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Abstract: Magnetic field and the fractional Maxwell fluids’ impacts on peri-
staltic flows within a circular cylinder tube with heat transfer was evaluated
while assuming that they are preset with a low-Reynolds number and a long
wavelength. Utilizing, the fractional calculus method, the problem was solved
analytically. It was deduced for temperature, axial velocity, tangential stress,
and heat transfer coefficient. Many emerging parameters and their effects on
the aspects of the flow were illustrated, and the outcomes were expressed
via graphs. A special focus was dedicated to some criteria, such as the wave
amplitude’s effect, Hartman and Grashof numbers, radius and relaxation–
retardation ratios, and heat source, which were under discussions on the
axial velocity, tangential stress, heat transfer, and temperature coefficients
across one wavelength. Multiple graphs of physical interest were provided.
The outcomes state that the effect of the criteria mentioned beforehand (the
Hartman and Grashof numbers, wave amplitude, radius ratio, heat source, and
relaxation–retardation ratio) were quite evident.

Keywords: Peristaltic flow; fractional maxwell fluid; mass and heat transfer;
magneto-hydrodynamic flow

Nomenclature

R1, R2 Shapes of the wavy walls
a1, a2 Radius of inner and outer tubes
b Amplitude of waves
λ Wavelength
c Wave speed
-t Time in fixed frame
t Time within wave frame
λ1 Relaxation time
α1 Fractional time derivative parameter

.
γ Rate of shear strain
U , W Velocity constituents within the radial, axial directions within the fixed frame
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u, w Velocity constituents within the radial, axial directions within the wave frame
P Pressure in a fixed frame
p Pressure within wave frame
σ Fluid electrical conductivity
Bo Intensity of external magnetic field
ρ Constant density
g Acceleration because of gravity
α Coefficient linear of thermal expansion
cp Specific heat
K Thermal conductivity
QO Heat generation coefficient
ϕ Wave amplitude in non-dimensional form
ε Radius ratio
θ Temperature distribution
To, T1 Temperature of inner and outer surface
δ Wave number
μ Fluid Viscosity
M Hartmann number
Re Reynolds number
Pr Prandtl number
Gr Grashof number
β Heat source/sink parameter

