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Abstract: Failure is a systemic error that affects overall system performance
and may eventually crash across the entire configuration. In Real-Time Sys-
tems (RTS), deadline is the key to successful completion of the program. If
tasks effectively meet the deadline, it means the system is working in pristine
order. However, missing the deadline means a systemic fault due to which the
system can crash (hard RTS) or degrade inclusive performance (soft RTS).
To fine-tune the RTS, tolerance is the critical issue and must be handled
with extreme care. This article explains the context of fault tolerance with
improvised Joint EDF-RMS algorithm in RTS. The backup method has been
derived to prevent the system from being recursively migrating the same task.
If any task migrates three times, this migrated task will get shifted to the
backup queue. This backup queue assigns the task to a backup processor
and is destined for final execution. For performance evaluation purposes,
a relative graph between fault and failure rates, failure and total processor
utilization along with other averages have been evaluated. Furthermore, these
archived results are compared with fault-tolerant Earliest Deadline First
(EDF) and Rate Monotonic Scheduling (RMS) algorithms independently
in relatively similar conditions. These comparisons show better performance
against overloading conditions.

Keywords: Fault tolerance; joint edf-rms algorithm; real-time systems (RTS);
distributed systems; migration

1 Introduction

RTS is a system where task execution is not dependent only on correct logic, but on-time execution
(deadline) is equally important [1–3]. Based on deadline RTS is of two types: Hard and Soft [1–3]. In
soft RTS, missing deadlines degrade the performance of the system, but hard RTS give catastrophic
result along. Video game is a good example of soft RTS where the target timing of the game is
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scheduled. If a player is unable to achieve the mentioned time then only the player performance affect.
Whereas, in hard RTS, if an aircraft is unable to execute some operations on time, then catastrophic
results like loss of life can happen. The above-mentioned catastrophe or performance deprivation may
occur due to the occurrence of a fault in the system and the mechanism used to handle such problems
called fault tolerance [4].

In RTS, priority-based scheduling algorithms employee to schedule the tasks, with criteria to
decide the priority of tasks. If a task is unable to match the criteria, then that task is non-schedulable.
In RTS, meeting the deadline means successful task execution and missing a deadline means failure of
a task. The occurrence of a fault in scheduling algorithms is one of the reasons for missing a deadline.
Many researchers have discussed the fault tolerance techniques in EDF and RMS [5–7]. Here, fault
tolerance technique is embed in joint EDF-RMS real-time scheduling algorithm [8] to reduce the
permanent fault along with intermittent. The organization of remaining paper is as follows: Next
section will explain the fault tolerance mechanisms in Real-Time and Distributed Systems (both),
along with the scheduling algorithms of RTS. Further Section 3 explains the fault tolerance in the
Joint EDF-RMS algorithm. Simulation studies and results explain in Section 4 and 5. Conclusion and
future work will depict at the end.

2 Background and Preliminaries

In today’s era, features of RTS have been merged with many technologies i.e., cloud computing,
distributed systems, mixed-criticality systems, big data and many more. In all stated systems, fault
tolerance is the main concern of all algorithms. In [9], hybrid of traditional fault tolerance methods
discuss for mobile distributed systems. Dependently fast library uses in [10] to implement the interface
to prevent unexpected fail-slow tolerant distributed systems. A scheduling algorithm for cloud
computing is proposed in [11] to minimize the response time of tasks present in backup after multiple
failures of tasks. The stopwatch automata network model use to make real-time computer system
(RTCS) fault tolerant [12]. Additionally, to provide reliability against transient faults high power-based
backup processor use to execute selective backup tasks [12]. In [13] author has proposed two scheduling
algorithms FEED-O and FEED-OD to handle the overloading of backup tasks in overlapping time
intervals. In [14], Fault-tolerant multi-core mixed criticality systems use to cope with high power and
temperature for dependent dual-criticality tasks. In [15], with server CAN (one of the types of storage),
a fault tolerance mechanism has been used. In [16] also the fault-tolerance concept implements in big
data. Based on aforementioned work, it is clear that fault tolerance is not important in RTS only, but
in every domain [9–17].

