotype

frequency of Dad and Mum barnacles. When barnacle #1 chooses barnacle #8, it is over the limit.
Therefore, the mating procedure doesn’t take place. Now, the offspring are generated by the sperm
cast method.

xn−new
i = rand() × xn

barnacle−m (6)

In which rand () denotes the arbitrary values from the range of zero and one. The new offspring
is generated by Mum’s barnacles because it attains the sperm that is released into the water by other
barnacles. In the iteration, the location of the barnacles is upgraded. At last, the BMO is determined
for approximating the global optimum for optimization problems.

The OBL is fundamentally established to the drive of decreasing the computational time and
enhancing the convergence capabilities of distinct EA [18]. With assuming every of the present
population and its opposite population dependent upon OBL, the candidate solution was enhanced.
This method is easy and simple for implementing that creates it appropriate for enhancing the
efficiency of BMO technique. So, the primary population of this technique was created dependent
upon the QOBL technique. Since, the outcome of this comparative, an optimum amongst novel and
quasi-opposite solutions was retained from the primary populations. It can improve the variety and
exploration of created primary population. Therefore, the technique is typically converged to global
optimal with faster rate. The definition of opposite point, opposite number, quasi-opposite point, and
quasi-opposite number are provided as follows [19]:

To some arbitrary number χ ∈ [a, b], their opposite number χ0 has provided as:

x0 = a + b − x, (7)

But, the opposite-point to multi-dimension search space (d dimensional) was demonstrated as:

xi
0 = aj + bi − xi, i = 1, 2, . . . , d (8)

and the quasi-opposite number xqo of some arbitrary number χ ∈ [a, b] is provided as:

xqo = rand
(

a + b
2

, x0

)
, (9)

Likewise, the quasi-opposite point to multi-dimension search space (d-dimension) has determined
as:

xi
qo = rand

(
ai + bi

2
, xi

0

)
. (10)
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2.3 Design of Optimal DSAE Based Classification

During classification process, the optimal DSAE model is utilized for the detection and classifica-
tion of atherosclerosis disease. The AE is an axisymmetric single hidden-layer neural network (SLNN).
The AE encodes as input data by utilizing the hidden layer, approximating the minimal error, and
attaining the optimal-feature hidden-state [20]. For instance, the AE doesn’t learn realtime features by
inputting and copying memory into implicit layer, even though it could recreate input data with higher
accuracy. In order to adhesion state of locomotive, k set of monitored information {x1, x2, x3, . . . , xn}
exists, that is recreated into a N ×M dataset {x(1), x(2), x(3), .., x(N)}, x(i) ∈ RM . This data is utilized
as input matrix X. In this work, the activation functions of AE are sigmoid, that is developed for
attaining a good depiction of input: h(X , W , b) = σ(WX + b). The enforcing sparsity purpose is to
reduce the unwanted activation. aj(x) is fixed as the jth activation values. During the feature learning
procedure, the activation values of hidden neuron are formulated by a = sigmoid(WX + b), in which
b indicates the deviation matrix and W represent the weight matrix.

ρj = 1
n

n∑
i=1

[aj(x(i))]. (11)

The hidden state was retained at a low value to make sure that average activation values of sparse
variable are determined by ρ, and the penalty term was utilized for preventing ρj from deviating in ρ

parameter [21]. The KL divergence was employed as the base of punishment.

KL(ρ||ρj) = ρ ln
ρ

ρj

+ (1 − ρ) ln
1 − ρ

1 − ρj

. (12)

If ρj doesn’t deviation in ρ parameter, the KL divergence value was zero; or else, the KL divergence
value would rise progressively with the deviation.

Csparse = C(W , b) + β

s2∑
j=1

KL(ρ||ρj) (13)

In which S2 indicates the amount of neurons and β denotes the weight of sparse penalty.
Afterward, the sparse penalty was determined, the sparse expression is attained by reducing the sparse
cost function.

Antarctic krill is the leading animal species on Earth. The capability to generate huge swarm
is most important feature of this species. An individual krill move from the herd if predators like
whales, seal, and some another species attacked the herds. This attack decreases the density of KH. The
improvement of KH then predation was caused by several parameters. An important purpose of the
herd performance of the krill individual is improving krill density and attaining food. KH technique
utilizes this multi-objective herd to resolve global optimized issues [22]. To determine food (maximum
food focus) and density dependent attractiveness of krill’s were utilized as objective. Thus the outcome,
a krill individual transfers near-optimum results once it explores to maximum densities of herd and
food. This performance generates a KH about the global minimal of optimized issue.