1 Introduction

The method of inserting fluids within tubes if a progressive wave of expanded or contradicted area
circulates along the boundary’s length of a distensible tube that contains fluid is known as peristaltic
transport. Physiologically, blood flow or peristalsis is the key application of this mechanism. Saqib
et al. [1] evaluated the heat transfer in an MHD flow of Maxwell fluid through emulating a fractional
Cattaneo-Friedrich system. Alotaibi et al. [2] handled numerically the MHD flow of Casson nanofluid
by convectively heating a nonlinear extending surface with the impacts of injection/suction and viscous
dissipation. Crespo et al. [3] discussed the dynamic particles–generated boundary parameters in SPH
methods. Khan et al. [4] assessed the heat transfer and MHD flow within a sodium alginate fluid
with the impacts of thermal radiation and porosity. While subject to a radially varying magnetic
field, the authors of [5] illustrated a Jeffery fluid’s peristaltic flow within a tube having an endoscope.
Zhao [6] explained the flow of the axisymmetric convection of a fractional Maxwell fluid past a
vertical cylinder in the presence of temperature jump and velocity slip. The authors of [7] stated the
impacts of the endoscope and the magnetic field on the peristalsis involving a Jeffrey fluid. Rachid
[8] examined the effect of the endoscope and heat transfer on a fractional Maxwell fluid’s peristaltic
flow within a vertical tube. The authors of [9] assessed a long-wavelength peristaltic flow within a
tube with an endoscope affected by the magnetic field. Nadeem et al. [10] argued heat transfer’s
effect in a peristaltic transport with variable viscosity. Novel movements of fractional modeling, as
well as mass and heat transfer exploration of (MWCNTs and SWCNTs) in nanofluids flow that is
based on CMC over an inclined plate with generalized boundary parameters were assessed by Asjad
et al. [11]. Hussain et al. [12] evaluated the heat transfer in a peristaltic flow of MHD Jeffrey fluid
in the presence of heat conduction. Mainardi and Spada [13] exhibited the viscosity and relaxation
aspects of basic fractional models in theology. Within an asymmetric channel, Mishra and Rao [14]
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applied a peristaltic transport of a Newtonian fluid. The instable rotating flow of a viscoelastic
fluid in the presence of the fractional Maxwell fluid system among coaxial cylinders was explored
by Qi and Jin [15]. The impact of the second-order slip and heat transfer on the MHD flow of a
fractional Maxwell fluid within a porous medium was depicted by Amana et al. [16]. Ali et al. [17]
scrutinized magnetic field’s impacts on a Casson fluid and blood flow in an axisymmetric cylindrical
tube. Haque et al. [18] analyzed a computational method for the unsteady flow of a Maxwell fluid that
has Caputo fractional derivatives. Carrera et al. [19] delivered a fractional-order Maxwell fluid system
concerning non-Newtonian fluids. Johnson and Quigley [20] described a viscosity peristaltic Maxwell
fluid model for rubber’s viscoelasticity. Tripathi et al. [21] presented transporting the viscoelastic fluid
with the fractional Maxwell system through peristalsis within a channel affected by long wavelength
and low Reynolds number approximations. Dharmendra Tripathi [22] devoted studying the peristaltic
transportation of viscoelastic non-Newtonian fluids in the presence of a fractional Maxwell system
in the channel. In [23], the electro-osmotic peristaltic flow of a viscoelastic fluid through a cylindrical
micro-channel was premeditated. The authors of [24] identified the impacts of initial stress and rotation
on peristaltic transportation of fourth-grade fluid with the induction of the magnetic field and heat
transfer. Also, Alla et al. [25] studied the impact of the initial stress, magnetic field, and rotation on the
peristaltic motion of the micropolar fluid. Several hypotheses of this type of context have been made
and attempted by many practitioners and researchers ( [26–30]).

Using the fractional Maxwell model, the study aims to explore analytically the impact of heat
transfer on the peristaltic flow of a viscoelastic fluid in the gap between two coaxial vertical tubes. It
generalizes the two-dimensional equations of heat and motion transfer assuming having low Reynolds
numbers and a long wavelength. Regarding solving the reduced equations numerically and analytically,
the wave shape is found. The related parameters are defined pictorially in the problem. The collected
results are shown and graphically discussed. The results discussed in this paper are valuable for
physicists, engineers, and people involved in developing fluid mechanics. It is also expected that the
various possible fluid mechanic flow parameters for the peristaltic Jeffrey fluids will serve as similarly
good theoretical estimates.

2 Formulation of the Problem

Take the MHD peristaltic flow through uniform coaxial tubes of a viscoelastic fluid in the
presence of the fractional Maxwell fluid model. A constant magnetic field Bo applies transversely
to the flow when electrical conductivity exists. Flow configuration is presented in Fig. 1. The inner
tube is considered, with a sinusoidal wave traveling down its outer tube wall. The outer and inner
tube temperatures are T1 and T0, respectively. We picked a cylindrical coordinate system R and Z. The
equations for the tube walls in the dimensional form, as follows

R1 = a1 (1)

R2 = a2 + b
(

sin
2π

λ
(Z − ct)

)
(2)

The equation of the fractional Maxwell fluid takes the form

(1 + λ1

α1D̃α1
t )S = μ

.
γ (3)

where (0 ≤ α1 ≤ 1).
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The following equation defines the upper convected fractional derivative D̃α1
t

D̃α1
t (S) = Dα1

t (S) + (V .∇)(S) − L(S) − (S)L
T

(4)

In which
.

γ = (∇V) + (∇V)T (5)

Also, note that Dα1
t = ∂

α1
t , denoting the α1-order fractional differentiation operator concerning t

takes the following form:

Dα1
t f (t) = 1

Γ (1 − α1)

d
dt

∫ t

0

f (ξ)

(t − ξ)
α1

dξ , 0 ≤ α1 ≤ 1. (6)

In this function, Γ (.) represents the gamma function.

