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Abstract: As most real world systems are significantly nonlinear in nature,
developing robust controllers have attracted many researchers for decades.
Robust controllers are the controllers that are able to cope with the inherent
uncertainties of the nonlinear systems. Many control methods have been
developed for this purpose. Sliding mode control (SMC) is one of the most
commonly used methods in developing robust controllers. This paper presents
a higher order SMC (HOSMC) approach to mitigate the chattering problem
of the traditional SMC techniques. The developed approach combines a third
order SMC with an adaptive PID (proportional, integral, derivative) sliding
surface to overcome the drawbacks of using PID controller alone. Moreover,
the presented approach is capable of adaptively tuning the controller parame-
ters online to best fit the real time applications. The Lyapunov theory is used
to validate the stability of the presented approach and its feasibility is tested
through a comparison with other conventional SMC approaches.
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1 Introduction

Nonlinear control covers a wide range of systems that exist in many real world applications. These
applications include robot control [1], satellite control [2], and spacecraft control [3]. These nonlinear
systems are often modeled by nonlinear differential equations. Several rigorous techniques have been
developed to handle these systems. Examples of these techniques are feedback linearization control
(FLC) [4], back-stepping control (BSC) [5], intelligent control (e.g., neural networks, and fuzzy logic)
[6,7], adaptive control [6,7], and SMC [1,8]. Each technique can be applied to certain systems and
characteristics. Thus, there is no general solution for all types of nonlinear control systems.

Generally, feedback linearization is the one of the most attractive techniques used to tackle
nonlinear systems as it is based on transforming nonlinear systems into simpler forms. However,
this technique does not provide efficient solutions for significant nonlinear systems which have
high nonlinearities and uncertainties. Backstepping control (BSC) is also one of the most popular
techniques used to control higher order systems. Nevertheless, the main disadvantage of BSC is the
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requirement of exact system model which cannot be guaranteed for nonlinear systems with inherent
uncertainties. Thus, adaptive control is combined with BSC to mitigate the requirement of exact model.
On the other hand, SMC shows great capabilities of dealing with nonlinearity and uncertainties [9–11].
The more the degree of nonlinearity and uncertainty, the more need to design robust controllers for
control systems.

Tackling uncertain nonlinear systems is very challenging especially for real time control systems
[12]. Uncertainties occur mainly due to un-modeled high frequency dynamics, and neglected nonlin-
earities [13]. These uncertainties usually affect the system performance, and stability [14]. Accordingly,
many researchers have been working towards developing robust controllers that are able to mitigate
these uncertainties [15–17]. Among many developed solutions, SMC is one of the most popular and
effective solutions that can cope with significant uncertainties, and parameters’ variations [9–11].
Moreover, SMC technique shows a strong capability to compensate for external perturbations.

As SMC techniques are very efficient in dealing with significant uncertainties, and nonlinearities,
they have been widely used for decades especially for nonlinear control applications [18,19]. The
first order SMC is the simplest structure used in the literature to cope with uncertainties and
external disturbances [20]. Although, the conventional (first order) SMC presents a good solution for
uncertainties compensation in the control system design process, it is suitable only for systems with
output of degree of one. Furthermore, it suffers from the chattering problem which sometimes degrades
the system performance, and affects the system stability. Thus, many attempts have been seen to replace
the conventional SMC with higher order SMC (HOSMC) techniques that are suitable for higher order
systems and able to attenuate the chattering occurred with conventional SMC. Super-twisting SMC
(STSMC) is one popular extension of the conventional SMC [21]. The STSMC is a second order
structure of SMC that is able to reduce the oscillations that occurs around the sliding surface during
the switching control phase of the SMC. The main power of STSMC is that it does not require the
implementation of the derivative of the sliding variable which is the main challenge of other HOSMC
techniques [22–24]. Nevertheless, STSMC design process requires the accurate setting of many control
gains as it affects the performance and stability of the control system. This is a very challenging process.
Accordingly, many STSMC techniques have been developed to tackle this challenge such as adaptive
STSMC [25], adaptive dual layer STSMC [26], and integral STSMC [27].

