
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.023496

Article

A Traceable Capability-based Access Control for IoT

Chao Li1, Fan Li1,2, Cheng Huang3, Lihua Yin1,*, Tianjie Luo1,2 and Bin Wang4

1Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510700, China
2PCL Research Center of Cyberspace Security, Peng Cheng Laboratory, Shenzhen, 518052, China

3Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
4College of Electrical Engineering, Zhejiang University, Hangzhou, 310058, China

*Corresponding Author: Lihua Yin. Email: yinlh@gzhu.edu.cnc
Received: 10 September 2021; Accepted: 02 December 2021

Abstract: Delegation mechanism in Internet of Things (IoT) allows users to
share some of their permissions with others. Cloud-based delegation solutions
require that only the user who has registered in the cloud can be delegated
permissions. It is not convenient when a permission is delegated to a large
number of temporarily users. Therefore, some works like CapBAC delegate
permissions locally in an offline way. However, this is difficult to revoke and
modify the offline delegated permissions. In this work, we propose a traceable
capability-based access control approach (TCAC) that can revoke and modify
permissions by tracking the trajectories of permissions delegation. We define
a time capability tree (TCT) that can automatically extract permissions trajec-
tories, and we also design a new capability token to improve the permission
verification, revocation and modification efficiency. The experiment results
show that TCAC has less token verification and revocation/modification time
than those of CapBAC and xDBAuth. TCAC can discover 73.3% unvisited
users in the case of delegating and accessing randomly. This provides more
information about the permissions delegation relationships, and opens up
new possibilities to guarantee the global security in IoT delegation system.
To the best of our knowledge, TCAC is the first work to capture the unvisited
permissions.

Keywords: IoT access control; permission delegation; delegation trajectory;
capability revocation; capability modification

1 Introduction

Internet of Things (IoT) has been discussed and deployed in various fields such as smart home,
transportation, healthcare, and industrial automation [1–4]. This brings many security challenges
[5–7]. The OWASP IoT project shows that the vulnerabilities of IoT devices are mainly focused on
insecure access to IoT applications [8]. A lot of works focus on the IoT access control to avoid
unauthorized access [9].

http://dx.doi.org/10.32604/cmc.2022.023496
mailto:yinlh@gzhu.edu.cnc


4968 CMC, 2022, vol.72, no.3

Delegation is an authorization mechanism in IoT system, which aims to make permissions
transmission more convenient. It allows users to share permissions from their permission set to other
users. For example, Alice delegates her car’s smart key to Bob, and asks him to help retrieve her bag
from her car. Bob can use the smart key to open the car door, but he cannot start the car. In this case,
the permission set of Alice smart key is {open car door, start the car, play music, . . . }. Alice only shares
Bob with the {open car door} permission. Some products provide cloud-based delegation services to
users to achieve permissions delegation, such as SmartThings [10], IFTTT [11] and GoogleHome [12].
However, the cloud-based solutions require users to register in the cloud. For example, if Alice wants
to delegate the {open car door} permission to Bob, she must first ask Bob to register in the cloud. It is
not convenient when there are a large number of temporarily delegatees who have not registered in the
cloud. Since the capability-based access control (CapBAC) [13] issues and delegates permissions by
capability tokens, the authorization process can be executed on smart devices locally [14]. It delegates
the permissions in an offline way without registeration, and this makes permissions delegation
user-kindly.

However, offline delegation in CapBAC are independently determined by users, which are more
likely to be wrong or to conflict than those made by administrators. CapBAC allows users to delegate
permissions according to their own security constraints. This leads no administer to know all the
permission distribution, and brings difficulties in permissions revocation and modification. To solve
the problem, CapBAC provides three functions to revoke delegated capabilities: IdentifiedCapabil-
ityOnly, AllCapabilities and DependentCapabilitiesOnly. They are not flexible enough to deal with
various changes in capability delegation relationships. For example, if an apartment is sold, and the
new owner wants to retain the {open smart lock} permissions of all the tenants. Each tenant’s {open
smart lock} permission may be delegated to his family, which forms the delegation relationships. The
old owner of the apartment will be deleted in the delegation trajectory while preserving the permissions
delegation relationships of tenants. The new owner will be added in the delegation trajectory to replace
him. The functions CapBAC provides can not address such problems.

