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Abstract: A novel practical and universal method of mask-wearing detection
has been proposed to prevent viral respiratory infections. The proposed
method quickly and accurately detects mask and facial regions using well-
trained You Only Look Once (YOLO) detector, then applies image coor-
dinates of the detected bounding box (bbox). First, the data that is used
to train our model is collected under various circumstances such as light
disturbances, distances, time variations, and different climate conditions. It
also contains various mask types to detect in general and universal application
of the model. To detect mask-wearing status, it is important to detect facial
and mask region accurately and we created our own dataset by taking picture
of images. Furthermore, the Convolutional Neural Network (CNN) model is
trained with both our own dataset and open dataset to detect under heavy
foot-traffic (Indoors). To make the model robust and reliable in various
environment and situations, we collected various sample data in different
distances. And through the experiment, we found out that there is a particular
gradient according to the mask-wearing status. The proposed method searches
the point where the distance between the gradient for each state and the
coordinate information of the detected object is the minimum. Then it carry
out the classification of mask-wearing status of detected object. Lastly, we
defined and classified three different mask-wearing states according to the
mask’s position (With mask, Wear a mask around chin and Without mask).
The gradient according to the mask-wearing status, is analyzed through
linear regression. The regression interpretation is based on coordinate infor-
mation of mask-wearing status and the sample data collected in simulated
environment that considering distances between objects and the camera in
the World Coordinate System. Through the experiments, we found out that
linear regression analysis is more suitable than logistic regression analysis for
classification of people wearing masks in general-purpose environments. And
the proposed method, through linear regression analysis, classifies in a very
concise way than the others.
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1 Introduction

The Coronavirus disease 2019 (COVID-19) pandemic has changed our lives very quickly and
extensively. As a matter of fact, we have been constantly confronted with respiratory viruses such
as Middle East Respiratory Syndrome (MERS), Influenza A virus subtype, Hemagglutinin1 Neu-
raminidase1 (H1N1), Severe Acute Respiratory Syndrom (SARS), etcetera. And there are views of
experts that humanity will become extinct due to virus based on these experiences [1–9]. At the national
level, various disinfection policies are being announced to prevent these respiratory infections, and
the most representative way among them is wearing a mask. Mask-wearing guidance is the simplest
and the most effective way to prevent respiratory viral invasions [10–13]. However, as can be seen
from the pandemic caused by COVID-19, many people do not follow the quarantine guidelines due
to the prolonged respiratory infection virus. Operating on-site monitoring personnel to comply with
the guidelines causes several cost problems [9,14]. To reduce costs and prevent viral infections, a lot of
Artificial Intelligence (AI)-based public health guidance violator identification technology and kiosk-
type access management systems are being developed [15–19]. Though the developed techniques and
systems are used, however, there are limitations that the current systems cannot be use in universal
situations and are difficult to measure numerous people at the same time [15–24]. Since the current
kiosk-type measurement system is installed at the indoor entrance to measure body temperature
or identify the mask-wearing status one at a time, it cannot measures multiple people at once and
used in places where foot traffics are heavy. Regarding mask-wearing status identification technology
using CNN, it is challenging to get versatility because it cannot detect people who are wearing mask
incorrectly such as exposing their nose or mouth, and wearing mask under their chin. There is another
limitation that the recognition rates get lowered in indoor lighting disturbances and when it comes to
small object detection [15–24].