Ensuing in the same path, this paper presents a new HOSMC approach that is able to overcome
the chattering problem occurred in the conventional SMC. The developed approach uses a third
order SMC combined with an adaptive PID sliding surface. This combined approach overcomes
the drawbacks of using PID controller alone. Furthermore, the presented approach is capable of
adaptively tuning the controller parameters online which is perfectly fit with real time applications. By
the combination of adaptive control with the SMC, the developed approach allows of the relaxation
of the boundness condition of uncertainty level. The proposed approach shows a better performance
than other SMC approaches in terms of chattering attenuation, and tracking error. The stability of
the developed control approach is validated through Lyapunov theory. The main contributions of this
work can be summarized as follows:

[1] Presenting a real time third order SMC approach for nonlinear systems able to mitigate
the chattering problem associated with other conventional SMC approaches. The proposed
approach is capable of achieving excellent performance even with the existence of all types
of uncertainties and disturbances. The proposed approach is capable of estimating uncer-
tainties and thus no worries about the upper bound problem associated with working with
uncertainties.
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[2] An adaptive PID tuning algorithm is presented to reach the optimal estimation of PID
controller parameters which are adaptively changing during the online control process.
[3] A quadratic Lyapunov function is suggested and used to validate the proposed approach
stability considering the estimated uncertainties. The developed control law guarantees that the
system will reach the sliding surface in a finite time.

The rest of this paper is organized as follows. Section 2 presents the proposed adaptive third order
SMC approach. Some simulations are introduced in Section 3. Conclusions and some future directions
are drawn in Section 4.

2 The Proposed Approach

The proposed Adaptive Real Time PID-based Third Order SMC (APID-TOSMC) is vindicated
in this section.

A controlled system can be modeled as [19,28]:
••
x(t) = F(z(t), t) + G(z(t), t) r(t) + γ (t)
x(t) = z1(t)

(1)

where r(t) is the control input of the system, z (t) =
[
x

•
x

••
x . . . . . . .

(n−1)

x
]T

is the system state variables,

and x(t) is the measured response of the system. F(z(t), t) and G(z(t), t) are uncertain nonlinear
functions. The unknown uncertainties are represented by γ (t) with an upper bound given by B ≤
|γ (t)|. The dynamical model of the controlled system (Eq. (1)) is modified to include uncertainties as
follows:
••
x(t) = Fn(z(t), t) + �F(z(t), t) + (Gn(z(t), t) + �G(z(t), t)) r(t) + γ (t)
••
x(t) = Fn(z(t), t) + Gn(z(t), t) r(t) + μ(t)

(2)

where Fn(z(t), t) and Gn(z(t), t) are the nominal values of F(z(t), t) and G(z(t), t), respectively. The
parameter variations (uncertainties) are represented by �F(z(t), t) and �G(z(t), t).

The lumped uncertainty is defined as:

μ(t) = �F(z(t), t) + �G(z(t), t) r(t) + γ (t) (3)

The switching surface for the APID-TOSMC can be demarcated as:

σ(t) = ••
s(t) + β2

•
s(t) + β1 s(t) = k̂d

•
e(t) + k̂p e(t) + k̂i

∫
e(ξ)dξ (4)

The addressed problem in this paper is to design an adaptive online Tuned PID-based APID-
TOSMC for nonlinear systems such that the system response x(t) strongly follows a reference desired
signal xd(t).

The control effort of APID-TOSMC is designed as:

r(t) = req(t) + rs(t) (5)

where req(t) and rs(t) are the equivalent and reaching control efforts respectively.

The third derivative of s(t) can be deduced from Eq. (4):
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•••
s (t) = −β1

•
s(t) − β2

••
s(t) + k̂d

••
e(t) + k̂p

•
e(t) + k̂i e(t) (6)

Substituting
(••

e(t) = ••
x(t) − ••

xd(t)
)

into Eq. (6) and considering Eq. (2), we get:

•••
s (t) = −β1

•
s(t) − β2

••
s(t) + k̂dFn + k̂dGnr(t) + k̂dμ(t) − k̂dx••

d (t) + k̂p

•
e(t) + k̂i e(t) (7)

The equivalent control effort
(
req(t)

)
is calculated by setting

•••
s (t) = 0, and (μ(t) = 0):

req(t) = 1

k̂d Gn

{
β1

•
s(t) + β2

••
s(t) − k̂dFn + k̂d

••
xd(t) − k̂p

•
e(t) − k̂i e(t)

}
(8)

To prove the system stability, a Lyapunov function is chosen as:

V(t) = 1
2

••2
s (t) + k2

2
•2
s(t) + k1

2
s2(t) + 1

2γd

∼2

kd + 1
2γp

∼2

kp + 1
2γi

∼2

ki (9)

where k1, k2 are constants (design parameters).