To extend CapBAC, existing methods utilize a revocation/modification list to address delegation
changes. However, these methods do not change the issued capability tokens which are still valid. These
valid tokens bring more risks to the system. What’s more, as soon as the revocation/modification list
is maliciously tampered, any access in the system can not be trusted. In addition, the capability token
used in the CapBAC contains the previous token. The nested tokens need to be decrypted iteratively
to trace back the first delegator who is the capability owner, to verify the legitimacy of the capability
token. This operation will be repeated every time when the token is used. We find that adding a
tracking function can solve above problems. The permissions delegation trajectories can be used to
simplify token verification, revocation and modification in IoT delegation system, which can solve
these problems.

We propose a traceable capability-based access control approach (TCAC), which uses a new
time capability tree (TCT) to track permissions delegation trajectories. It provides a concise legality
verification, and a fine-grained permissions revocation and modification. It can also track permissions
which have been delegated but not used, which obtains more delegation information and makes it
possible to analyze the global permissions delegation relationships. This enhances the security of the
IoT delegation system. Our contributions are as follows:

• We propose a trajectory extracting method to extract the trajectories of delegated permissions.
By using the time capability tree with new capability token, all delegation trajectories will be
obtained automatically.



CMC, 2022, vol.72, no.3 4969

• Based on the trajectory extracting method, we propose the traceable capability-based access
control approach (TCAC). It supports fine-grained permissions delegation, revocation and
modification. To the best of our knowledge, TCAC is the first work to capture unvisited
permissions, which can track permissions delegated but not used.

• The experimental results show that TCAC has obvious advantage in token verification,
token revocation/modification and delegation trajectory capture than those of CapBAC and
xDBAuth. It can discover 73.3% of unvisited users when all users delegate and access randomly.

The rest of the paper is organized as follows. In Section 2, we describe related works. Section 3
presents the architecture of TCAC. The token verification, delegation, revocation and modification
will be given in Section 4. Section 5 shows the experiments of TCAC. Section 6 summarizes our work.

2 Related Works

Access control methods prevent unauthorzied access from subjects to objects. In an IoT context,
attribute based access control (ABAC) [15] is widely used, while it do not provide flexible and
user-kindly permissions delegation features. CapBAC allows users to delegate permissions with its
capability tokens. Recently, several works have further explored CapBAC. Anggorojati et al. [16]
combine delegation mechanism with capability propagation to expand the flexibility of IoT access
control. They propose capability-based context aware access control (CCAAC), which is used to adapt
the scalability and heterogeneity of IoT networks. But the requirement for prior knowledge limits the
use of CCAAC. Hernández-Ramos et al. [17] propose a distributed capability-based access control
model (DCapAC) to expand the usage scenarios. It is directly deployed on resource-constrained
devices in a distributed IoT system. However, the capability delegation and revocation are not
described. Xu et al. [18] propose a federated capability-based access control (FedCAC) framework,
which presents the whole token processing. FedCAC delegates part of the identity verification and
authorization tasks to the domain delegator. However, the establishment of domain delegator is not
suitable for the resource-constrained IoT environment. BlendCAC [19] is subsequently proposed as the
follow-up work. It combines blockchain and CapBAC, and uses smart contracts to delegate capability
tokens. But the token revocation and modification are not fine-grained enough. Pal et al. [20] use a
hybrid method of attributes, roles, and functions to provide a policy-based access control architecture.
The delegation of capabilities is described in detail in [21]. However, explicit revocation of tokens is
not supported in its decentralized design, and the centralized token distribution limits its application.

To solve the capability revocation and modification problem, the traceability needs to be added
in CapBAC, which has been widely used in the cloud of data sharing. For example, Shen et al. [22]
propose a traceable group data sharing scheme, to support anonymous multiple users in public cloud.
In the case of access control, Guo et al. [23] add tracking function in the process of data entryption
to support a dynamic access control. Li et al. [24] propose TRAC to track private key in CP-ABE,
to identify the malicious user leaking his private key. Yu et al. [25] utilize the blockchain to achieve
a traceable data sharing in industrial IoT. The revocation list is used in their scheme. The tracking
function in CapBAC has not been proposed.

In this paper, we propose a traceable capability-based access control approach (TCAC). Its
traceability is guaranteed by the defined time capability tree and the new capability token. TCAC can
monitor the permissions delegation automatically, achieving a concise token verification and flexible
permissions revocation and modification. What’s more, the ability to capture the unvisited permissions
can get more information of the permissions delegation relationships, which is benefit to guarantee
the system security.