The focus of this paper is on fault tolerance scheduling algorithms in Real-Time Distributed
systems (RTDS). RTDS is a distributed system with temporal and dynamic behaviour, as it changes
with time. Temporal activity/behaviour includes arrival time, waiting time, execution and completion
time of a task. The completion time of any task affects the performance of dependent and enqueuer
tasks. Therefore, timely execution of tasks is the uppermost priority of any RTS scheduling algorithms.
Presence of fault in a system may affect its performance by continuous missing of tasks deadline. The
system failure can happen due to many improperly handled faults, like preemption of lower priority
tasks or lack of resources. This missing deadline is bearable in soft RTS, but not in hard [18,19]. The
further section will explain the detailed information about failure, faults and their relationship with
each other.
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2.1 About Fault Tolerance
When we talk about fault tolerance, the scenario comes to our mind that there is a situation

where an irregular, unusual, erroneous function is being played. It degrades the performance or
sometimes fails the entire system. Now tolerance channels our system in such a way that these faults are
bypassed, thus, maintaining the near normal functioning of the system. Sometimes multiple modules
in a redundant fashion, mirror images of the existing system and some kinds of remedial measures are
proposed inline. Tolerance methods are necessary for the successful running of any system because
critical faults strike without warning. Following (Tab. 1) are few examples where tolerance methods
for faults present:

Table 1: Examples of fault tolerance

System Fault Tolerance method (Back-up)

Storage server Storage device (Hard disk)
fails

Mirroring technique

Networking Network card fails The second card is there
Computer system Power failure UPS
Distributed systems Task/process overloading Task duplication/migration
RTS Scheduled task missing

deadline
Modified scheduling
algorithms that accommodate
the given fault

Some programming languages Users enter vague data Handled by Exception
handling

2.2 Fault Tolerance in RTDS
Real-Time tasks schedule on distributed systems where faults of distributed systems affect

respective real-time tasks or vice versa. Following Tab. 2 summaries, some common types of faults
in both systems [20,21] and Fig. 1 displaying the visualizations of respective fault types:

Table 2: Types of faults

Fault types Definition Example w.r.t DS Example w.r.t RTS

Transient Faults Occurs once in a system
and does not happen
again after debugging

Network connection,
once establish
successfully

Successful
deployment of
software application.

Intermittent Faults Difficult to debug as it
appears again in the
system

Loose connections in
hardware

Missing deadline in
hard/soft system

Permanent Faults Does not go away once
occur

The system runs out of
memory

Domino’s effect of
EDF (or tasks
overloading)
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(a) (c)(b)

Figure 1: Visualization of (a) Transient fault (b) Intermittent fault and (c) Permanent fault

2.3 Fault Tolerance Techniques
The fault is an unintended behaviour of a system that either reduces the performance or fails

the system. To protect the system, fault tolerance strategies are required. However, fault-masking
and system reconfiguration are a few techniques for fault tolerance but commonly, redundancy in
hardware, software, information or time is used [22–24]. In following Tab. 3 detailed discussions on
redundancy techniques have explained:

Table 3: Types of redundancy techniques

Types of redundancy
techniques

Description Approach

Hardware Redundancy Fault can be resolved by providing
multiple physical copies of hardware
components.

Passive, Active and Hybrid
Techniques

Software Redundancy -Used to detect hardware faults
-Used to detect software faults

(for H/W faults) Consistency
checks, capability checks, ALU tests,
Testing for communication.
(for S/W faults) N-Version
Programming (NVP) and Recovery
Blocks (RB)

Information
Redundancy

Guarantee data consistency by
exploiting additional information to
achieve a redundant encoding

Error detection and correction codes

Time Redundancy Computations perform
continuously at different points
(checkpoints) in time and then
compared. Here, no need for extra
hardware.

Used approaches, e.g., ALU:
recomputing with shifted operands,
with swapped operands etc.

Further section explains fault tolerance scheduling algorithms.



CMC, 2022, vol.72, no.3 5201

2.4 Fault Tolerance Scheduling Algorithms in RTS
While designing any scheduling algorithms for RTS, following criteria should be considered:

• Each task should execute once in a system i.e., parallelism between the same task should not be
there

• All tasks should meet the deadline
• Number of processors failure should be tolerated i.e., failure of one processor should not

affect the progress of the entire system (hence, always schedule a backup of tasks on separate
processors)

• Preemption of tasks helps to improve the efficiency of the system.