The derivative of Lyapunov function
•

V(t) is:

•
V(t) = ••

s(t)
•••
s (t) + k1s(t)

•
s(t) + k2

•
s(t)

••
s(t) + 1

γp

∼
kp

•
∼
k
p
+ 1

γd

∼
k
d

•
∼
k
d
+ 1

γi

∼
k
i

•
∼
k
i

(10)

Substituting for
•••
s from Eq. (7) into Eq. (10) yields:

•
V(t) = k2

•
s(t)

••
s(t) + k1s(t)

•
s(t) + ••

s(t) {−β1

•
s(t) − β2

••
s(t) + k̂dFn + k̂dμ(t) + k̂i e(t)

+ k̂dGn (r(t)) − k̂d

••
xd(t) + k̂p

•
e(t)} + 1

γp

∼
kp

•
∼
kp + 1

γd

∼
kd

•
∼
kd + 1

γi

∼
ki

•
∼
ki

(11)

•
V(t) = k2

•
s(t)

••
s(t) + k1s(t)

•
s(t) + ••

s(t) {−β1

•
s(t) − β2

••
s(t) + k̂dFn + k̂dμ(t) + k̂i e(t)

+ k̂dGn

(
req(t) + rs(t)

) − k̂d

••
xd(t) + k̂p

•
e(t)} + 1

γp

∼
kp

•
∼
kp + 1

γd

∼
kd

•
∼
kd + 1

γi

∼
ki

•
∼
ki

(12)

Using Eqs. (8) and (12) becomes:

•
V(t) = k2

•
s(t)

••
s(t) + k1s(t)

•
s(t) + ••

s(t)
{

k̂dGnrs(t) + k̂dμ(t)
}

+ 1
γp

∼
kp

•
∼
kp

+ 1
γd

∼
kd

•
∼
kd + 1

γi

∼
ki

•
∼
ki

(13)

The switching control effort rs(t) can be chosen as:

rs(t) = −1

k̂d Gn

{k2

•
s(t) + k3sign(

••
s(t)) + ••

s(t)
(

k̂d

•
e(t) + k̂p e(t) + k̂i

∫
e(ξ)dξ

)

+ k1
•
s(t) s(t)

••
s (t)−ε

}
(14)
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where the switching control gain k3 is a design parameter and ε is a very small positive number.

•
V(t) = −k2

••
s(t) s(t) − ••

s(t)
k1

•
s(t) s(t)

••
s(t) − ε

− ••2
s (t)

(
k̂d

•
e(t) + k̂p e(t) + k̂i

∫
e(ξ)dξ

)

− k3

••
s(t)sign

(••
s(t)

)
+ ••

s(t)k̂dμ(t) + k1s(t)
•
s(t) + k2

••
s(t)

•
s(t) + 1

γp
(k̂p −kp)

•
k̂p

+ 1
γd

(k̂d −kd)

•
k̂d + 1

γi
(k̂i −ki)

•
k̂i

(15)

For
•

V(t) < 0, the adaptive algorithm laws can be chosen as:
•
k̂p = γp e(t)

••2
s (t)

•
k̂i = γi

••2
s (t)

∫
e(ξ)dξ

•
k̂d = γd

•
e(t)

••2
s (t)

(16)

Substituting from Eq. (16) into Eq. (15) and eliminating similar terms yields:

•
V(t) = −••2

s (t)
(

kd

•
e(t) + kp e(t) + ki

∫
e(ξ)dξ

)
− k3

••
s(t)sign

(••
s(t)

)
+ ••

s(t)k̂dμ(t) (17)

By using
∣∣∣•
s(t)

∣∣∣ = •
s(t)sign

(•
s(t)

)
, Eq. (17) becomes:

•
V(t) = − k3

∣∣∣••
s(t)

∣∣∣ + k̂dμ(t)
••
s(t) − ••2

s (t)
(

kd

•
e(t) + kp e(t) + ki

∫
e(ξ)dξ

)
•

V(t) ≤ −
∣∣∣••
s(t)

∣∣∣ { k3 − k̂d |μ(t)| } − ••2
s (t)

(
kd

∣∣∣ •
e(t)

∣∣∣ + kp |e(t)| + ki

∫ |e(ξ)| dξ
) (18)

The switching gain k3 must be set as
(

k3 > k̂d |μ(t)|
)

for global stability. The schematic diagram

of the adopted APID-TOSMC controller is shown in Fig. 1.

3 Simulations and Discussions

With the aim to assess the performance of (APID-TOSMC) approach, some simulations are
done using Matlab software considering the stabilization of the inverted pendulum system. Different
types of uncertainties are considered. Two problems are assessed; setpoint control and path following
control.

3.1 Setpoint Control
The developed APID-TOSMC approach in this paper is analyzed in comparison with the second

order SMC approach in [28] and the adaptive third order SMC (ATOSMC) approach in [29]. The
simulation parameters and conditions are set exactly as in [28] and the algorithm in [29] is implemented
with same parameters and conditions. The desired angular position is set as: θd = 0 with initial
conditions Y0 = [ π

8
, 0]. In order to examine the robustness of the controller, two cases of uncertainties

are considered: the external perturbations (ρ(t) = (
1 + sin( π

2
t)

)
) and the abrupt perturbations (a

1000N force is abruptly applied at the pole at t = 2.5 sec). The proposed APID-TOSMC parameters
are set as: β2 = 0.005, k3 = 50, k1 = 1, β1 = 0.008, γp = 1.1, γi = 0.06, γd = 0.036 and
k2 = 1. The angular position (θ) of the proposed APID-TOSMC approach compared with the
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approaches in [28,29] is shown in Fig. 2. Furthermore, Fig. 3 shows the angular position error of the
three approaches.