4970 CMC, 2022, vol.72, no.3

3 TCAC Architecture

The architecture of TCAC is shown in Fig. 1. Center Server is the platform which issues the root
capabilities. User Group is the users in the delegation system. Resource Server is the object which users
want to access. The summary of abbreviations is as follows:

• PIP: Policy Information Point, which gets the information needed in access control decision-
making;

• PAP: Policy Administration Point, which manages the access control policies;
• PDP: Policy Decision Point, which makes access decisions according to the access control

policies and information;
• PEP: Policy Enforcement Point, which forms the access control request to PDP and translates

the result of decision to other modules;
• TI : Token issuer, which issues the capability tokens;
• TV : Token Verification, which verifies the validity of capability tokens;
• TR: Token Reconstruction, which generates the new capability tokens;
• DT : Delegation Trajectory, which is the global capability delegation trajectory.

Figure 1: The architecture of TCAC

In the Center Server, after PDP makes access decisions with the information from PIP and access
control policies from PAP, PEP translates the result to TI, which issues the root capability token to
user1. The validity of the root token can be verified by TV in user1, then user1 writes the delegation
information and his local time capability tree in the new capability token with TR. He can delegate
the capability to all users in User Group. When a user accesses the resource, the Resource Server verifies
the token by TV, extracts the local time capability tree, and combines it with other time capability trees
to form a global tree as the permissions delegation trajectory, which is DT. It will be used for token
verification, revocation and modification. If the PDP in Resource Server allows the user to access
resource, the PEP translates the order to SP, which provides service to the user. Then a capability
delegation is finished.

We introduce the TCAC architecture in this section, including the time capability tree, the
capability token structure, and the authorization, encryption and verification methods.

3.1 Time Capability Tree
3.1.1 Local Time Capability Tree

In IoT delegation system, each user delegates his permissions to others. The one-to-multiple
relationship is suitable to be saved by a tree, so we define a time capability tree to record the permissions
delegation trajectory. The time capability tree is defined by a 5-tuple < Resourse ID, Capability, User



CMC, 2022, vol.72, no.3 4971

ID, Effective Time, Access Records >, which exists in each capability token of TCAC. As shown
in Fig. 2, The Resource ID and The Capability in the Title record the user’s permission to perform
operations on resources, such as open the smart lock, close the car window, etc. In the Tree, User ID
represents the unique identity of the user. Effective Time is the time interval when the capability is
valid. Access Record is a series of timestamps that records the user’s access time. Time capability tree
exists in each capability token of TCAC. In TCAC, a permission delegation trajectory can be extracted
from each capability token, and the global delegation trajectory can be obtained by combining all the
time capability trees.

Figure 2: The structure of time capability tree

3.1.2 Combination of Global Time Capability Tree

Time capability tree exists in the token delegated to each user. Assuming that the time each user
was given a token and each time capability tree was created are different, the delegators only get limited
information about time capability tree. To obtain a globle time capability tree, all time capability trees
received must be combined in the Resource Server. The combination of the time capability trees can
be expressed as the following:

TreeGlobal = Tree1 ∪ Tree2 ∪ . . . ∪ Tree3 (1)

where TreeGlobal is the global time capability tree combined by the Resource Sever, and Treei is the
local time capability tree exists in the capability token. Fig. 3 shows the combination of global time
capability tree. Initially, there is no time capability tree on the Resource Server until an access request
arrives. After receiving the first token from user A, the Resource Server constructs a root time capability
tree. At this time, there is only one user A node in the global time capability tree. Then users B, C, and
D access to the resource. They show their tokens to the Resource Server, and the local time capability
trees are extracted. Since the time capability trees of user C and user D come from user A and user B
which are the delegators, user C and D are unware of others capability delegation operations. These
two local time capability trees are not complete. Only if the Resource Server conbains them can we get
the global capability tree.

If a new user does not access the Resource Server, which is defined as the unvisited user. Then
the Resource Server cannot discover the unvisited token, and the user will not exist in the global time
capability tree. The unvisited users are the mainly barrier of monitoring the delegation relationships
of IoT system. In TCAC, the local time capability tree of a permission always records delegation
information of other users, through these users do not participate in that permission’s delegation.
The delegation information make TCAC able to capture the unvisited users by combain the global
time capability tree. The capture efficiency of unvisited users will be discussed in Section 5.



4972 CMC, 2022, vol.72, no.3

Figure 3: Combination of global time capability trees

3.2 TCT Capability Token
We define a new capability token for TCAC. When user A delegates capability to user B, the token

CapA→B is defined as:

CapA→B = {IDA, IDB, PKpre, Cappre, TCTB, C, SignatureA} (2)

SignatureA = f (IDA, IDB, PKpre, Cappre, TCTB, C) (3)

• IDA: The unique identity of user A;
• IDB: The unique identity of user B;
• PKpre: The public key of the previous user which delegates the token to user A;
• Cappre: The Capability issued by the previous user which delegates the token to user A;
• TCTB: The time capability tree constructed by user A including node B;
• C: The contextual information;
• SignatureA: The signature of user A;
• f : The one-way hash function;

In the TCAC token, IDA and IDB are used to identify the virtual/real identity of delegator and
delegatee. PKpre and Cappre provide information about the previous delegator of the token, which is
used by the Resource Server in token verification. C allows users to add contextual information during
delegation, such as the delegation time and user location [26]. SignatureA is used to protect the token
from being tampered. After the delegator verifies the delegatee identity and the public key, capability
token will be signed and delegated.