This paper proposes a new method for detecting public health guidance violators to solve the
existing limitations and contribute to an effective and reliable automatic prevention system. The
proposed method adopted YOLO model which is a 1-stage CNN detector for fast and accurate
detection of objects, and the model was trained with open dataset and our own image dataset
that is collected for robust recognition in external environments such as lightings and distances.
Regarding our own created image data, it is collected from various places such as crowded lecture halls,
indoor building entrances with a lot of foot traffic, and auditoriums. To derive accurate recognition
performances from various external parameters of the learning model, it is separately collected by
external parameters, such as illumination controls, weather conditions of sunny and cloudy days,
distance controls for small object detection, and day/night environments. It uses YOLOv4 detector
for fast object detection, which detects face and mask objects, respectively. Then, using the image
coordination information of the detected face and mask, we constructed sample data for each distances
so that the model can distinguish between the threshold value for correct mask-wearing status and the
threshold value of incorrect mask-wearing status. The composition of the sample data is divided into
three states: wearing a mask, around the chin, and not wearing a mask. Specific non-linear gradient
distributions are shown by the sample data for each state, and as a result, we finally performed the
classification of the mask-wearing state according to the non-linear gradients and the distributions of
the data bounding box coordinate information. The classified object presents the Region of Interest
(ROI) using detected facial box coordinate information, and it is divided into two states: “With Mask
(denoted as WM)” and “Without Mask (WO)”. The case of “Wear a mask Around Chin (AC),” is also
classified as WM. In additions, the proposed coordinate information comparison method pre-defines
the linear regression slope information of the sample data constructed in the simulation environment
considering the three mask-wearing states of the subject and the distance between the cameras, so that
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it provides fast mask-wearing status result without frame delays even in a real time environment. Here
is a summary of the significant contributions of the proposed method:

� It provides a guide to the system of automatic guideline that can effectively prevent viral
respiratory infections.

� It proposes a method that effectively detect wearers and status (e.g., wear a mask around one’s
chin) using the image coordinate information of the object obtained from a CNN architecture.

� Image data sets improves performances of the trained model and are collected for robust object
detection from various external disturbances.

� A study of the linear gradient according to the mask-wearing status of people using the image
coordinate information of the detected objects and fast and accurate detection of multiple mask
wearer using 1-stage CNN detector.

2 Related Work

This chapter discusses the prior models used to detect mask-wearing status.

2.1 Object Detection Model

The newly proposed model focuses on recognizing multiple objects simultaneously to suggest
automatic prevention guidelines in densely foot traffic areas. Therefore, it is designed to detect multiple
things at once by adopting an object detection model rather than a classification. Though high object
detection accuracy is required to recognize the correct mask-wearing status, the accuracy can be
complemented in recurrent neural network. Therefore, the object detection model aimed to detect
pedestrian quickly by using 1-Stage series model. Among 1-Stage detectors, YOLO and Single-Shot
Refinement Neural Network for Object Detection (SSD) are the most famous types, and YOLO
has improved a lot in accuracy and speed compared to SSD from YOLOv2 [25–31]. In addition,
YOLOv4 effectively improved in accuracy by introducing Distance Intersection Over Union (DIOU)
and Complete Intersection Over Union (CIOU) as new loss functions [25]. However, when detecting
an object by using 1-Stage detector only, it is challenging get robust and reliable performances in
object detection [19–24,32–34]. For example, assuming that 1-Stage detectors are used alone to detect
objects who incorrectly wear a mask, object classification information may vary depending on the
subject’s rotation, distance, ambient lighting, and surrounding background. Furthermore, an accurate
detection of the facial region are essential and required to identify mask-wearing status with using of
tremendous amount of collected image datasets and elaborate hyper parameter settings. Even if it is
assumed that a good model trained with sophisticatedly adjusted hyper parameter and a large amount
of image data, it cannot guarantee the reliability of object classification using a detector alone. The
purpose of detector is on object detection and it is specialized for region detection of the target object,
thus sophisticated state classification such as AC state requires additional image processing works.

Therefore, the proposed method uses YOLOv4 to detect the subject’s facial area and mask area.
The trained weight file contains a diverse image dataset considering lighting, subject distances, rota-
tions, and surrounding environments. It is also contains classification function using the coordinates
of the detected bbox and configured to ensure reliability for sophisticated detection.