The expression of f is as follows:

f (t) = 1 + λα

1

t−α

Γ (1 − α1)
(6a)

Figure 1: Schematic of the problem

The following equations represent the flow’s governing motion equations for an incompressible
fluid within the fixed frame (Fig. 1):

ρ

(
∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

)
U = − ∂p

∂R
+ 1

R

∂

∂R
(RSRR) + ∂

∂Z
(SRZ) − Sθθ

R
(7)

ρ

(
∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

)
W = − ∂p

∂Z
+ 1

R

∂

∂R
(RSRZ) + ∂

∂Z
(SZZ) + ρgα(T − To) − σBo

2W (8)



CMC, 2022, vol.72, no.3 6145

ρCp

(
∂

∂t
+ U

∂

∂R
+ W

∂

∂Z

)
T = K

(
∂2

∂R
2 + 1

R

∂

∂R
+ ∂2

∂Z
2

)
T + Qo (9)

∂U

∂R
+ U

R
+ ∂W

∂Z
= 0 (10)

The fixed frame (R̄, Z) has an unsteady flow between the two tubes but grows into a steady flow
within a wave frame (r, z) which moves at the same speed of a wave in the Z direction.

The transformations among the two frames take the following forms:

r̄ = R, z = Z − ct (11)

ū = U , w = W − c (12)

The following form shows the applicable boundary settings within the wave frame:

w = −c, u = 0 at r = r1 (13)

w = −c at r = r2 + b sin
(

2π

λ
z
)

(14)

T = T1 at r = r1 (15)

T = T0 at r = r2 (16)

The following equations represent the motion’s governing equations of the movement of the
incompressible fluid within the wave frame

ρ

(
u

∂

∂r
+ (w + c)

∂

∂z

)
u = −∂p

∂r
+ 1

r
∂

∂r
(rSrr) + ∂

∂z
(Srz) − Sθθ

r
(17)

ρ

(
u

∂

∂r
+ (w + c)

∂

∂z

)
w = −∂p

∂z
+ 1

r
∂

∂r
(rSrz) + ∂

∂z
(SZZ) + ρgα(T − To) − σBo

2
(w + c) (18)

ρCp

(
u

∂

∂r
+ (w + c)

∂

∂z

)
T = K

(
∂2

∂r2 + 1
r

∂

∂r
+ ∂2

∂z2

)
T + Qo (19)

∂u
∂r

+ u
r

+ ∂w
∂z

= 0 (20)

The extra stress S relies on r and t only. When utilizing the initial setting S(t = 0), the yield was
Srr = Sθθ = Szz = Srθ = 0 and(

1 + λ1

α1 ∂α1

∂t
α1

)
Srz = μ

∂(w + c)
∂r

(21)
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To do more analyses, the authors introduced these dimensionless parameters:

r = r
a2

, z = z
λ

, t = ct
λ

, u = u
cδ

, w = w
c

, λ1 = cλ1

λ
, p = a2

2p
cλμ

,

δ = a2

λ
, θ = T − T0

T1 − T0

, Pr = μCP

K
, Re = ρca2

μ
, Gr = ρgα(T1 − To)a2

2

μc
,

M =
√

σ

μ
B0a2, S = a2S

μc
, r1 = r1

a2

= ε < 1, r2 = r2

a2

= 1 + ϕ sin(2π z),

(22)

where (ϕ = b
a2

< 1) is the wave amplitude.

3 Solution of the Problem

Regarding the above-mentioned modifications and nondimensional variables (22), the preceding
equations are reduced to

Reδ3

(
u

∂

∂r
+ (w + 1)

∂

∂z

)
u = −∂p

∂r
+ δ

r
∂

∂r
(rSrr) + δ2 ∂

∂z
(Srz) − δ

(
Sθθ

r

)
(23)

Reδ
(

u
∂

∂r
+ (w + 1)

∂

∂z

)
w = −∂p

∂z
+ 1

r
∂

∂r
(rSrz) + δ

∂

∂z
(Szz) + Grθ − M2(w + 1) (24)