4 Detailed System Description

The Fig. 4 shows the flowchart of authorization and request service in TCAC. The delegator
receives an authorization request from the delegatee, which includes his ID and public key. The com-
munication legitimacy is guaranteed by establishing a trusted channel. After legitimacy verification,
the delegator generates the token, signs it and delegates it with the public key to delegatee. Delegatee
uses the public key to verify the Signature, then obtains the required permission. We present the detail
description of token verification, delegation, revocation and modification of TCAC in this section.



CMC, 2022, vol.72, no.3 4973

Figure 4: Flowchart of authorization and request service in TCAC

4.1 Token Verification
The token security of TCAC is guaranteed by the asymmetric encryption. Assume that Alice is

the delegator, and Bob is the delegatee. The encryption is expressed as:

Token = (CapA→B, PKb) (4)

where Token is the encrypted token, CapA→B is the content of the token, and PKb is the public key
of Bob. SignatureA ensures that the token comes from Alice, and the content is not tampered. The
asymmetric encryption enables only the delegatee knows the content of token. The two encryption
methods work together to ensure the integrity and confidentiality of CapA→B.

The token verification in TCAC supports common verification and quick verification.

(i) Common Verification

When token is successfully decrypted and the Signature is verified, the obtained capability token
is considered to be valid. If a new user sends a capability request to the Resource Server for the first
time, it needs to perform the iterative decryption on the token to verify the legitimacy. The decryption
is expressed as:

Cap = (Token, SK) (5)

where SK is the private key of the Resource Server. After Cap is decrypted, the obtained Cappre and PKpre

are used to continue the decryption. The process will be iterated until the root capability is verified,
then the token is confirmed valid.

(ii) Quick Verification

When the user sends a capability request to the Resource Server again, the server only needs to
obtain the User ID and the requested capability in the token, then search in the global time capability
tree. If the User ID exists in the global time capability tree, and the request time is within the Effective
Time, the request will be allowed. Then the access time will be recorded in the global time capability
tree.

Algorithm 1: The common verfication and quick verification of TCAC
Input: Useri, tokeni, TCTglobal, Effective Time, Expiration Time

(Continued)



4974 CMC, 2022, vol.72, no.3

Algorithm 1: Continued
Output: AlloworDenyaccess
begin
verify the identity of the Useri;
decrpty the tokeni;
if Useri Node ∈ TCTglobal & Useri Access Time ∈ (Effective Time, Expiration Time) then

AlloworDenyaccess = Allow;
else if tokeni is valid then

AlloworDenyaccess = Allow;
TCTglobal = TCTglobal + Useri Node;

else
AlloworDenyaccess = Deny;

end if
end

The Algorithm 1 implements the common verfication and quick verification of TCAC, which
solves the iterative decryption problem. It simplifies the token verification and reduces the need in
special IoT devices, which makes TCAC more suitable for resource-constrained IoT environment [27].

4.2 Token Delegation
We present the time capability trees change in the TCAC’s token delegation of three scenarios: all

capability, partial capability, and constrained capability. All capability means the delegatation of all
the delegator’s permission set. Partial capability means delegating part of the delegator’s permission
set. Constrained capability means delegating a new constrained capability which is defined by the
delegator. We use the first letter of each user’s name to replace the node in the time capability tree, and
set the Effective Time to the maximum (ti ∼ tn).

The delegation in TCAC is shown in Fig. 5. Alice is the root user with capabilities read and write
to the resource File. We use R and W to represent the two capabilities.

1) At time t0, after Alice gets the root token �0, she obtains the capability to read and write File.
2) At time t1, Alice generates a new token �1, and delegates R and W to Bob by delegating them

the token �1. The time capability tree in �1 is generated by Alice, which is the combination of
the time capability tree known by Alice and the new node Bob.

3) At time t2, Alice delegates R to Candy. All operations are the same, but the time capability tree
has changed. The node Candy are added to the time capability tree, and only the R capability
tree is saved in �2. This helps to protect privacy while reducing the size of token.