The time-dependent place of individual krill’s from 2D surfaces has been led by the subsequent 3
important essential performances.

1. Progress induced by another krill individual;
2. Foraging motion
3. Physical or arbitrary diffusion

The subsequent Lagrangian method was generalizing to n dimension decision space:
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dXi

dt
= Ni + Fi + Di (14)

where Ni refers the motion induced by another krill’s individual; Fi stands for the foraging motion;
and Di signifies the physical diffusion of ith krill’s individual.

The progress of all krill’s individual is determined as:

Nnew
i = Nmaksαi + ωnNold

i (15)
αi = αlocal

i + αtarget
i (16)

where Nmaks stands for the maximal induced speed, and based on the measured value, it could be
obtained as 0.01 (m/s). ωn defines the inertia weights of motion induced from the range of zero and
one. αlocal

i represents the local effects offered by the neighbors, target implies the target way effects
offered as an optimum krill’s individual and Nold

i stands for the final motion-induced. ωn, the inertia
weight has equivalent to 0.9 initially optimized. Afterward, it can be linearly reduced to 0.1.

The effects of neighbors are considered as an attraction or repulsion tendency amongst the
individuals to a local search. α

target
i , the target way effects offered by an optimum krill’s individual

are determined as [23]:

αtarget
i = CbestK̂i, bestX̂i,best (17)

where Cbest refers the coefficient of influences and determined as under.

Cbest = 2
(

rand + I
Imaks

)
(18)

where rand implies the arbitrarily created number amongst zero and one, I refers the actual iteration
number and Imaks signifies the maximal amount of iterations.

3 Performance Validation

The experimental result analysis of the proposed technique takes place using three medical
datasets namely Cleveland dataset, Hungarian dataset, and Z-Alizadeh Sani dataset.

The Cleveland dataset has 76 attributes, of that only 14 features are generally utilized in maximum
published research: 13 inputs and 1 output. During this case, only 303 instances were utilized by 164
healthy subjects and 139 CAD (coronary artery disease) patients.

The Hungarian dataset [24] has 14 features 13 inputs and 1 output. During this case, only 294
instances were utilized with 188 healthy subjects and 106 CAD patients.

Z-Alizadeh Sani dataset [25] is gathered arbitrarily in heart disease patients at Tehran’s Shaheed
Rajaei Cardiovascular, Medical and Research Center. This dataset was constructed for CAD diagnosis,
having 303 samples by 56 features to all the patients. Classes: 71% of patients ensured CAD and 29%
were healthy.

The FS results obtained by the QOBMO technique take place using three datasets [26]. The results
show that the QOBMO technique has chosen 9, 8, and 12 features from the test Cleveland, Hungarian,
and Z-Alizadeh datasets respectively.

3.1 Result Analysis on Cleveland Dataset

The confusion matrix offered by the MDL-BADDC technique on the test Cleveland dataset is
shown in Fig. 3. The figure reported that the MDL-BADDC technique has effectually identified
the class labels under all epochs. For instance, with 200 epochs, the MDL-BADDC technique has



2866 CMC, 2022, vol.72, no.2

identified 162 samples under Absent class and 135 samples under Present class. In addition, with 600
epochs, the MDL-BADDC method has identified 160 samples under Absent class and 136 samples
under Present class. Along with that, with 1000 epochs, the MDL-BADDC approach has identified
163 samples under Absent class and 137 samples under Present class.

Figure 3: Confusion matrix of MDL-BADDC technique on Cleveland dataset
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Detailed result analysis of the MDL-BADDC technique on the test Cleveland dataset is depicted
in Tab. 1. The experimental results stated that the MDL-BADDC technique has accomplished effective
outcomes under every epoch.

Table 1: Result analysis of MDL-BADDC technique on Cleveland dataset

No. of epochs Sensitivity Specificity Accuracy F-score MCC

Epoch-200 99.39 97.84 98.68 98.79 97.35
Epoch-400 97.56 98.56 98.02 98.16 96.03
Epoch-600 98.17 98.56 98.35 98.47 96.68
Epoch-800 97.56 98.56 98.02 98.16 96.03
Epoch-1000 99.39 97.12 98.35 98.49 96.69

Average 98.41 98.13 98.28 98.41 96.56

For instance, under 200 epochs, the MDL-BADDC technique has obtained sensy, specy, accuy,
Fscore, and MCC of 99.39%, 97.84%, 98.68%, 98.79%, and 97.35% respectively. Eventually, under 600
epochs, the MDL-BADDC methodology has achieved sensy, specy, accuy, Fscore, and MCC of 98.17%,
98.56%, 98.35%, 98.47%, and 96.68% correspondingly. Meanwhile, under 1000 epochs, the MDL-
BADDC approach has reached sensy, specy, accuy, Fscore, and MCC of 99.39%, 97.12%, 98.35%, 98.49%,
and 96.69% correspondingly.