Following are scheduling algorithms employed for the fault tolerance and avoidance as well
[2,25–28]:

• First come first serve (FCFS)
• Shortest Job First (SJF)
• Preemptive
• Non- preemptive
• Round Robin Techniques

For all scheduling algorithms following terminologies are common:

Input: Arrival of Periodic tasks ti with arrival time ati , deadline dti , period pti , computation time
cti , task utilization uti , CPU utilization UPi , a priority of respective task prti and time quantum TQ.

Output: Task meeting meetti and missing missti of respective tasks

Table 4: Summary of real-time scheduling algorithms for fault tolerance techniques

Scheduling algorithms Scheduling
criteria

Gap Type of
fault occurs

Fault tolerance
techniques

First Come First Serve
(FCFS)

Task arrives
first will be
at the
highest
priority.

Convoy Effect
(Starvation)

Intermittent
Faults

Time and
Software
Redundancy

Shortest Job First (SJF) Task having
shorter
computa-
tion/burst
time at
highest
priority
(prti ∝ 1

cti
).

• Starvation due to
preemption of
lower priority
task by higher
priority tasks
multiple time

• Difficult to
determine CPU
computing time
in advance

Intermittent
Faults

Time and
Software
Redundancy

(Continued)
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Table 4: Continued
Scheduling algorithms Scheduling

criteria
Gap Type of

fault occurs
Fault tolerance
techniques

Preemptive Earliest
Deadline
First (EDF)
(Dynamic)

Nearer the
deadline
higher the
priority
(prti ∝ 1

dti
)

• Domino’s Effect
Intermittent
and
permanent
faults
(sometimes)

Time, Software
and hardware
redundancy

Rate
Monotonic
Scheduling
(RMS)
(Static)

The task
with a
smaller
period have
higher
priority
(prti ∝ 1

pti
)

• Due to fixed /
static priority
and upper bound
conditions, it
offers less
schedulability
than EDF

Intermittent
and
permanent
faults
(sometimes)

Non-
Preemptive

Non-
Preemptive
Shortest
Job First

Scheduling
criteria is as
per the
previously
mentioned
SJF
algorithm.

• Starvation due to
task preemption
by higher priority
tasks. A process
engages the CPU
until termination
or reaches a
waiting state.

Intermittent
Faults

Time and
Software
Redundancy

Round
Robin
Techniques

Time
quanta/slice-
based
algorithm

Once a task
executes for
the assigned
time
quanta,
task get
preempted
and another
task starts
execution
for the
given
quantum of
time.

• It spends more
time in context
switching

• It does not give
special priority to
important tasks

• Difficult to find
correct time
quantum

Intermittent
Faults

Software
Redundancy

The above-mentioned Tab. 4 is the summary of a few scheduling algorithms to tolerate the
occurrence of faults. Most algorithms use for intermittent faults because missing deadlines are difficult
to predict Hence, to endure such faults, many time-based scheduling algorithms exist that come under
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software and time redundancy technology. Out of the above-mentioned categories, this paper deals
with preemptive scheduling algorithm class where EDF and RMS both algorithms are used for fault
tolerance purposes. The next section will describe the working of the joint EDF-RMS algorithm in a
faulty environment.

3 Fault Tolerance in Joint EDF-RMS Algorithm

In RTS, failure of single task may affect the system performance and destroy it as well (catastrophe
result). Hence, fault management is required in RTS. Many researchers actively participate and
implement/simulate the fault-tolerant system with the help of some scheduling algorithms. Therefore,
the performance of Joint EDF-RMS algorithm improvises by embedding the feature of fault tolerance
in it. Following Fig. 2 is the pictorial representation of mentioned algorithm with fault tolerance
management.

There are four blocks A, B, C and D. Block ‘A’ represents a global queue where tasks will assign to
randomly selected processors. According to RMS, the task having highest priority will assign first to a
chosen processor of block ‘B’ and similar trend will follow for remaining tasks. To avoid overloading

in a queue, RMS criteria has been used i.e., taskutilization <= n
(

2
1
n − 1

)
, where n represents the

total number of tasks. Further, a selected processor of the ‘B’ block use EDF algorithm to schedule
the signed tasks (0.81 is the upper bound of CPU utilization [8,29]). To handle overloaded (victim)
tasks, blocks ‘C’ and ‘D’ are available. Victim task is a task that migrates minimum of three times and
remains unexecuted (may become responsible for missing the deadline of dependent tasks). For such
unexecuted tasks, a backup queue is there that schedule victim tasks to the selected processor. Here,
RMS algorithm use for the scheduling of victim tasks on assigned processors.