4) At time t3, Bob delegates R to David. Bob only adds a new node David on the R capability tree
he has obtained, since the capability delegation of Alice is transparent to Bob.

5) At time t4, Bob delegates the constrained capability of W to Edward, which is recorded as W−.
W− is the capability to rewrite part of File. W− needs to be defined in the Resource Server,
otherwise it will not be recognized. Bob adds Edward as a new node based on the W capability
tree he has obtained, constructs the W− capability tree, and adds it to the token �4.



CMC, 2022, vol.72, no.3 4975

Figure 5: TCAC’s capability delegation

Algorithm 2: The permissions delegation trajectory capture algorithm
Input: User Group, Useri, tokeni, TCTall, TCTpartial, TCTconstrained

Output: AlloworDenyaccess, TCTglobal

begin
{the trajectory growth of a local TCT in delegation}
{Delegator constructs the new TCT to delegate permission}
for each Useri ∈ User Group do

verify the identity of the Useri;
decrpty the tokeni;
if the delegated capability is the all capability

if Useri Node /∈ TCTall & tokeni is valid then
TCTnew = TCTall + Useri Node;
AlloworDenyaccess = Allow;

end if
else if the delegated capability is the partial capability

if Useri Node /∈ TCTpartial & tokeni is valid then
TCTnew =TCTpartial + Useri Node;

(Continued)



4976 CMC, 2022, vol.72, no.3

Algorithm 2: Continued
AlloworDenyaccess = Allow;

end if
else if the delegated capability is the constrained capability

if Useri Node /∈ TCTconstrained & tokeni is valid then
TCTnew = TCTconstrained + Useri Node;
AlloworDenyaccess = Allow;

end if
else

AlloworDenyaccess = Deny;
end if
TCTlocal = TCTnew

end for
TCTglobal = ∑

TCTlocal;
end

The Algorithm 2 implements the permissions delegation trajectory capture algorithm of TCAC.
In an IoT delegation system, the capability delegation and the service request are performed simulta-
neously. The Resource Server updates the global time capability tree according to the newly received
token, then obtain a global delegation trajectory.

4.3 Token Revocation and Modification
In CapBAC, some operations can’t be implemented, like to make new user replace an old one

while ensuring the delegation relationships not changed. The time capability tree in TCAC provides
fine-grained token revocation and modification.

4.3.1 Capability Revocation

Benefit from the global delegation trajectory, TCAC brings new possibilities to deal with more
complex revocation requirements. Every access request in TCAC will add an access time to the Access
Records in global time capability tree. In the token verification, it needs to be checked whether
the access time is within the Effective Time. If not, the access is considered illegal and will not be
authorized. If we want to revoke the capability that has been captured, we change the Effective Time
in the global capability tree from [start time, end time] to [start time, current time], and delete all
child nodes. After that, all the issued tokens will be considered as invalid tokens, because the Effective
Times in their local time capability trees do not match the record in the global time capability tree.
This change invalidates the capability of the user and all the related users. If we want to replace a user
in the delegation relationships, we can change the global tree, and issue a new token to all the related
users. Similar methods provide a great deal of flexibility for TCAC capability revocation.

4.3.2 Capability Modification

Compared with revocation, capability modification needs more flexibility of the access control
system. Modifications are usually caused by caused improper capability definitions and improper
delegations. In CapBAC, the improper capability definitions requires to correct of all the issued
capability tokens, even though it is a minor change. But in TCAC, we only modify the semantics of the
time capability tree title on the Resource Server to modify similar capabilities. This change not only
avoids reissuing all the tokens, but also preserves the capability delegation relationships. The improper



CMC, 2022, vol.72, no.3 4977

delegation requires to change issued capabilities. In TCAC, we can revoke the capability, then reissue
the token when the user requests it again.

Algorithm 3: The token verification after permissions revocation and modification in TCAC
Input: Useri, tokeni, TCTglobal, Effective Time, Expiration Time
Output: AlloworDenyaccess, TCTglobal

begin
{the change in a global TCT of revocation and modification}
{after a permission is revoked or modified in the delegation system}
if Useri Node ∈ TCTglobal & Useri Access Time ∈ (Effective Time, Expiration Time) then

AlloworDenyaccess = Allow;
else if Useri Node ∈ TCTglobal & Useri Access Time /∈ (Effective Time, Expiration Time) then

AlloworDenyaccess = Deny;
TCTglobal = TCTglobal − Useri Node;

else if tokeni is valid then
AlloworDenyaccess = Allow;
TCTglobal = TCTglobal + Useri Node;

else
AlloworDenyaccess = Deny;

end if
end

The Algorithm 3 presents the token verification after token revocation and modification in TCAC.
It is worth notice that the revocation and modification methods in TCAC are not unique. Different
methods can be customized for a delegation system by changing the token verification algorithm.