Figure 1: Schematic diagram of the adopted APID-TOSMC controller
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Figure 2: Angular position (θ ) response

Figs. 2 and 3 illustrate that the APID-TOSMC controller can achieve favorable and satisfied
trajectory tracking control performance. Additionally, the proposed APID-TOSMC control method-
ology is able to perfectly control the inverted pendulum. The results show the developed controller
is very robust even in the existence of external perturbations and uncertainties compared to other
approaches.
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Figure 3: Angular position error response

Figs. 4–6 show the adaptive PID sliding surface values for the set point tracking control of APID-
TOSMC controller.

Figure 4: The adaptive value of the proportional parameter of APID-TOSMC for set point control

To more evaluate the developed approach, three parameters are used; integral absolute error
(IAE), integral time absolute error (ITAE), and integral of squared error. Tab. 1 shows the obtained
results of our approach is excellent compared with the approach proposed in [28] and has a better
performance than the approach in [29].

Also, Fig. 7 shows a comparison between the control signal of the presented APID-TOSMC
approach and the approach proposed in [28,29]. As shown, the control signal for our proposed
approach has less chattering than the other approaches.
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Figure 5: The adaptive value of the integrator parameter of APID-TOSMC for set point control

Figure 6: The adaptive value of the differentiator parameter of APID-TOSMC for set point control

Table 1: Performance comparison for set point control problem

Approach IAE ITAE ISE

APID-SOSMC 20.8461 47.0039 1.2669
APID-TOSMC 15.1146 20.6926 1.1023
ATOSMC 15.9854 21.3514 1.2016

3.2 Path Following Control
The second case of control to consider in this section is the trajectory tracking control of the

inverted pendulum. Again, the simulation parameters and conditions are set exactly as in [28] and the
algorithm in [29] is implemented with same parameters and conditions. The external perturbation is
set to: ρ(t) = (0.2 sin(0.25t)) with initial conditions Y0 = [ π

6
, 0] [27]. The proposed APID-TOSMC

parameters are set as: β2 = 0.005, β2 = 0.005, k3 = 50, k1 = 1, β1 = 0.008, γp = 1.1, γi = 0.06,
γd = 0.036 and k2 = 1. To test the robustness of the presented APID-TOSMC approach, a 1000 N
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force is abruptly applied at the pole at t = 5 sec. The control and error responses are illustrated in
Figs. 8 and 9 respectively.
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Figure 7: The total control signal for set point control
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Figure 9: Angular position error

Figs. 10–12 show how the PID sliding surface values are adaptively changing over time.

Figure 10: The adaptive value of the proportional parameter of APID-TOSMC for path following
control

Figure 11: The adaptive value of the integrator parameter of APID-TOSMC for path following control



CMC, 2022, vol.72, no.3 5639

Figure 12: The adaptive value of the differentiator parameter of APID-TOSMC for path following
control

Fig. 13 demonstrates the control signals of the APID-SOSMC and APID-TOSMC approaches.

Figure 13: The control signal for path following control

It has been shown in this section that the developed controller (APID-TOSMC) attained better
path following response than the controllers in [28,29]. It is also obvious that the proposed controller
reduces the chattering and thus yields favorable path following response.

Performance comparison for path following control problem is shown in Tab. 2. As shown, the
proposed controller achieves better performance compared with the controllers proposed in [28,29] in
the case of path following control.
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Table 2: Performance comparison for path following control problem

Approach IAE ITAE ISE

APID-SOSMC 24.0608 128.4390 0.1741
APID-TOSMC 17.7851 93.4210 0.1012
ATOSMC 19.9854 95.3514 0.1416

4 Conclusions

An adaptive PID-based higher order SMC approach for nonlinear systems is presented in this
paper. The proposed approach integrates a third order SMC with PID controller with a view of
combining their advantages and overcoming their drawbacks. The proposed approach is adaptively
tuning the PID parameters in the real time to be used properly for any real time applications. By
combining the adaptive control with the SMC, the developed approach allows for the relaxation of the
boundness condition of uncertainty level in conventional SMC. The robustness and efficiency of the
developed approach is validated mathematically and through simulations. The developed approach
achieves lower chattering and error that other conventional SMC approaches. Future work may
consider working toward finding a generalized SMC approach to able to vary the order of the SMC
to any value as needed.
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