Victim tasks 

are assigned 

for execution 

Victim tasks add in a backup queue for fault tolerance mechanism

Victim tasks (migrated 3 times)
in Back-up queue

Set of processors to execute
Scheduled victim tasks using RMS
An algorithm that performs well 

in the underloading situation.

Migrated Tasks 
(no. of times<=3)

Set of processors to execute
scheduled tasks using EDF algorithm
having utilization upper bound 0.81.

Tasks are scheduled on

Processors based on 

Priority decided 

by RMS algorithm 

The arrival of tasks in Global 
Queue where RMS is used to 
assign priority to schedule the tasks

Scheduled 
tasks

d on

hm 

A

B

C

D

Figure 2: Working of joint EDF-RMS algorithm with fault tolerance technique
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Following is the algorithm for the proposed work:

Fault-Tolerant Joint EDF-RMS Algorithm

Algorithm_3.3: Joint EDF-RMS Algorithm with Fault-Tolerant Technique
Input: Arrival of tasks with τarrival, τwcet, τperiod, τdline

Output: Number of tasks successfully meet and unable to achieve the deadline with other parameters
BEGIN
GlobalScheduler() // Global task Queue

1. Arrival of tasks ti // Periodic arrival of tasks with arrival time, wcet, assigned deadline and
period

2. tasku = wcet/Period;
3. UB = n∗(Math.pow(2, 1.0/n)-1);
4. IF tasku <= UB
5. Generated task is schedulable
6. pselection(task)
7. Else
8. The task is non-schedulable

pselection(task) // Random Selection of Processors
1. Random Selection of Processor
2. PQueue(task);

PQueue(task) // Processors local queue
1. Assign priorities to tasks on the basis of deadline
2. mig = 0 //migration counter initially 0
3. taskpriority ∝ 1

taskdeadline

4. TaskExecution(task, mig)
TaskExecution(task,mig) // Task Execution by using EDF Scheduler

1. If tasku <= 1
2. U = U+ tasku //Cumulative accumulation of task utilization
3. If(U <=.810) //Processor utilization upper bound
4. The task is ready for execution
5. Else
6. Task Migration (task, tasku, mig) // now mig = 1

Taskmigration(task, tasku , mig) // Task Migration on the basis of a processor utilization factor
1. Sorting of all processor utilization
2. Give task to less utilized processor
3. PQueue(task, mig); //mig take care number of times given task migrate
4. If mig == 3
5. Backup-Global scheduler(task,tasku,mig)
6. Else
7. Taskmigration(task, tasku , mig)// now mig = 2

(Continued)
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Algorithm_3.3: Continued
Backup-Global scheduler(task,tasku,mig)// Global scheduler for tasks

1. Random Selection of Back-upProcessor (3 processors)
2. BkupPQueue(task);

BkupPQueue(task) // Back-up Processors local queue
1. RMS algorithm is used here.
2. taskpriority ∝ 1

taskperiod

3. BkupTaskExecution(task)
BkupTaskExecution(task) // RMS is in action

1. If tasku <= n(2
1
n + 1)

2. U = U+ tasku // cumulative totaling of task utilization
3. If(U <= n(2

1
n + 1))&& (U <= 1) // Acceptance test for victim task execution

4. The victim task is acceptable for execution
5. Else
6. Task Migration (task, tasku)

END

4 Simulation

• Experimental Set-up

For simulation purposes, the Eclipse Oxygen.3a version use for the java programming language.
The concept of thread uses here to create, wait and execution of tasks. Maximum 2100 and minimum
300 tasks are used in distributed systems of six (3 for backup) processors. The implementation of
all three algorithms EDF, RMS and joint EDF-RMS done on same tasks in synchrony to provide
the same simulation parametrization. Following parameters use to evaluate the performance of the
above-mentioned algorithms:

1. Fault rate: In RTS, if the task has less chance to meet the deadline as per utilization calculations
and if (task.utilization < cpu.utilization)||(∑ti

i=1 task.utilization > CPU .utilization) then the schedul-
ing algorithm allow it for execution, and that task can be a reason for the failure of many remaining
tasks. Based on schedulability test, victim tasks identify here. Following equation is used to calculate
the fault rate:

fault rate = victim task
total number of tasks arrive in the system

(1)