2.2 A Study on Mask-Wearing Detection Technologies

To build an automatic prevention system against viral respiratory infection, it is important to
find a person’s facial area at first. The most common method for the detection is to starts from
finding an object using a CNN-structured detector [15,32–34]. Facial and mask area detection use
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image datasets such as Detecting Masked Faces in the Wild (MAFA), MaskedFace-Net, and Properly
Wearing Masked Detect Dataset (PWMDD). This paper used these open datasets and an own custom
image dataset to train the YOLO detector [35–42]. To build an automatic remedial system against
respiratory viruses, it is first to find a person’s facial and mask region. The most common method
for it starts from seeing an object using a CNN-structured detector [15,32–34]. The next task is to
find the facial and mask’s region and determine the mask-wearing state based on the detected part.
Technologies released before COVID-19, however, show poor versatility, accuracy, and processing
speed [43–45]. And the technologies released after the COVID-19 pandemic was mostly made into
a WM and WO binary classification or focused on effective detection of facial and mask region [20–
25,46]. Bucju et al. attempted to develop automatic mask detection using RGB color information of
the input image, and Mohamed et al. combined YOLOv2 and ResNet50 to detect the facial region and
mask region, but neither technique mentions the AC status [22,47]. Jiang et al. adopted ResNet and
MobileNet as backbones and used Feature Pyramid Network (FPN) structure, but it does not consider
AC state detection, and the accuracy is 89.6% [48–50]. Mohemed et al. introduced transfer learning to
recognize non-masked users with a combination of Support Vector Machine (SVM) and ResNet50,
but the proposed technique requires a lot of computations. Therefore, it requires high performance
Graphic Process Unit (GPU), which incurs a lot of costs [19]. Additionally, Preeti et al. proposed a
real-time mask free recognition system using a combination of SSD and MobileNetV2; still, there is a
drawback in that the detection accuracy is lower than that of using the YOLO detector [23]. Hammoudi
et al. effectively designed an application for WM, WO, and AC state recognition by introducing an
internal algorithm similar to Haar feature point detection in obtained bbox using the CNN detector
[50]. Xinbei et al. proposed the Squeeze and Excitation-YOLOv3 model that improved the backbone
structure of YOLOv3 and constructed a self-constructed image data set for effective non-masked user
detection, but Darknet53 is basically optimized by Cross-Stage-Partial-Connections (CSPDarknet)
[25,42]. Jimin and Wei improved the speed and accuracy of object recognition flow by selecting the
YOLOv4 detector for effective detection of non-masked user and introducing the CSPn_X Net concept
that modified the backbone and neck structure of the model. It, further, enhanced the practicality by
focusing on the awareness of WM, WO, and AC [32–34].

3 Proposed Method

The newly proposed method in this paper can recognize the WM, WO, and AC states the same
way as the most recently introduced method for detecting the unmasked person. This can be used in
various environments and circumstances, and we built our own image dataset. The created dataset is
constructed to consider various mask types, lighting disturbances, small objects, multiple time periods
(day to night), weather, races, and many faces simultaneously. In the paper, we will denote it as AMD:
Advanced Mask Dataset. Existing technologies for detecting unmasked people have mainly focused on
datasets or neural net models. The proposed method concentrates on the dataset as well but does not
modify the neural net model itself. We first collected image dataset by assuming two separate situations
which a person wears a mask correctly and which a person wears a mask incorrectly. And using bbox
coordinates of the face and mask region obtained by YOLO detector, we regressively analyzed the
properties of the data according to the state of people wearing the mask. And we finally classify the
mask-wearing state by using the regression line of each state and the distribution of the data we want
to measure. In other words, the proposed technology does not depend on the detector due to the
regression consideration of the data for each state in which people wear masks, and this method can
be used together with other technologies to improve detection accuracy. The overall flowchart of the
proposed method is shown in Fig. 1.
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Figure 1: Overview of the proposed non-mask wearer detection algorithm architecture