5 Experimental Evaluation

We evaluate the token verification time, communication time, revocation/modification time and
delegation trajectory capture efficiency to verify the effectiveness of TCAC.

5.1 Experimental Implementation
The root token issuer and the Resource Server are deployed on a laptop with the following

configuration: the CPU is 1.6 GHz Intel Core i5 (4 cores), the RAM memory is 8GB, and the
operating system is Ubuntu 16.04. 10 Raspberry PI 4 Model B devices are used to represent 10 users.
The configuration of the deivces is as follows: the CPU is 1.5 GHz 64-bit 4-core ARM Cortex-A72
architecture, the RAM is 4GB LPDDR4-3200, the operating system is Raspbian. The 2.4 GHz wireless
hotspot is used for communication.

We generate delegation trajectories from the randomly selected devices, to represent the local time
capability trees of users. Then we combain them to obtain global time capability trees with delegation
depths from 1 to 10. We finally get 1000 global time capability trees, which consist of 10,000 users.
An attribute-based access control is deployed in the root token issuer, and the tokens are delegated
randomly between users. We use RSA in our experiments, which has been proved faster in token
encryption and signature [28].



4978 CMC, 2022, vol.72, no.3

5.2 Token Verification Time
The token we use in token verification has only one authorized user every layer (for example, the

4-layer token contains only 4 authorized users). The CCapBAC represents CapBAC that uses a token
cache which stores the visited capability tokens. Tab. 1 shows the results.

In Tab. 1, the verification time of the three methods are positively correlated with the delegation
depth. CapBAC’s verification time increases fast with the increase of the delegation depth. CCapBAC
and TCAC keep a small growth rate in token verification, while CCapBAC is faster than TCAC before
the delegation depth is less than 5. TCAC shows advantage in token verification after the delegation
depth is more than 4, because it has a smaller growth rate than those of the other two methods. When
the delegation depth is 7, the verification time of CapBAC exceeds 2000 ms, but TCAC still maintains
a 43.8 ms verification time. It is caused by the iterative RSA decryption and signature verification in
CapBAC. CCapBAC and TCAC only verify the signature and search in the token cache or the global
time capability tree, so their verification efficiency is higher. But CCapBAC uses the nested tokens as
the same of CapBAC. The increasing size of token makes the search speed increase faster than that of
TCAC.

Table 1: The time of token verification with different delegation depths

Delegation depth 1 2 3 4 5 6 7

Verification
time (ms)

CapBAC 41.176 98.917 195.681 363.037 659.619 1162.06 2071.46
CCapBAC 31.221 33.124 33.893 40.312 44.267 50.318 55.571
TCAC 40.253 41.372 41.981 42.562 43.021 43.398 43.820

5.3 Communication and Token Revocation/Modification Time
We implement experiments in communication and token revocation/modification time of Cap-

BAC, TCAC and xDBAuth [29]. xDBAuth is another way to use capability-based method. It combines
capability token with the blockchain to achieve cross-domain access control. The results are shown in
Fig. 6.

In Fig. 6a, the communication time of CapBAC and TCAC are almost the same, and they increase
with the increase of the token size. It shows that the communication time of TCAC is acceptable
for the actual projects. The xDBAuth communication time is only related to the smart contract
operations, so it is stable. Fig. 6b shows that the revocation/modification time of xDBAuth and
TCAC are almost constant with the delegation depth increasing. xDBAuth takes more time in token
revocation/modification, because the operations in the smart contract is more complex. CapBAC
needs to constuct a new capability token, so the revocation/modification time in CapBAC is increasing
with the delegation depth. The token revocation and modification in TCAC are implemented by
modifying the global capability tree, so the revocation/modification time is always the smallest than
those of CapBAC and xDBAuth.

5.4 Delegation Trajectory Capture Efficiency
The delegation trajectory capture efficiency of the 1000 global delegation trajectoris are recorded.

The calculation is as follows:

PCapture = NCaptured

NTotal

(6)



CMC, 2022, vol.72, no.3 4979

Figure 6: (a) Communication time and (b) revocation/modification time in different delegation depths

PNVCaptured = NNVCaptured

NNV

= NCaptured − NVCaptured

(1 − PV) · NTotal

(7)

where V represents the visited users, NV represents the unvisited users, Total represents the total users,
and Captured represents the captured users. We set the access probability for all the users. The average
capture efficiency and the unvisited users capture efficiency in different access probabilities are shown
in Fig. 7.