2.Failure rate: Tasks fail to meet the deadline due to fault done by scheduling algorithms by
allowing tasks to execute. Following equation calculate failure rate:

failure rate = number of tasks miss thedeadline
total number of tasks arrive in the system

(2)
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3. Processor utilization threshold: The reason behind task migration is utilization of CPU. If any
task crosses the threshold limit of CPU utilization then, that task will migrate. Hence, migration point
in RMS is n(21/n − 1), in EDF 1 or 100% and in joint EDF-RMS it is 0.81 or 81%.

5 Results and Discussion

Before the discussion on the results, the following lemma explains the dependency of task
execution on the aforementioned parameters:

• Lemma 5.1 Failure of task is dependent on victim tasks, migration and CPU utilization.

Proof

Considering the arrival of N tasks in the system S where τ1, τ2, τ3, . . . . . . . . . ., τk ∈ N and their CPU
utilizations are: w1

ρ1
, w2

ρ2
, w3

ρ4
, . . . . . . . . . . . . , wk

ρk
respectively. Every time a new task arrives and the system

computes its utilization whether it is less than or greater than CPU utilization i.e., 1 (100%) or not.

Table 5: Demonstration without migration

w1

ρ1

< 1,
(

w2

ρ2

< 1
)

and
w1

ρ1

+ w2

ρ2

< 1 (3)

Where w and ρ are the worst-case execution time
and period of task. When a task arrives in the
system its utilization will calculate i.e., w

ρ
. If

w
ρ

≤ 1, then the task is schedulable else not. After
every new (non-zero) task arrival, system
utilization load gets incremented, as already
occupied task run on CPU has utilization factor.

w3

ρ3

< 1 and
w1

ρ1

+ w2

ρ2

+ w3

ρ3

≤ 1 (4)

Arrival of task τ3, reaches the maximum
utilization limit of processor (almost all
resources are engaged with tasks execution)

w4

ρ4

< 1 and
w1

ρ1

+ w2

ρ2

+ w3

ρ3

+ w4

ρ4

> 1 (5)

Task τ4 is schedulable but it exceeds the limit of
processor’s utilization.

w5

ρ5

< 1 and
w1

ρ1

+ w2

ρ2

+ w3

ρ3

+ w4

ρ4

+ w5

ρ5

> 1(6)

Similarly, task τ5 is schedulable but due to task τ4

it has to wait for its execution.

Now, here the arrival of tasks τ4 and τ5, exceeds the CPU utilization, as it becomes more than 1.
Here, (Tab. 5) τ4 and τ5 tasks are victim tasks that can create a fault in the system by overloading it.
Overloading means resources of CPU engage (critical) in the execution of previous tasks (τ1, τ2, τ3)

such that the system may start missing deadlines. Hence, victim tasks have either to wait for their turn
or migrate on other processors. Hence, the following two conditions arise in the system:

I. The system is occupied in the execution of tasks τ1, τ2, τ3. Due to which remaining tasks have to
wait for their execution, this increases by waiting time (Δt) and thus affect approaching of deadline.
As a1, a2, a3, a4, a5, a6, a7 are the arrival time of tasks τ1, τ2, τ , τ4, τ5, τ6, τ7 respectively with deadlines
∂1, ∂2, ∂3, ∂4, ∂5, ∂6, ∂7 and execution time w1, w2, w3, w4, w5, w6, w7. Δt is the amount of waiting time that
affects the assigned deadline. Following will be the scenario of scheduled victim tasks or tasks arrive
after victim tasks:
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Initially tasks fulfill the condition a4 < ∂4 , allowed to enter in semaphore, due to resource
unavailability task τ4 has to wait for Δt amount of time i.e., a4 + Δt < ∂4. This increment of waiting
time increases the tasks in a waiting list i.e., τ5, τ6 . . . . . . . . . τk. a5 + (α ∗ Δt) < ∂5,a6 + (2α ∗ Δt) ≤ ∂6,
a7 + (mα ∗ Δt) = ∂7 and it goes on till any of the tasks meet the deadline/migrate from one processor
to another in a system. In this way, waiting time affects deadlines and tasks start missing deadlines.