As it is mentioned in the previous chapter, accurate finding of facial and mask regions needs to
precede establishing a non-mask wearer detection system. Facial image datasets collected in various
environments and mask-wearing images such as MaskFaceNet are opened to establish a prevention
system after outbreak of COVID-19 pandemic [40,41]. There are open image sets that changes the
small-large space, rotates the image, contains occlusion facial image, creates intentional blurring, and
reflect weather effects [35–39,51]. Image datasets for non-mask wearer recognition that emerge after
COVID-19 are divided into two types; Dataset that classifies WO and WM [37], and datasets that
classify AC situations as well [40–42]. There is a mask dataset that also includes occluded objects or
blurred images in it [37].

The proposed method additionally created an image dataset to derive the accurate result of facial
and mask areas against any surrounding disturbance. Detectors adopting supervised learning methods
such as YOLO have severe model performance differences depending on the quantity and quality of
images used in training procedure. By providing images that are familiar with disturbances in training
procedure, the detector makes better object recognition performances under surrounding disorders
[52]. Therefore, the previous released dataset also contains images with scale changes, blurring, and
various climate environments. The created image dataset basically considered the rotation of the face,
scale changes, and various climatic conditions, as existing released facial image sets. Moreover, our
own dataset contains images with multiple people for detection in heavy foot-traffic area, images with
artificial lighting changes to derive strong recognition results under lighting disturbance, and 1760 of
masks images with 16 different types of patterns. We denoted out own created dataset as Advanced
Mask Dataset (AMD), and Fig. 2 shows the significant considerations of AMD.
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Figure 2: Essential considerations of creating AMD datasets; we purchased and used 1760 masks of
16 types for AMD, which considered more realistic parts than the other existing dataset released to
recognize the face and mask

Unlike other open datasets, AMD focused much on these five factors as shown in Fig. 2. To
recognize multiple objects at the heavy foot-traffic area, multiple people’s image that are taken at the
entrance of a building and open dataset images are used together. The subjects (facial images) are taken
by rotating up, down, left and right, 0–30 degrees each. The scale changes of the object for small object
recognition is divided into two types: intentional (manual) situation and fully automatic deployment.
The intentional conditions are obtained by adjusting the space between the camera and the subject as
10 cm interval each. Fully automatic deployment situation is constructed by automatically configured
image data when a person is detected to a camera using a trained weight file that can recognize people.
To perform a robust detection from light disturbance, we collected images that adjust the brightness of
illuminations into 200–400 Lux using artificial lightning and images that is taken under natural light
by dividing the time from day to night. For lighting brightness, we referred to the interior illumination
standard of International Commission on Illumination (CIE) [51]. We also constructed the types of
masks as white one, which is commonly used, black masks, medical masks, various pattern masks,
and industrial masks. To consider the effect on image of climate condition, we adopted Unconstrained
Face Detection Dataset (UFDD)’s open dataset. And for the robust detection of the facial area, we
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used Blur and occlude image of Wider Face and Wildest Face. Moreover, there are several other open
datasets for detecting facial and mask regions that are not used in this paper. The proposed method
detects the facial and mask areas using open datasets and AMD to robustly detect the facial and mask
regions. The proposed AMD is more realistic than the other open datasets considering disorders since
it is taken using a camera. Tab. 1 is a comparison and summary of datasets to detect facial and mask
regions.

Table 1: Comparison of detection datasets

Datasets Images Source Purpose Considering
the AC

Considering
the
disturbances

Face detection
dataset and
benchmark
(FDDB) [35]

2,845 Yahoo Face

Wider face [36] 32,203 Google, Bing Face �
Wildest faces [53] 67,889 YouTube Face �
UFDD [38] 6,424 World Wide

Web (WWW)
Face

Multi-attribute
labelled faces
(MALF) [39]

5,250 Flickr, Baidu Face

MAFA [37] 35,806 www Face & mask � �
MaskedFace-Net
[40]