In Fig. 7a, the average capture efficiency of CapBAC is consistent with the users access probability,
and the capture efficiency of TCAC is always higher than that of CapBAC. It shows that CapBAC only
captures the visited users, and TCAC can discover the unvisited users. In Fig. 7b, the unvisited users
capture efficiency of CapBAC is always 0, and TCAC obtains a increasing unvisited users capture
efficiency with the increase of access probability. When there are 1000 unvisited users in the 10,000
users, TCAC captures 733 of them. It shows that benefit from the time capability tree, TCAC has a
strong ability of capturing unvisited users in a delegation system.



4980 CMC, 2022, vol.72, no.3

Figure 7: (a) The average capture efficiency and (b) the unvisited users capture efficiency in different
access probabilities

6 Conclusion

In this paper, we propose a traceable capability-based access control approach TCAC. We design
a time capability tree to extract capability delegation trajectories, which can monitor the permis-
sions delegation automatically. We also present methods how to execute the capability verification,
delegation, revocation and modification in TCAC. The experimental results show that TCAC has
advantages of being flexible in token verification, revocation and modification. Furthermore, the
delegation trajectory capture efficiency of TCAC is higher than that of CapBAC which can not
capture the unvisited users. When 10% of users do not access the resource, TCAC discovers 73.3%
of those unvisited users. TCAC’s ability to capture unvisited users provides more information about
the permissions delegation relationships. It makes the global delegation trajectory more complete,
which brings new possibilities in global delegation analysis and enhances the security of the IoT
delegation system. In conclusion, TCAC presents higher effectiveness in token verification, token
revocation/modification, and delegation trajectory capture, with the acceptable communication time.

Funding Statement: This work supports in part by National Key R&D Program of China (No.
2018YFB2100400), National Science Foundation of China (No. 61872100), Industrial Internet Inno-
vation and Development Project of China (2019), State Grid Corporation of China Co., Ltd.
technology project (No. 5700-202019187A-0-0-00).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng et al., “Consortium blockchain for secure energy trading in

industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 8, no. 14, pp. 3690–3700,
2018.



CMC, 2022, vol.72, no.3 4981

[2] J. Park and S. Kim, “Noise cancellation based on voice activity detection using spectral variation for speech
recognition in smart home devices,” Intelligent Automation & Soft Computing, vol. 26, no. 1, pp. 149–159,
2020.

[3] V. S. Naresh, S. S. Pericherla, P. Sita and S. Reddi, “Internet of things in healthcare: Architecture,
applications, challenges, and solutions,” Computer Systems Science and Engineering, vol. 35, no. 6, pp. 411–
421, 2020.

[4] D. Kim and S. Kim, “Network-aided intelligent traffic steering in 5g mobile networks,” Computers,
Materials & Continua, vol. 65, no. 1, pp. 243–261, 2020.

[5] S. Rajendran and R. M. Lourde, “Security threats of embedded systems in IoT environment,” in Inventive
Communication and Computational Technologies, Tamil Nadu, India, Springer, Singapore, pp. 745–754,
2019.

[6] S. T. Bakhsh, S. Alghamdi, R. A. Alsemmeari and S. R. Hassan, “An adaptive intrusion detection and
prevention system for internet of things,” International Journal of Distributed Sensor Networks, vol. 15, no.
11, pp. 1550147719888109, 2019.

[7] B. Che, L. Liu and H. Zhang, “KNEMAG: Key node estimation mechanism based on attack graph for
IOT security,” Journal of Internet of Things, vol. 2, no. 4, pp. 145–162, 2020.

[8] OWASP, “OWASP internet of things project,” 2018. [Online]. Available: https://wiki.owasp.org/index.php/
OWASP_Internet_of_Things_Project#tab=IoT_Top_10.

[9] S. Ravidas, A. Lekidis, F. Paci and N. Zannone, “Access control in internet-of-things: A survey,” Journal
of Network and Computer Applications, vol. 144, pp. 79–101, 2019.

[10] SmartTings, “One simple ho me system. A world of possibilities,” 2021. [Online]. Available: https://www.
smartthings.com/.

[11] IFTTT, “IFTTT helps every thing work better together,” 2021. [Online]. Available: https://ifttt.com/.
[12] Google, “Google developers,” 2021. [Online]. Available: https://developers.google.com/.
[13] S. Gusmeroli, S. Piccione and D. Rotondi, “A Capability-based security approach to manage access control

in the internet of things,” Mathematical and Computer Modelling, vol. 58, no. 5–6, pp. 1189–1205, 2013.
[14] S. Gusmeroli, S. Piccione and D. Rotondi, “IoT@ work automation middleware system design and

architecture,” in Proc. of 2012 IEEE 17th Int. Conf. on Emerging Technologies & Factory Automation (ETFA
2012), Krakow, Poland, pp. 1–8, 2012.