II. In the above case, Tab. 5 migration was not in the picture. Here, Tab. 6 if more than one
processor is there in the system S, then the victim task can migrate towards another processor and
can get the required resources of execution.

Suppose three processors are there in a system S and each processor is engaged in the execution
of tasks. Following are the tasks involved in each processor:

Table 6: Demonstration with migration

S = {P1, P2, P3} Pi ∈ S, wherei ≤ 3

P1 = {τ11, τ12, τ13, τ14}
P2 = {

τ21, τ22, τ23, τ24,τ25

}
P3 = {τ31,τ32, τ33}

Pi = ithprocessor of the system S
where i ≤ 3 (in mentioned scenario)

τij = jth task of processor i

w11

ρ11

+ w12

ρ12

+ w13

ρ13

+ w14

ρ14

< 1 (7)

w21

ρ21

+ w22

ρ22

+ w23

ρ23

+ w24

ρ24

+ w25

ρ25

> 1 (8)

w31

ρ31

+ w32

ρ32

+ w33

ρ33

< 1 (9)

After passing the schedulability criteria, CPU
utilization has been incremented by task
utilization (w

ρ
) value. The utilization of P1 and P3

is less than 1, which means resource availability
is there. On the other side, P2 utilization is
greater than 1, which means it is exhausted and
the remaining tasks will miss the deadline.
Hence, few tasks of P2 can migrate towards P1

and P3.

w11

ρ11

+ w12

ρ12

+ w13

ρ13

+ w14

ρ14

+ w25

ρ25

> 1 (10)

w21

ρ21

+ w22

ρ22

+ w23

ρ23

+ w24

ρ24

< 1 (11)

w31

ρ31

+ w32

ρ32

+ w33

ρ33

< 1 (12)

Migration of task τ25 of P2 exceeds the utilization
of processor P1 i.e., greater than 1 or more than
100% (enough resources are not available).
Hence, for timely execution migrate this task to
processor P3.

w11

ρ11

+ w12

ρ12

+ w13

ρ13

+ w14

ρ14

< 1 (13)

w21

ρ21

+ w22

ρ22

+ w23

ρ23

+ w24

ρ24

< 1 (14)

w31

ρ31

+ w32

ρ32

+ w33

ρ33

+ w25

ρ25

< 1 (15)

Now, after two migrations, task τ25 can meet the
deadline on processor P3. Hence, the migration
rate will be 1 out of 5 tasks. if no processor will
available. So, in this way with the help of
migration, missing deadlines (task failure) can
be minimized.

Hence, we can say that CPU utilization, victim tasks and migration of tasks affect the successful
execution of upcoming tasks.
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EDF, RMS and Joint EDF-RMS algorithms implement and test up to 2100 tasks. These tasks
divide into the transaction of 300, 600, 900, 1200, 1500, 1800 and 2100 tasks. As fault tolerance is the
main point of concern here, the relation of fault with task failure, CPU utilization and migration of
victim tasks are under consideration.

-Fault rate vs. Failure rate

Fig. 3 demonstrates the number of victim tasks out of total tasks in a given transaction. In EDF,
tasks exceed the CPU utilization of more than 1, in RMS n(21/n −1) and Joint EDF-RMS 0.81. Fig. 4,
explains the failure rate (tasks unable to execute on time) of tasks in given algorithms. Fig. 5, represents
the average fault rate and failure rate. In EDF on an average 22 tasks fails due to 3 victim tasks,
similarly, 22 tasks fail due to 2 victim tasks in RMS but 18 tasks miss the deadline due to 3 victim
tasks. Hence, the Joint EDF-RMS algorithm performance is better as compared to the remaining two
algorithms.