133,783 Flickr-Faces-
HQ (FFHQ)
[45]

Face & mask �

PWMDD [41] 16,702 www Face & mask �
AMD (Ours) 22,702 camera Face & mask � �

4 Experiment

The proposed method in this paper classifies the detected object whether wearing a mask or
not using YOLO algorithm. Coordinate information of the bounding box obtained from YOLO is
used to classify the object’s state, and Fig. 3 shows the coordinate information using the proposed
method. Those coordinate information utilize the next three coordinates: the center coordinates
(Facial Point1:F_pt1 and Facial Point2:F_pt2) of each of the top and bottom of the facial region and
the center coordinate (Mask Point:M_pt) of the detected mask bounding box. Furthermore, we define
the distance from F_pt1 to M_pt as Distance1, and the distance from M_pt to F_pt2 as Distance2.
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Figure 3: Coordinate information of the bounding box using the proposed method: The proposed
method uses the distance values between each coordinate using two coordinates: the top and bottom
ends of the facial bounding box and the central coordinates of the mask bounding box. Besides, the
two distance values are used to classify the object state whether wearing a mask or not

4.1 A Study on Data by Mask-Wearing Conditions

To detect facial and mask areas using CNN detectors and recognize a state of correctly wearing
masks, we inspected the coordinate data for the three conditions defined in this paper (WM: With
Mask, WO: Without Mask, and AC: Around Chin). The simulation environment was set up as Fig. 4.
The people were positioned from 1 to 6.5 M in the indoor building entrance at 0.5 M intervals. And,
distance data (i.e., Distance1 and Distance2) were collected for WM, WO, and AC conditions as shown
in Figs. 5 and 6 shows the results of distance data collected for all cases.

In Fig. 5, whole image data were acquired while gazing at the front for fundamental consideration
of the data. Here, the measurement distance is limited to 6.5 M, and the proposed method uses the
bounding box coordinates obtained from the CNN detector. Its size is inversely proportional to the
distance of the subject. In other words, the bounding box becomes smaller as the distance increases.
If the distance is closer to 6.5 M, the bounding box size is tiny, so we did not consider an additional
space greater than 6.5 m in the simulation situation. And looking at the measured results in Fig. 6,
the distance data are distributed with a constant slope depending on the condition of wearing the
mask. When the mask is worn correctly, the length of Distance1 decreases, and the length of Distance2
increases; conversely, if the cover is worn incorrectly or on the around chin, Distance1 increases, and
Distance2 decreases. Based on these results, we suggest that the classification of mask-wearing status
can be interpreted regressively based on the Distance1 and Distance2 information specified in this
paper. Therefore, in this paper, the condition of wearing a mask is finally classified through regression
analysis of the measurement target.
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Figure 4: Simulation environment for examining data according to the mask-wearing state: (a)
Schematic of the simulation environment; (b) Simulation place; and (c) People setup in simulation
place (people were positioned from 1 to 6.5 M at 0.5 M intervals)

Figure 5: (Continued)



4420 CMC, 2022, vol.72, no.3

Figure 5: Specific situations for collecting WM, WO, and AC data for each distance: (a) state: WM,
distance: 1–6 M; (b) state: AC, distance: 1–6 M; (c) state: WO, distance: 1–6 M; (d) state: WM, distance:
1.5–6.5 M; (e) state: AC, distance: 1.5–6.5 M; (f) state: WO, distance: 1.5–6.5 M

Figure 6: Measurement results of Distance1 and Distance2 for each state

4.2 Linear Regression Model According to the Mask-Wearing Status

To classify the mask-wearing status, we performed linear regression with the measured data in
Fig. 6, and Eq. (1) represents a linear regression method for the measured data.