[15] W. W. Smari, P. Clemente and J. F. Lalande, “An extended attribute based access control model with
trust and privacy: Application to a collaborative crisis management system,” Future Generation Computer
Systems, vol. 31, pp. 147–168, 2014.

[16] B. Anggorojati, P. N. Mahalle, N. R. Prasad and R. Prasad, “Capability-based access control delegation
model on the federated IoT network,” in The 15th Int. Symp. on Wireless Personal Multimedia Communi-
cations, Taipei, Taiwan, pp. 604–608, 2012.

[17] J. L. Hernández-Ramos, A. J. Jara, L. Marin and A. Skarmeta, “Distributed capability-based access control
for the internet of things,” Journal of Internet Services and Information Security (JISIS), vol. 3, no. 3/4, pp.
1–16, 2013.

[18] R. Xu, Y. Chen, E. Blasch and G. Chen, “A federated capability-based access control mechanism for
internet of things (IoTs),” in Sensors and Systems for Space Applications XI. International Society for Optics
and Photonics, Orlando, Florida, United States, SPIE, vol. 10641, pp. 106410U, 2018.

[19] R. Xu, Y. Chen, E. Blasch and G. Chen, “Blendcac: A blockchain-enabled decentralized capability-based
access control for iots,” in 2018 IEEE Int. Conf. on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), Halifax, NS, Canada, pp. 1027–1034, 2018.

[20] S. Pal, M. Hitchens, V. Varadharajan and T. Rabehaja, “Policy-based access control for constrained
healthcare resources in the context of the internet of things,”Journal of Network and Computer Applications,
vol. 139, pp. 57–74, 2019.

https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://wiki.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_Top_10
https://www.smartthings.com/
https://www.smartthings.com/
https://ifttt.com/
https://developers.google.com/


4982 CMC, 2022, vol.72, no.3

[21] T. Rabehaja, S. Pal and M. Hitchens, “Design and implementation of a secure and flexible access-right
delegation for resource constrained environments,” Future Generation Computer Systems, vol. 99, pp. 593–
608, 2019.

[22] J. Shen, T. Zhou, X. Chen, J. Li and S. Willy, “Anonymous and traceable group data sharing in cloud
computing,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 4, pp. 912–925, 2017.

[23] L. Guo, X. Yang and W. C. Yau, “TABE-DAC: Efficient traceable attribute-based encryption scheme with
dynamic access control based on blockchain,” IEEE Access, vol. 9, pp. 8479–8490, 2021.

[24] Q. Li, B. Xia, H. Huang, Y. Zhang and T. Zhang, “TRAC: Traceable and revocable access control scheme
for mHealth in 5G-enabled IIoT,” IEEE Transactions on Industrial Informatics, vol. 18, pp. 3437–3448,
2021.

[25] K. P. Yu, L. Tan, M. Aloqaily, H. Yang and Y. Jararweh, “Blockchain-enhanced data sharing with traceable
and direct revocation in IIoT,” IEEE Transactions on Industrial Informatics, vol. 17, pp. 7669–7678, 2021.

[26] Z. Li, J. Zhang, K. Zhang and Z. Li, “Visual tracking with weighted adaptive local sparse appearance
model via spatio-temporal context learning,” IEEE Transactions on Image Processing, vol. 27, no. 9, pp.
4478–4489, 2018.

[27] A. Bader, H. ElSawy, M. Gharbieh, M. -S. Alouini, A. Adinoyi et al., “First mile challenges for large-scale
IoT,” IEEE Communications Magazine, vol. 55, no. 3, pp. 138–144, 2017.

[28] Q. Zhou, M. Elbadry, F. Ye and Y. Yang, “Heracles: Scalable, fine-grained access control for internet-of-
things in enterprise environments,” in IEEE INFOCOM 2018-IEEE Conf. on Computer Communications,
Honolulu, HI, USA, pp. 1772–1780, 2018.

[29] G. Ali, N. Ahmad, Y. Cao Y. S. Khan, H. Cruickshank et al., “xDBAuth: Blockchain based cross domain
authentication and authorization framework for internet of things,” IEEE Access, vol. 8, pp. 58800–58816,
2020.


	A Traceable Capability-based Access Control for IoT
	1 Introduction
	2 Related Works
	3 TCAC Architecture
	4 Detailed System Description
	5 Experimental Evaluation
	6 Conclusion