Re Pr δ

(
u

∂

∂r
+ (w + 1)

∂

∂z

)
θ =

(
∂2

∂r2
+ 1

r
∂

∂r
+ δ2 ∂2

∂z2

)
θ + β (25)

∂u
∂r

+ u
r

+ ∂w
∂z

= 0 (26)

With boundary settings

w = −1, u = 0 at r = r1 = ε (27)

w = −1 at r = r2 = 1 + ϕ sin(2π z) (28)

θ = 1 at r = r1 (29)

θ = 0 at r = r2 (30)

4 The Analytical Solution

Utilizing the aforementioned nondimensional quantities while assuming having long wavelengths
approximation and low Reynolds numbers, the equations of motion are

− ∂p
∂r

= 0 (31)

f
[

dp
dz

− Grθ + M2(w + 1)

]
=

(
∂2w
∂r2

+ 1
r
∂w
∂r

)
(32)
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∂2θ

∂r2
+ 1

r
∂θ

∂r
+ β = 0 (33)

where, from Eq. (31), we conclude that p is independent of r, which depends on z only.

The solutions of Eqs. (24) and (25) limited by (27)–(30) are

w = 4c2 + 4c1 log(r) + f ×
[

dp
dz

r2 + M2r2 − Gr

⎡
⎣r2(log

(
r

r2

)
− 1)

log
(

ε

r2

)
+ β

4

(
ε2r2(log( r

r2
) − 1) − r2

2r
2(log( r

ε
) − 1)

log( ε

r2
)

)
− β

16
r4

] /
[4 − f M2r2]

(34)

f = (1 + λ
α1
1 Dα1

t ), A = −4 − f ×
[

dp
dz

ε2 + Gr

⎛
⎝ε2(log( ε

r2
) − 1)

log( ε

r2

) + β

4

(
ε4(log( ε

r2
) − 1) + ε2r2

2)

log( ε

r2
)

⎞
⎠

− β

16
ε4

)]
, B = −4 − f ×

[
dp
dz

r2
2 + Gr

(
−r2

2

log( ε

r2
)

+ β

4

(
−ε2r2

2 − r2
4(log(

r2
ε
) − 1)

log( ε

r2
)

)
− β

16
r2

4

)]
,

C1 = A − B
4log( ε

r2
)
, C2 = Blog(ε) − Alog(r2)

4log( ε

r2
)

.

(35)

The following formula expresses the heat transfer coefficient

Zr = ∂θ

∂r
× ∂r2

∂z
(37)

So, The solution of heat transfer is given by

Zr =
⎡
⎣−rβ

2
+ 1

r log(
r1
r2
)

+ (
r2
1
r

− r2
2
r
)β

4 log(
r1
r2
)

⎤
⎦ × [2ϕπ cos(2πz)] (38)

5 Numerical Results and Discussion

For analyzing the performance of solutions, numerical calculation of numerous values of the
fractional Maxwell fluid, wave amplitude ϕ, the Hartman number M, heat source β, and relaxation–
retardation ratio λ1, radius ratio ε, and Grashof number Gr were conducted. The axial velocity is
plotted against z in Fig. 2 concerning various values of α1, M, ϕ, and λ1. Note that that axial velocity
decreases when increasing the fractional Maxwell fluid but declines and increases when increasing
Hartman numbers and wave amplitude, and relaxation–retardation times’ ratio. It is revealed that an
increase in Hartman numbers, heat source, and relaxation–retardation times’ ratio declines the axial
velocity. Moreover, the axial velocity had an oscillatory performance in the entire range of axial z.
Additionally, the results of Fig. 2 indicate that the flow is strongly dependent on α1, ϕ , ϕ, and λ1. The
effect of wave amplitude φ, radius ratio ε, heat source β, and radius r for temperature θ is illustrated
in Fig. 3 emulates the impact of φ on temperature, where temperature profiles are somehow parabolic



6148 CMC, 2022, vol.72, no.3

and surge and decrease as φ increases, while they decrease and increase with increasing radius ratio and
heat source. In contrast, they decrease with the increase of radius. Moreover, the temperature profiles
are almost parabolic and rise as β increases. Within the entire range of axial z, the temperature had an
oscillatory performance.