Y = wX + b (1)

where, Y is a vector corresponding to the response variable, i.e., Distance2 data, and X represents an
independent variable corresponding to Distance1. And b is a variable corresponding to the y-intercept,
and w represents the gradient of the regression line. Since the linear regression model is a problem
finding the gradient of a straight line that minimizes the cost of squared error between the returned
observed value and the sampled true value, a cost function that minimizes the error can be defined as
follows:

Cost (w, b) = min
n∑

i=1

(wxi + b − yi)
2 (2)

The purpose of the regression analysis results in obtaining w and b values in which Cost(w, b) of
Eq. (2) has the closest value to 0. Therefore, the independent variable X and the response variable Y



CMC, 2022, vol.72, no.3 4421

are treated as constants, and Eq. (2) is solved and summarized to partial derivative w and b as follows:

Cost (w, b) = 1
n

n∑
i=1

(
w2x2

i + 2xibw − 2byi − 2xiyiw + b2 + y2
i

)
(3)

Eq. (3) is expressed as follows by partial derivative for w and b.

w = ∂Cost (w, b)

∂w
= 1

n

n∑
i=1

(
2x2

i w + 2xib − 2xiyi

)

w = ∂Cost (w, b)

∂w
= 1

n

n∑
i

(xiw + b − yi) 2xi (4)

b = ∂Cost (w, b)

∂b
= 2

n

n∑
i

(xiw + b − yi) (5)

The goal is to obtain w and b, which causes Cost(w, b) to converge to zero; so Eqs. (4) and (5) are
summarized as follows:

w =
n∑

i=1

xiyi =
n∑

i=1

x2
i w +

n∑
i=1

bxi (6)

b =
n∑

i=1

yi =
n∑

i=1

xiw +
n∑

i=1

b (7)

To apply the simultaneous equation, Eqs. (6) and (7) are expressed in a determinant as follows.[∑
x2

i

∑
xi∑

xi n

] [
w
b

]
=

[∑
xiyi∑
yi

]
(8)

Eq. (8) is expressed as follows according to Cramer’s rule.

w = n
∑

xiyi − ∑
xi

∑
yi

n
∑

x2
i − ∑

xi

∑
xi

(9)

where, if we define the expected value for X as follows:

E (X) = 1
m

∑
X (10)

Then, Eq. (9) is expressed in the form of expected values for X and Y .

w = E (XY) − E (X) E (Y)

E (X 2) − E (X) E (X)
(11)

Therefore, w can be expressed as follows in the form of variance over X and covariances over X
and Y .

w = Cov (X , Y)

Var (X)
(12)
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Furthermore, since we should obtain the intercept b converging to 0, Eq. (5) can be summarized.

b = 1
n

n∑
i=1

b = 1
n

n∑
i=1

yi −
n∑

i=1

xiw =
∑

yi − ∑
xiw

n
(13)

Eq. (13) is expressed in the form of an expected value as follows:

b = E (Y) − E (X) w (14)

In other words, since the purpose is to find the measured linear regression for Distance1 and
Distance2, it can be interpreted as finding the Global Optimum for w and b as in Eqs. (11) and (14).
And Fig. 7 shows the linear regression results for Fig. 6.

Figure 7: Linear regression results for Fig. 6

4.3 Classification of Status Using Regression Gradient

The proposed method performs mask-wearing status classification using the gradient and inter-
cept of the regressed line. To conduct further experiments on the classification operation using the
linear equation of the regression line, a single image containing the three states WM, AC, and WO was
used, as shown in Fig. 8. In the case of single image, Distance1 and Disntace2 for each state, and the
data represent in Fig. 8 with the same way as Fig. 6.

Figure 8: Data acquisition example for a single image: (a) WM: With Mask; (b) AC: Around chin and
(c) WO: Without Mask



CMC, 2022, vol.72, no.3 4423

And, Fig. 9 shows the results of Distance1 and Distance2 measured in the state of Fig. 8.