A comparative result analysis of the MDL-BADDC technique takes place with recent methods in
Tab. 2. The figure shows that the weighted fuzzy rules (WFR), C4.5, and Fast Detection Tree (FDT)
techniques have obtained lower accuy of 64.25%, 79.54%, and 78.75% respectively. Along with that, the
Hybrid Neural Network-Genetic (HNNG) and NN models have resulted in moderate accuy of 89.60%
and 85.95% respectively. In line with, the ANN, SVM, and C4.5 techniques have obtained reasonable
accuy of 98.10% and 93.56% respectively. However, the MDL-BADDC technique has outperformed
the existing methods with the maximum accuy of 98.28%.

Table 2: Accuracy analysis of MDL-BADDC technique on Cleveland dataset

Methods Accuracy (%)

MDL-BADDC 98.28
ANN model 98.10
SVM, Naïve Bayes, and C4.5 93.56
HNNG model 89.60
Neural Network 85.95
C4.5 model 79.54
FDT model 78.75
Weighted fuzzy rules (WFR) 64.25

3.2 Result Analysis on Hungarian Dataset

The confusion matrix presented by the MDL-BADDC method on the test Hungarian dataset is
illustrated in Fig. 4. The figure stated that the MDL-BADDC methodology has effectually identified
the class labels under all epochs.
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Figure 4: Confusion matrix of MDL-BADDC technique on Hungarian dataset

For instance, with 200 epochs, the MDL-BADDC approach has identified 181 samples under
Absent class and 98 samples under Present class. Besides, with 600 epochs, the MDL-BADDC system
has identified 183 samples under Absent class and 101 samples under Present class. At last, with 1000
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epochs, the MDL-BADDC algorithm has identified 181 samples under Absent class and 98 samples
under Present class.

A comprehensive outcome analysis of the MDL-BADDC approach on the test Hungarian dataset
is illustrated in Tab. 3. The experimental outcomes referred that the MDL-BADDC method has
accomplished effectual outcomes under every epoch. For instance, under 200 epochs, the MDL-
BADDC methodology has achieved sensy, specy, accuy, Fscore, and MCC 96.28%, 92.45%, 94.90%,
96.02%, 88.91% correspondingly. In addition, under 600 epochs, the MDL-BADDC system has
achieved sensy, specy, accuy, Fscore, and MCC of 97.34%, 95.28% 96.60%, 97.34%, 92.62% respectively.
In the meantime, under 1000 epochs, the MDL-BADDC algorithm has obtained sensy, specy, accuy,
Fscore, and MCC 96.28%, 92.45%, 94.90%, 96.02%, 88.91% correspondingly.

Table 3: Result analysis of MDL-BADDC technique on Hungarian dataset

No. of epochs Sensitivity Specificity Accuracy F-score MCC

Epoch-200 96.28 92.45 94.90 96.02 88.91
Epoch-400 97.34 94.34 96.26 97.08 91.87
Epoch-600 97.34 95.28 96.60 97.34 92.62
Epoch-800 95.74 93.40 94.90 96.00 88.96
Epoch-1000 96.28 92.45 94.90 96.02 88.91
Average 96.60 93.58 95.51 96.49 90.25

A brief result analysis of the MDL-BADDC method take place with recent algorithms in Tab. 4.
The figure outperformed that the WFR, C4.5, and FDT systems have obtained lesser accuy of
56.93%, 79.61%, and 77.53% correspondingly. Likewise, the HNNG and NN methods have resulted to
moderate accuy of 88.60% and 83.84% correspondingly. Besides, the ANN, SVM, and C4.5 techniques
have obtained reasonable accuy of 93.20% and 88.60% correspondingly. Lastly, the MDL-BADDC
method has exhibited the existing methods with the maximal 95.51%.