Figure 2: Various values of axial velocity w concerning the z−axis concerning different values of
α1, M, ϕ, and λ1 in the peristaltic flow of the fractional Maxwell fluid within tubes

The effects of the fractional Maxwell fluid α, Hartman number M, wave amplitude ϕ, and Grashof
number Gr can be observed from Fig. 4 in which the tangential stress srz is illustrated for various
values of the fractional Maxwell fluid, Hartman and Grashof numbers, and wave amplitude. It was
found that the tangential stress diminished inversely with the fractional Maxwell fluid and Hartman
number, while it surged directly proportionally with wave amplitude and Grashof number. Within
the entire range of axial z, the tangential stress had an oscillatory performance, which may be due
to peristalsis. The influence of wave amplitude φ, radius ratio ε, heat source β, and radius r on heat
transfer coefficient Zr are graphically displayed in Fig. 5 through various values of the amplitude,
radius ratio, and heat source and radius. The increasing wave amplitude, radius ratio, heat source, and
radius increase and decrease with the amplitude of the heat transfer coefficient in the whole range z.
Such an effect may be expected; under the conditions considered, the wave amplitude and heat source
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resist the flow, and its magnitude is proportional to the heat transfer coefficient. One can observe that
the heat transfer coefficient is an oscillatory performance that may be caused by peristalsis. Fig. 6 is
plotted in 3D schematics illustrating heat transfer coefficient Zr, temperature θ , and axial velocity w
with regard to r and z axes in the presence of the fractional Maxwell fluid α1, Hartman number M,
heat source β, and wave amplitude φ. Axial velocity diminished with the increase of the fractional
Maxwell fluid and Hartman number. Unlike temperature, which surged with the surge of heat source,
the heat transfer coefficient increased and decreased with increasing wave amplitude. For all physical
quantities, the peristaltic flow is illustrated in 3D overlapping and damping when r and z increase to
the state of particle equilibrium. The vertical distance with the most significant curves was acquired.
Most of the physical fields move in a peristaltic flow.

If λ̄
α

1 = 0, the fractional Maxwell model declines to a Newtonian fluid.

Figure 3: Various values of temperature θ with regard to the z−axis for various values of ϕ, ε, β, and
r in the fractional Maxwell fluid’s peristaltic flow within tubes
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Figure 4: The variations of axial tangential stress srz with regard to the z−axis concerning various
values of α1, M, ϕ, and Gr in the fractional Maxwell fluid’s peristaltic flow within tubes
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Figure 5: The variations of heat transfer coefficient Zr with regard to the z−axis concerning various
values of ϕ, ε, β, and r in the peristaltic flow of the fractional Maxwell fluid within tubes

Figure 6: The variations of heat transfer coefficient Zr, temperature θ , and axial velocity w in 3D
concerning the r and z axes under the influence of the α1, M, ϕ, and ϕ.
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6 Conclusion

The present paper displayed an analytical study of how heat transfer affected the peristaltic flow
of the fractional Maxwell model in the gap between two vertical coaxial tubes. It simplified the
problem, assuming the low Reynolds number and the approximation of the long wavelength. It solved
the problem analytically based on the fractional calculus system. The axial velocity, temperature,
tangential stress, and heat transfer coefficient was examined on the endoscope parameters, Hartman
number M, Grashof number Gr, the heat parameter β, the relaxation time λ1, the fractional time
derivative parameter α1, the amplitude ratio φ, and the radius ratio ε. The following solutions were
obtained based on the graphs:

1- The axial velocity declines and surges when increasing the fractional Maxwell fluid,
relaxation–retardation times, Hartman number, and wave amplitude.
2- The temperature surges and diminishes with increasing wave amplitude and radius ratio.
3- The axial velocity of the Jeffrey fluid declines in comparison with a hydrodynamic fluid
within the tube’s center.
4- Tangential stress declines and rises with rising the fractional Maxwell fluid, heat source,
wave amplitude, radius ratio, and Grash of number.
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