Figure 9: Measurement results of Distance1 and Distance2 for a single image

When the regression lines for each states are organized in the form of ax + by + c = 0, the proposed
method uses a and b corresponding to the coefficients of x and y and c corresponding to the intercepts.
As shown in Fig. 10, it is the way that finding the one has closest distance from each regression lines,
and the calculation of the distance from the regression line can be defined as follows:

ds = |asxi + bsyi + cs|√
a2

s + b2
s

(15)

s is a variable representing three states, and i is a target data for measurement in here. It is to calculate
distances between each values (dwm, dAC, and dwo) to data1 (x1, y1), and find out ds with the smallest value
in those calculated distances. The final result of mask-wearing status classification can be confirmed
as shown in Fig. 11, using proposed method of Fig. 10. In the results of Fig. 11 shows that the results
are correctly classified, comparing the final mask-wearing status classification result with the status
of Fig. 8, which is the Ground Truth (GT). The main purpose of the proposed method which is
classification method of mask-wearing status is to contribute an efficient and automatic monitoring
system for public health guidelines that preventing viral respiratory infections such as COVID-19.
Therefore, both AC and WO states are classified as without mask. If dwm and dAC have the same distance
value for the classification target data datai (xi, yi), then it is classified as dAC by conservative decision.

5 Validation
5.1 Validation of Regression Model

When the new measurement data in Fig. 8 are added, the gradient of the regression line that are
already fitted to existing data is modified by Eqs. (11) and (14). Fig. 12 shows the revised regression
results considering the measurement data in Fig. 8.

The gradient result of the regression line, reflecting the data additionally measured in Fig. 12
shows that all obtained data in the simulation environment in Fig. 5 could be commonly classified
using the proposed method. For more precise and reliable gradient acquisitions, we additionally
measured the gradient of 120 situations of rotations, distance adjustments, and additional single
images to classify mask-wearing status.
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Figure 10: An example of the classifying mask-wearing status process for newly measured data: The
proposed method classifies the final mask-wearing status by figuring out di that has the smallest
distance value for each gradient straight line corresponding to WM, AC, and WO in the classification
target data (xi, yi)

Figure 11: Results of final classification of mask-wearing status in the proposed method for Fig. 10

It can be seen that the non-updated linear slope in Fig. 13a can commonly classify not only
additionally measured situations but also data taken from long distances (see the augmentation spot).
On the other hand, the updated gradient in Fig. 13b shows that WM and AC gradients intersect
each other or that data in the WO state close to WM or AC gradients in case of data taken from
long distances (see the magenta line). In other words, Fig. 13b shows that the updated gradients
that considering all data cannot classify correctly in the proposed method. In addition, the logistic
regression results rather than that of linear in Fig. 13b have lower Root Mean Square Error (RMSE)
values for all data, which means having higher fitting compatibility but still locating close to WM data
for long-distance objects. Therefore, it can confirm that object classification cannot be performed
normally in this case (see the cyan line). In a real-time usage of the proposed method, it is impossible
to update the regression line gradient by every time the additional data measured. Therefore, this paper
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pre-defines the linear regression result according to each mask-wearing status and use the regression
result that is updated in Fig. 12 as a reference line. And for each states, the ax + by + c = 0 of pre-
defined values presented in this paper are shown in Tab. 2.

Figure 12: Regression results revised in consideration of the measurement data in Fig. 8

Figure 13: Additional experimental results to obtain detection baseline in more precise situations: (a)
Additional 120 situations and non-updated linear gradients in Fig. 12; (b) Results including updated
linear and non-linear gradients of additional 120 data

Table 2: Definitions of the coefficients of the pre-defined ax + by + c equations for classifying mask-
wearing conditions

Status a b c

WM 0.245 1 3.822
AC 0.1589 1 0.1342
WO −0.03769 1 −1.496



4426 CMC, 2022, vol.72, no.3

5.2 Validation of Status Classification Results

The object detection is performed using open datasets considering various disturbances and
22,702 AMD datasets that are directly photographed with cameras. For the mask-wearing status
defined in three situations (WM, AC, and WO), the mask-wearing group is classified by comparing
the measurement data with status gradients which is previously described. After classify the mask-
wearing status, the proposed method uses bounding box of the facial area that are detected by YOLO
detector for final result decision. Since both AC and WO states are classified as without masks, the
result classes of final object detection are divided into two types: with mask and without mask. Fig. 14
shows basic YOLO only result and the results of mask-wearing status classification using the proposed
method, respectively. The detected situation was constructed, focusing on the reliable object detections
and classifications under various lighting environments with a large populated area (Illuminations &
darkroom, Multiple objects).