Table 4: Accuracy analysis of MDL-BADDC technique on Hungarian dataset

Methods Accuracy (%)

MDL-BADDC 95.51
ANN model 93.20
SVM, Naïve Bayes, and C4.5 88.57
HNNG Model 88.60
Neural Network 83.84
C4.5 model 79.61
FDT model 77.53
WFR technique 56.93

3.3 Result Analysis on Z-Alizadeh Dataset

The confusion matrix existing by the MDL-BADDC system on the test Z-Alizadeh dataset is
depicted in Fig. 5. The figure stated that the MDL-BADDC approach has effectually identified
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the class labels under all epochs. For instance, with 200 epochs, the MDL-BADDC algorithm has
identified 214 samples under Absent class and 86 samples under Present class. Furthermore, with 600
epochs, the MDL-BADDC system has identified 214 samples under Absent class and 84 samples under
Present class. Moreover, with 1000 epochs, the MDL-BADDC method has identified 213 samples
under Absent class and 85 samples under Present class.

Figure 5: Confusion matrix of MDL-BADDC technique on Z-Alizadeh dataset
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A detailed outcome analysis of the MDL-BADDC technique on the test Z-Alizadeh dataset is
depicted in Tab. 5. The experimental outcomes stated that the MDL-BADDC system has accom-
plished effectual outcomes under every epoch. For instance, under 200 epochs, the MDL-BADDC
algorithm has achieved sensy, specy, accuy, Fscore, and MCC of 99.07%, 98.85%, 99.01%, 99.30%,
97.59% respectively. Likewise, under 600 epochs, the MDL-BADDC technique has attained sensy,
specy, accuy, Fscore, and MCC of 99.07%, 96.55%, 98.35%, 98.85%, 95.96% respectively. In addition,
under 1000 epochs, the MDL-BADDC approach has reached sensy, specy, accuy, Fscore, and MCC
98.61%, 97.70%, 98.35%, 98.84%, 95.99% correspondingly.

Table 5: Result analysis of MDL-BADDC technique on Z-Alizadeh dataset

No. of epochs Sensitivity Specificity Accuracy F-score MCC

Epoch-200 99.07 98.85 99.01 99.30 97.59
Epoch-400 99.07 97.70 98.68 99.07 96.78
Epoch-600 99.07 96.55 98.35 98.85 95.96
Epoch-800 99.54 98.85 99.34 99.54 98.39
Epoch-1000 98.61 97.70 98.35 98.84 95.99

Average 99.07 97.93 98.75 99.12 96.94

A comparative outcome analysis of the MDL-BADDC technique take place with recent methods
in Tab. 6. The figure portrayed that the NN Model, 2 Hybrid Feature Selection (HFS), and SVC
method have reached lesser accuy of 86.72%, 92.18%, and 91.95% respectively. Along with that, the
HNNG and nu-SVM techniques have resulted in moderate accuy of 94.75% and 93.34% respectively.
Similarly, the ANN, SVM, and C4.5 techniques have attained reasonable accuy of 97.32% and 96.60%
correspondingly. Eventually, the MDL-BADDC approach has exhibited the existing algorithms with
a higher 98.75%.

Table 6: Accuracy analysis of MDL-BADDC technique on Z-Alizadeh dataset

Methods Accuracy

MDL-BADDC 98.75
ANN model 97.32
SVM, Naïve Bayes, and C4.5 96.60
HNNG model 94.75
nu-SVM 93.34
2HFS 92.18
SVC model 91.95
Neural Network 86.72

Fig. 6 portrays the accuracy and loss analysis of the MDL-BADDC technique on three datasets.
The results demonstrated that the MDL-BADDC system has accomplished improved performance
with enhanced training and validation accuracy. It can be stated that the MDL-BADDC method
has reached improved validation accuracy over the training accuracy. The figure demonstrates loss
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analysis of the MDL-BADDC technique on three datasets. The outcomes established that the MDL-
BADDC approach has resulted in a proficient outcome with the minimum training and validation loss.
It can be obvious that the MDL-BADDC methodology has offered decreased validation loss over the
training loss.

Figure 6: (Continued)
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Figure 6: Accuracy and Loss graph analysis of MDL-BADDC technique on three datasets

4 Conclusion

In this study, a novel MDL-BADDC technique has been developed for atherosclerosis disease
diagnosis and classification. The MDL-BADDC technique incorporates pre-processing, QOBMO
based feature selection, DSAE based classification, and KHA based parameter tuning. The appli-
cation of KHA helps to properly tune the parameters involved in the DSAE model and thereby
enhances the detection outcomes. To showcase the enhanced classification performance of the MDL-
BADDC approach, a wide range of simulations take place on three benchmark biomedical datasets.
The comparative result analysis reported the better performance of the MDL-BADDC technique
over the compared methods. In future, the MDL-BADDC technique can be extended to other disease
diagnoses such as lung cancer, brain tumor, etc.
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