0

2
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6

8

10

12

300 600 900 1200 1500 1800 2100

Total Tasks vs Fault Rate

FaultRate-EDF FaultRate-RMS FaultRate-JointEDF-RMS

Figure 3: Arrived tasks vs. fault rate calculations based on EDF, RMS and Joint EDF-RMS algorithm
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5
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20

25

30

35

300 600 900 1200 1500 1800 2100

Total tasks vs Failure Rate

Failure rate-EDF Failure rate-RMS Failure rate-Joint

Figure 4: Arrived tasks vs. failure rate of tasks calculations based on EDF, RMS and Joint EDF-RMS
algorithm

–Processor utilization vs. failure rate

Up to three processors use in this simulation. The Fig. 6, demonstrates the effect of total CPU
utilization on the failure of tasks. As the participation of processors in the system increases, the
total CPU utilization escalates accordingly. The behaviour of system while using the EDF algorithm
illustrates in the Fig. 6. When it increases the limit by more than 3 (U ≤ 1), tasks miss the deadline
due to victim tasks.
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Figure 5: Average Impact of fault rate on failure rate in EDF, RMS and Joint EDF-RMS algorithm

300 600 900 1200 1500 1800 2100

CPU utilization 0.412007995 0.804258257 1.311759922 1.909587555 2.404928302 2.740219808 3.060075614

Failure Ratio 0.323333333 0.246666667 0.167777778 0.209166667 0.192666667 0.221666667 0.181428571
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EDF CPU utilization vs Failure Rate

CPU utilization Failure Ratio

Figure 6: CPU utilization vs. failure rate based on EDF scheduling algorithm

Fig. 7 explains the total CPU utilization effect on failure task when the RMS algorithm is in use. In
Joint EDF-RMS, RMS algorithm uses to handle arrival of tasks in global queue and EDF algorithm
use with threshold limit 0.81 in every processor. Hence, in Fig. 8 the failure ratio is less as compared
to others due to the threshold limit of EDF algorithms and usage of RMS for priority assignment.

300 600 900 1200 1500 1800 2100

CPU utilization 0.369137062 0.942206515 1.474439675 1.844339736 2.416793999 2.572007334 3.04105505

Failure Ratio 0.33 0.273333333 0.198888889 0.189166667 0.158666667 0.188333333 0.176190476
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Figure 7: CPU utilization vs. failure rate based on RMS algorithm

CPU utilization is the main parameter due to which victim tasks can recognize and migrate to
other processors, that helps in failure tasks reduction. Fig. 9 are showing the complete result of all
three scheduling algorithms. On average for every 1200 tasks the failure percentage of Joint EDF-
RMS is less i.e., 17% as compared to the remaining two scheduling algorithms. Similarly, due to the
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application of migration technique on 0.81% threshold, the victim tasks percentage is also very less i.e.,
only 2% in Joint EDF-RMS algorithm, whereas in EDF and RMS victim tasks percentage is greater
or equal i.e., 4% and 2%, respectively.

300 600 900 1200 1500 1800 2100

CPU Utilization 0.400413755 0.728918987 1.177769085 1.857372543 1.994106971 2.263497223 2.662202852

Failure Ratio 0.263333333 0.163333333 0.155555556 0.168333333 0.227333333 0.188333333 0.112857143
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Figure 8: CPU utilization vs. failure rate based on Joint EDF-RMS algorithm

(a) Task’s status in EDF Scheduling Algorithm  (b) Task’s status in RMS Algorithm

(c) Task’s status in Joint EDF-RMS Algorithm
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Figure 9: Task’s status in all three scheduling algorithms based on average number of tasks
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6 Conclusion and Future Work

The fault tolerance mechanisms in RTS with the help of migration techniques in distributed
systems successfully simulated. Basic scheduling algorithms (EDF and RMS) select to evaluate the
performance of hybrid scheduling algorithm (Joint EDF-RMS) with fault tolerance mechanism. The
vital role of fault tolerance algorithms in various applications discuss in previous sections. Here, fault
tolerance implant in new hybrid algorithm (Joint EDF-RMS) and simulate in Real Time Distributed
Systems. How overloaded (victim) task affect the execution of upcoming or enqueuer tasks have been
explained with the help of lemma (with or without migration) and simulation. Overall, the behaviour
of EDF, RMS and Joint EDF-RMS algorithm evaluates in faulty environment of RTDS. The Joint
EDF-RMS algorithm handle faults efficiently due to the presence of both EDF and RMS algorithms
that overcome limitations of each other. Additionally, usage of RMS algorithm in Backup processors
improve the performance because this algorithm is good to handle overloading conditions due to its
schedulability criteria.

This fault tolerance concept will implement in information-theoretic entropy based work [30–32].
The simulation of information theoretic entropy based EDF scheduling algorithm is already done and
in future, its behaviour in faulty environment will check by using fault tolerance mechanism use in this
paper.
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