Figure 14: Detection result of wearing a mask: (a) only using the YOLO detector; (b) YOLO with Ours
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As can be seen from the results of comparative experiment in Fig. 14, the results with YOLO
detector alone classifies mask-wearing condition incorrectly and detects the bounding box with
overlaps. The proposed method, however, has higher accuracy in detections and classifications by
analyzing the coordinate information after the YOLO detection additionally. The detector even has
high detection performances since the model is trained with various datasets to detect strongly in
dazzling or dark environments. The weight file can be used universally by considering various scale
changes and rotations of objects, blur, and multiple objects during training phase. The performance of
the supervised learning model varies greatly depending on the quantity and quality of the dataset
configuration of training [52]. Since the AMD dataset assumed various disturbances in indoor
environments that the proposed method will be applied, the dataset is constructed to enable the
successful detection of people far from the camera in a large populated area. Fig. 15 shows a
comparison between results using AMD dataset and results without AMD dataset. The essence of
the proposed method is coordinates analysis of bounding box in the detected facial and mask areas.
Though YOLO detector is used in this paper, it can be used with other detectors as necessary. Tab. 3
shows comparison of performance comparison of various detectors; the proposed methods, and
various situations using AMD.

Figure 15: Detection result of wearing a mask: (a) without AMD; (b) with AMD

Table 3: Comparative results of different mask wearer detection methods

Detector Objects AMD Proposed method mAP@.50 Aver. FPS

YOLOv4-416 [25] 20 0.759 22.2
YOLOv4-416 20 � 0.889 22.2
YOLOv4-416 20 � 0.826 19.8
YOLOv4-416 20 � � 0.952 19.8
Faster-RCNN [54] 20 0.785 12.1
Faster-RCNN 20 � 0.901 12.1
Faster-RCNN 20 � 0.836 10.9
Faster-RCNN 20 � � 0.941 10.9

(Continued)
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Table 3: Continued
Detector Objects AMD Proposed method mAP@.50 Aver. FPS

SSD-513 [26,28] 20 0.731 16.7
SSD-513 20 � 0.871 16.7
SSD-513 20 � 0.795 13.5
SSD-513 20 � � 0.885 13.5

6 Conclusion

In this paper, an effective and reliable facial mask-wearing status detection method is proposed
to prevent viral respiratory infections. Various existing open datasets and additional Advanced Mask
Dataset are introduced and used for model learning to carry out proposed method, and the AMD is
collected considering various external environments and disturbances; blurred image, different climate
conditions, occlusion disturbances, dazzling and darkroom, various scale changes of objects, mask
types, rotation, and multiple objects. This method can also applied in general circumstances especially
in indoor situations by detecting facial and mask area using trained weight files and AMD. The
mask-wearing status are divided into three types which are WM, AC, and WO. The gradients of
each regression line is deeply considered through the experiment, and by calculating the orthogonal
distances of newly measured data, proposed method, detection system, classifies the object’s mask-
wearing status. Lastly, this paper presents the results of comparative experiment under different
situations using AMD and the proposed method, and as a result, we confirmed that this proposed
method is not restricted to a specific detector but can create synergy with multiple other detector and
the AMD had verified validity. That is, both AMD data and the proposed method are expected to be
used as the cornerstone of technology to prevent pandemic situations from viral respiratory infections
such as COVID-19.
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